
cs2420 | Introduction to Algorithms and Data Structures | Spring 2015
INHERITENCE, POLYMORPHISM, INTERFACES

1

administrivia…

2

3

-TA office hours posted

-assignment 1 due on Thursday at 5pm

-clickers start on Tuesday

last time…

4

6

-a variable is a piece of data in memory with:
-an identifier (name)
-a type

-what is a type?
-a basic building block in a programming language
-determines what kind of data a variable holds, and
what operations can be performed on it

-Java defines eight primitive types
-byte, short, int, long, float, double, char, boolean
-each primitive type can hold a single value

-‘r’, 12, 2.64, true

type conversion
-widening conversions

-narrowing conversions

7

short -> int
int -> long
int -> float

double -> float
float -> int

5 / 2 * 3.0 + 10 / 3

“6+3=“ + 6 + 3

9.0

“6+3=63”

8

-control flow determines how programs make
decisions about what to do, and how many times to
do it

-decision making : if-else, switch-case
-looping : for, while, do-while
-jumping : break, continue, return
-exceptions : try-catch, throw

9

-all non-primitive types are reference types

-a reference is a variable that stores the memory
address where an object (a group of values) resides

Point p1, p2, p3;

p1 = new Point(7,19);
p2 = p1;

1024

1024

null

p1

p2

p3

7 19
1024

today…

10

11

-inheritance

-polymorphism

-abstract classes

-interfaces

object-oriented programming
-data is treated as encapsulated in objects

-objects contain data and define functions meaningful to
that data

-objects are instantiations of classes
-actual written piece of code which is used to define the
behavior of any given class

-OOP supports and enables…
-modularity
-code re-use
-better code design
-…

12

a class is a general concept, while an object is a very specific embodiment of that class

13

-inheritance is one of the most powerful features of
OOP

-allows a class to inherent properties from another
class
-used when multiple types of data have something
in common
-avoid duplication of code

NullPointerException
IndexOutOfBoundsException
ArithmeticException

example…

14

15

shape class
-a shape has (fields):

-a color (String)
-an area (double)

-different shapes:
-circle
-triangle
-rectangle
-square

16

public class Triangle{
 String color;
 double area;
}

public class Circle{
 String color;
 double area;
}

public class Rectangle{
 String color;
 double area;
}

public class Square{
 String color;
 double area;
}

what if I want to redfine color
as an integer array (R,G,B)?

What if I want to give each
shape an outline color?

what can I do?
extends

17

public class Shape{
String color;
double area;

}

public class Triangle extends Shape{
}

public class Circle extends Shape{
}

public class Rectangle extends Shape{
}

public class Square extends Shape{
}

}inherit all
public fields
and methods
of Shape

called a base class
(or superclass)

18

shape

triangle
circle rectangle

square

19

-now we have several shape classes, all with common
fields associated with every shape

-but…
-circles have a radius
-rectangles have a width and height
-triangles have three Points

-does it make sense for all shapes to have a radius? a
width and height? three Points?

-can inherited classes add their own fields and methods?

20

Shape
String color
double area

Triangle
Point p1
Point p2
Point p3

Circle
int radius
Point center

Rectangle
int width
int height

Square
if (width!=height)
error

how many fields does a triangle have?

How many fields does a square have?

21

public class Shape{
String color;
double area;

public String toString(){
return color + “ shape”;

}
}

Triangle t = new Triangle();
t.color = “red”;
System.out.println(t.toString());

inherited classes also inherit methods

red shape

what can(’t) inherited classes do?

