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administrivia…
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-TA office hours posted

-assignment 1 due on Thursday at 5pm

-clickers start on Tuesday



last time…
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-a variable is a piece of data in memory with:
-an identifier (name) 
-a type 

-what is a type?
-a basic building block in a programming language 
-determines what kind of data a variable holds, and 
what operations can be performed on it 

-Java defines eight primitive types
-byte, short, int, long, float, double, char, boolean 
-each primitive type can hold a single value 

-‘r’, 12, 2.64, true



type conversion
-widening conversions

-narrowing conversions
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short -> int 
int   -> long 
int   -> float

double -> float 
float  -> int

5 / 2 * 3.0  + 10 / 3 

“6+3=“ + 6 + 3

9.0 

“6+3=63”
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-control flow determines how programs make 
decisions about what to do, and how many times to 
do it

-decision making : if-else, switch-case 
-looping : for, while, do-while 
-jumping : break, continue, return 
-exceptions : try-catch, throw
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-all non-primitive types are reference types

-a reference is a variable that stores the memory 
address where an object (a group of values) resides

Point p1, p2, p3; 

p1 = new Point(7,19); 
p2 = p1;

1024

1024

null

p1

p2

p3

7   19
1024



today…
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-inheritance

-polymorphism

-abstract classes

-interfaces



object-oriented programming
-data is treated as encapsulated in objects

-objects contain data and define functions meaningful to 
that data 

-objects are instantiations of classes
-actual written piece of code which is used to define the 
behavior of any given class 

-OOP supports and enables…
-modularity 
-code re-use 
-better code design 
-…
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a class is a general concept, while an object is a very specific embodiment of that class
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-inheritance is one of the most powerful features of 
OOP

-allows a class to inherent properties from another 
class 
-used when multiple types of data have something 
in common 
-avoid duplication of code

NullPointerException 
IndexOutOfBoundsException 
ArithmeticException 



example…
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shape class
-a shape has (fields):

-a color (String) 
-an area (double) 

-different shapes:
-circle 
-triangle 
-rectangle 
-square



16

public class Triangle{ 
 String color;  
 double area;  
} 

public class Circle{ 
 String color;  
 double area;  
} 

public class Rectangle{ 
 String color;  
 double area;  
} 

public class Square{ 
 String color;  
 double area;  
}

what if I want to redfine color 
as an integer array (R,G,B)? 

What if I want to give each 
shape an outline color?

what can I do?
extends
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public class Shape{ 
String color; 
double area; 

} 

public class Triangle extends Shape{ 
} 

public class Circle extends Shape{ 
} 

public class Rectangle extends Shape{ 
} 

public class Square extends Shape{ 
}

}inherit all 
public fields 
and methods 
of Shape

called a base class
(or superclass)



18

shape

triangle
circle rectangle

square
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-now we have several shape classes, all with common 
fields associated with every shape

-but…
-circles have a radius 
-rectangles have a width and height 
-triangles have three Points 

-does it make sense for all shapes to have a radius? a 
width and height? three Points?

-can inherited classes add their own fields and methods?
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Shape 
String color 
double area

Triangle 
Point p1 
Point p2 
Point p3

Circle 
int radius 
Point center

Rectangle 
int width 
int height

Square 
if (width!=height) 
error

how many fields does a triangle have? 

How many fields does a square have?
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public class Shape{ 
String color; 
double area; 

public String toString(){ 
return color + “ shape”; 

} 
} 

Triangle t = new Triangle(); 
t.color = “red”; 
System.out.println(t.toString());

inherited classes also inherit methods

red shape



what can(’t) inherited classes do?

