
cs2420 | Introduction to Algorithms and Data Structures | Spring 2015
JAVA REVIEW

1

administrivia…

2

3

-Lab 0 posted
-getting started with Eclipse
-Java refresher

-this will not count towards your grade

-TA office hours today, 12:15-5pm

-help sessions this Friday
-9:40am | 10:45am | 11:50am
-MEB 3225

last time…

4

N
-we refer to unspecified integer quantities as N

-N is the problem size
-sorting an array of N numbers
-searching for an item in a set of N items
-inserting an item into a set of N items

-amount of work done for these operations usually
depends on N

-work required is a function of N

5

large N

6

Choosing an Algorithm
(large problem size)

As N becomes large, complexity matters!

 0

 5

 10

 15

 20

 25

 30

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ru
nn

in
g

tim
e

(m
ilis

ec
on

ds
)

N (size of list)

sort 1 sort 2

take away:

as N becomes large
complexity matters!

phases of software development

-requirements gathering
-read and understand assignment specs, ask questions

-planning | design | analysis
-outline how to solve a problem, determine algorithms, write
pseudocode

-construction
-write code, debug syntactic errors

-testing
-test thoroughly to find semantic errors and boundary cases

-maintance

7

testing
-white-box

-test with knowledge of the program’s inner-workings
— from the programmer’s perspective

-unit testing, boundary analysis

-black-box
-test only with knowledge of the program’s interface
— from the user’s perspective

-stress testing

-test-first model
-write acceptance tests before writing any code

8

good coding style
-benefits the programmer and all other readers of the
program

-components:
-descriptive names (variables, methods, classes)
-clear expressions, straightforward control flow
-consistency, conventions, and language idioms
-comments!

-well-written code is often smaller, has fewer errors,
and is easier to extend and modify

9

today…

10

11

disclaimer: this class is not about teaching you Java

12

-variables

-control flow

-reference types

-misc.

variables

13

14

-a variable is a piece of data in memory with:
-an identifier (name)
-a type

-what is a type?
-a basic building block in a programming language
-determines what kind of data a variable holds, and
what operations can be performed on it

-Java defines eight primitive types
-byte, short, int, long, float, double, char, boolean
-each primitive type can hold a single value

-‘r’, 12, 2.64, true

declaration & initialization
-declaring a variable is stating that it exists

-assigns the variable a type and name

-initializing a variable gives it an initial value, and is often
combined with declaring

-variables declared as final are constant and cannot be
changed after initialization

15

boolean areWeThereYet;

boolean areWeThereYet = false;

final int theMeaningOfLife = 42;

assignment
-after a variable has been declared we can assign it a
new value with =

-we can use arithmetic expressions with an
assignment

16

areWeThereYet = true;

age = currentYear - birthYear;

arithmetic operations
-explicitly supported on primitive types

-binary operators

-unary operators

-Java follows common order-of-operation rules

17

+, -, *, /, %

- (negation), ++ (increment), -- (decrement)

unary ops : highest
*, /, % : high
+, - : low
= : lowest

type conversion
-widening conversions convert data to another type
that has the same or more bits of storage

-narrowing conversions convert data to another type
that has fewer bits of storage, possibly losing
information

18

short -> int
int -> long
int -> float

double -> float
float -> int

type conversion
-java uses widening conversion when an operator is
applied to operands of different types (called
promotion)

19

2.2 * 2

1.0 / 2

double x = 2;

“count = “ + 4

evaluates to 4.4
evaluates to 0.5
assigns 2.0 to x
evaluates to “count = 4”

string concatenation

mixing types
-conversions are done on one operator at a time in the
order the operators are evaluated

20

3 / 2 * 3.0 + 8 / 3

2.0 * 4 / 5 + 6 / 4.0

5.0

3.1

mixing types
-String concatenation has the same precedence as
+- and is evaluated left to right

21

1 + “x” + 4

“2+3=“ + 2 + 3

1 + 2 + “3”

“2*3=“ + 2 * 3

4 - 1 + “x”

“x” + 4 - 1

“1x4”

“2+3=23”

“33”

“2*3=6”

“3x”

error

type casting
-type casting tells Java to convert one type to
another

-uses:
-convert an int to a double to force floating-
point division

-truncate a double to an int

22

double average = (double) 12 / 5;

int feet = (int) (28.3 / 12.0);

assignment operators
-basic assignment operator

-combined assignment/arithmetic operators

-increment/decrement operators can be stand-alone
statements

23

=

+=, -=, *=, /=

i++;
i--;
++i;
--i;

int i = 3;
int j = i++;
System.out.println(i+” “+j);

int i = 3;
int j = ++i;
System.out.println(i+” “+j);

relational and logical ops
-results are always boolean

-relational ops supported for number and character
types (and equality for boolean)

-logical ops supported for boolean

-precedence (all lower than arithmetic):

24

>, <, >=, <=, ==, !=

&&, ||, !