-a derived class can:
-add new fields
-add new methods

-a derived class cannot:
-remove fields
-remove methods
-inherit private fields
-inherit private methods

22

overriding a method
-ability of a class to override a method allows a class
to inherit from a base class whose behavior is close
enough, then modify behavior as needed

-method must have the same signature
-same name, parameters, return type

23

public class Circle extends Shape{
int radius;
Point center;

// override
public String toString(){
return color + “ circle with radius:” + radius;

}
}

why override?
-there may be a method that makes sense for all
shapes to have, but with drastically different
implementations

24

public double getArea(){
…

}

Is the area computation the same for a Circle and a Square?

partial overriding
-derived classes can explicitly invoke the base class’s
version of a method using super

25

public void doSomething(){
super.doSomething();
// then do a little more

}

why would we do this?

in case we want to do something just slightly different than the base
class, but most of the code is done for us…

26

-copy/paste implementation of Circle, modify slightly for
Triangle, Rectangle, and Square

-debug same code in several places
-extend/modify same code several times
-no relationship between classes

-can’t pass a Circle to a method that expects a Shape

-base class Shape, others extend
-can write one function that operates on any Shape
-automatic code reuse through inheritance

option 1

option 2

a more interesting example…

27

28

suppose you are making a video game about skiing

public class Ski{
public void turn();

}

public class AlpineSki extends Ski{
// override
public void turn(){
//how to turn on alpine skis

}
}

public class TelemarkSki extends Ski{
//override
public void turn(){
//how to turn on tele skis

}
}

29

suppose you are making a video game about skiing

switch(skier.ski_type)
{
case ALPINE:

turnAlpine();
break;
case TELEMARK:

turnTelemark();
break;
…

}

skier.ski.turn();

without inheritance: with inheritance:

polymorphism

30

type compatibility
-a derived class is compatible with its base class

31

public static boolean isLarger(Shape s1, Shape s2){
return s1.getArea() > s2.getArea();

}

Triangle t = new Triangle(…);
Circle c = new Circle(…);

if (isLarger(t,c)){
…

}

why can I pass isLarger a Circle and a Triangle?

32

-polymorphism is a fancy word for automatically
determining an object’s type at runtime

-the most specific type possible is used

-suppose Triangle does not override toString()

Shape s1 = new Circle();
Shape s2 = new Triangle();

s1.getArea();
s2.getArea();

what type is s1 treated as?
what type is s2 treated as?

s2.toString(); what type is s2 treated as?

33

-Java takes OOP to the extreme

-every reference type is polymorphic
-every reference type inherits from Object

-when you write your own toString() or
equals(Object o) methods, you are overriding
Object’s version

Matrix m = new Matrix(4,2);
System.out.println(m.toString());

is polymorphism happening?

34

Shape shape_array = new Shape[5];

shape_array[0] = new Triangle();
shape_array[1] = new Circle();
shape_array[2] = new Rectangle();
…

//find the total area of all the shapes
int total_area = 0;
for(int i=0; i<5; i++)

total_area += shape_array[i].getArea();

abstract classes

35

36

-we never intend for anyone to call the Shape class’s
getArea() method directly

-meant to be called from a specific shape

-we don’t have to provide an implementation in the
base class if we make the method abstract

-semicolon immediately following definition!

-remove abstract keyword in derived class’s
definition

public abstract double getArea();

37

-a class with at least one abstract method is an
abstract class

-derived classes MUST implement abstract methods

-abstract classes cannot be instantiated

-abstract classes are ONLY designated as base
classes

Shape s = new Shape();

Shape s = new Triangle();
which of these
is illegal?}

interfaces

38

39

-an interface is the ultimate abstract class
-every method is abstract
-can contain only public static final fields
-declared with the interface keyword instead of
class

-derived classes use keyword implements instead of
extends

-subclasses can implement multiple interfaces, but
can only extend one base class

interfaces
-provide a contract that guarantees objects of a
certain type can do specific things

-java.lang.Comparable interface has one
method: compareTo()

-classes that implement Comparable have a
natural ordering

-can be sorted without knowing any details about
the class (just use the compareTo() method!)

40

next time…

41

42

-reading
-chapters 3 & 4

-homework
-assignment 1 due next Thursday at 5pm

-must complete on your own!

-clickers start next Tuesday