-a derived class can:
-add new fields 
-add new methods 

-a derived class cannot:
-remove fields 
-remove methods 
-inherit private fields 
-inherit private methods
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overriding a method
-ability of a class to override a method allows a class 
to inherit from a base class whose behavior is close 
enough, then modify behavior as needed

-method must have the same signature 
-same name, parameters, return type
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public class Circle extends Shape{ 
int radius; 
Point center; 

// override 
public String toString(){ 
return color + “ circle with radius:” + radius; 

} 
} 



why override?
-there may be a method that makes sense for all 
shapes to have, but with drastically different 
implementations
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public double getArea(){ 
… 

}

Is the area computation the same for a Circle and a Square?



partial overriding
-derived classes can explicitly invoke the base class’s 
version of a method using super
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public void doSomething(){ 
super.doSomething(); 
// then do a little more 

}

why would we do this? 

in case we want to do something just slightly different than the base 
class, but most of the code is done for us…
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-copy/paste implementation of Circle, modify slightly for 
Triangle, Rectangle, and Square

-debug same code in several places 
-extend/modify same code several times 
-no relationship between classes  

-can’t pass a Circle to a method that expects a Shape 

-base class Shape, others extend
-can write one function that operates on any Shape 
-automatic code reuse through inheritance

option 1

option 2



a more interesting example…
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suppose you are making a video game about skiing

public class Ski{ 
public void turn(); 

} 

public class AlpineSki extends Ski{ 
// override 
public void turn(){ 
//how to turn on alpine skis 

} 
} 

public class TelemarkSki extends Ski{ 
//override 
public void turn(){ 
//how to turn on tele skis 

} 
}
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suppose you are making a video game about skiing

switch(skier.ski_type) 
{ 
case ALPINE: 

turnAlpine(); 
break; 
case TELEMARK: 

turnTelemark(); 
break; 
… 

}

skier.ski.turn();

without inheritance: with inheritance:



polymorphism
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type compatibility
-a derived class is compatible with its base class
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public static boolean isLarger(Shape s1, Shape s2){ 
return s1.getArea() > s2.getArea(); 

} 

Triangle t = new Triangle(…); 
Circle c = new Circle(…); 

if (isLarger(t,c)){ 
… 

}

why can I pass isLarger a Circle and a Triangle?
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-polymorphism is a fancy word for automatically 
determining an object’s type at runtime

-the most specific type possible is used

-suppose Triangle does not override toString()

Shape s1 = new Circle(); 
Shape s2 = new Triangle(); 

s1.getArea();  
s2.getArea();

what type is s1 treated as? 
what type is s2 treated as?

s2.toString(); what type is s2 treated as?
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-Java takes OOP to the extreme

-every reference type is polymorphic
-every reference type inherits from Object 

-when you write your own toString() or 
equals(Object o) methods, you are overriding 
Object’s version

Matrix m = new Matrix(4,2); 
System.out.println(m.toString());

is polymorphism happening?
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Shape shape_array = new Shape[5]; 

shape_array[0] = new Triangle(); 
shape_array[1] = new Circle(); 
shape_array[2] = new Rectangle(); 
… 

//find the total area of all the shapes 
int total_area = 0; 
for(int i=0; i<5; i++) 

total_area += shape_array[i].getArea();



abstract classes
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-we never intend for anyone to call the Shape class’s 
getArea() method directly

-meant to be called from a specific shape 

-we don’t have to provide an implementation in the 
base class if we make the method abstract

-semicolon immediately following definition! 

-remove abstract keyword in derived class’s 
definition

public abstract double getArea();
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-a class with at least one abstract method is an 
abstract class

-derived classes MUST implement abstract methods

-abstract classes cannot be instantiated

-abstract classes are ONLY designated as base 
classes

Shape s = new Shape(); 

Shape s = new Triangle();
which of these 
is illegal?}



interfaces
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-an interface is the ultimate abstract class
-every method is abstract 
-can contain only public static final fields 
-declared with the interface keyword instead of 
class 

-derived classes use keyword implements instead of 
extends

-subclasses can implement multiple interfaces, but 
can only extend one base class



interfaces
-provide a contract that guarantees objects of a 
certain type can do specific things

-java.lang.Comparable interface has one 
method: compareTo() 

-classes that implement Comparable have a 
natural ordering 

-can be sorted without knowing any details about 
the class (just use the compareTo() method!)
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next time…
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-reading 
-chapters 3 & 4 

-homework
-assignment 1 due next Thursday at 5pm  

-must complete on your own! 

-clickers start next Tuesday