>, <, >=, <= : highest
==, != : high
&& : low
|| : lowest

control flow

25

26

-control flow determines how programs make
decisions about what to do, and how many times to
do it

-decision making : if-else, switch-case
-looping : for, while, do-while
-jumping : break, continue, return
-exceptions : try-catch, throw

switch statements
-similar to an if-else-if statement

switch(integer expression)
{
 case <integer literal>:
 list of statements…

 case <integer literal>:
 …
}

27

switch statements
-execution begins on the first case that matches the
value of the switch variable

-execution continues until break is reached
-even continues through other cases!
-usually want a break after every case

-switches can use the default keyword
-if no cases were hit, execute the default case
-similar to an else at the end of a long line of if-
else-if

28

exceptions
-an exception is a special event that interrupts the
control of the program

-exceptions are “thrown” explicitly by the code

-use a try block to wrap any code that might throw
an exception

-a catch block immediately follows a try block

-execution of the program jumps inside the catch
block if an exception occurred within the try block

29

30

try
{
 FileReader in = new FileReader(“fakefile.txt”);
}
catch(FileNotFoundException e)
{
 System.out.println(“file does not exist”);
}
catch(Exception e) // a less specific error occured
{
 System.err.println(e.getMessage());
}

throwing exceptions

-why don’t we need an else?

-there are many many subclasses of exceptions…

-you can even define your own!

31

if(arraySize < 0)
 throw new NegativeArraySizeException();
arr = new int[arraySize];

public class BadnessOccurred extends Exception
{ … }

reference types

32

33

-all non-primitive types are reference types

-a reference is a variable that stores the memory
address where an object (a group of values) resides

Point p1, p2, p3;

p1 = new Point(7,19);
p2 = p1;

1024

1024

null

p1

p2

p3

7 19

1024

reference declaration
-declaration of a reference variable only provides a
name to reference an object — it does not create an
object

-after Point p1; the value stored in p1 is null

-the new keyword is used to construct an object

-why are () needed?
34

Point p1 = new Point();

Point p2;
p2 = new Point();

operations on reference types

-operations on references: =, ==, !=
-equality operators compare addresses

-what does p2 == p1 return?

35

Point p1, p2, p3;

p1 = new Point(7,19);
p2 = p1;

1024

1024

null

p1

p2

p3

7 19

1024

operations on reference types

-operations on objects: ., instanceof
-the . operator is used to select a method that is
applied to an object, or an individual component of
an object

36

Point p1, p2, p3;

p1 = new Point(7,19);
p2 = p1;

1024

1024

null

p1

p2

p3

7 19

1024

what does p3.firstValue() return?
what does p1 instanceof Point return?

String
-String is the only reference type for which operator
overloading is allowed (+ and +=)

-String objects are immutable

-to compare String objects use equals and
compareTo methods — not ==, !=, <, or >

-why?

-other useful String methods:
-length, charAt, substring

37

arrays
-an array is a mechanism for storing a collection of
identically typed entities

-in Java, arrays behave like objects

-the [] operator indexes an array, accessing an individual
entity — bounds checking is performed automatically

-by default, array elements are initialized 0 (primitive
types) and null (reference types)

38

Point[] refArray = new Point[10];

double[] primArray = {3.14, 2.2, -9.8};

ArrayList
-the ArrayList class (from the Collections library) mimics
an array and allows for dynamic expansion

-the get, set methods are used in place of [] for
indexing

-the add method increases the size by one and adds a new
item

-ArrayList may only be used with reference types

39

ArrayList<String> a = new ArrayList<String>(1);
a.set(0, “hi”);
a.add(“there”);

misc.

40

parameter passing
-Java uses call-by-value parameter passing

-ie. a copy is created

-what does this mean for reference types?

41

int i = 4;
modifyInt(i);
System.out.println(i); // prints 4

Point p = new Point(1, 2);
modifyPoint(p);
System.out.println(p.x); // prints ????

main
-when a program is run, the main method is invoked

-the parameters of main can be set using command-
line arguments

-more on this later!

42

 public static void main(String[] args)

classes & constructors
-a class consists of fields (aka. variables) that store data and
methods that operate on that data

-fields and methods may be public or private

-the constructor controls how an object is created and
initialized

-multiple constructors may be defined, taking different
parameters
-if none is defined, a default constructor is generated

-initializes primitive fields to 0, and reference fields to null

43

the difference between field and variable:
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html

this
-this is a reference to the current object

-useful in avoiding self-assignment

44

// transfer all money from rhs to current account
public void finalTransfer(Account rhs)
{

dollars += rhs.dollars;
rhs.dollars = 0;

}

Account account1;
Account account2;
…
account2 = account1;
account1.finalTransfer(account2);

this
-this is a reference to the current object

-useful in avoiding self-assignment

45

// transfer all money from rhs to current account
public void finalTransfer(Account rhs)
{

if (this == rhs)
return;

dollars += rhs.dollars;
rhs.dollars = 0;

}

Account account1;
Account account2;
…
account2 = account1;
account1.finalTransfer(account2);

next time…

46

47

-reading
-chapters 3 & 4

-homework
-assignment 1 up by 5pm
-due next Thursday at 5pm
-must complete on your own!

-no lab
-happy MLK day!

-clicker questions start next Thursday

