
cs2420 | Introduction to Algorithms and Data Structures | Spring 2015
Generics & Comparators

1

administrivia…

2

3

MOCK INTERVIEW
WORKSHOP

JANUARY 28TH 6:00-7:30 PM
CAREER SERVICES, 3RD FLOOR OF SSB

A great interview is critical to land that job or Internship. Come practice
your skills and network with the University of Utah and greater Salt Lake
SWE as well as local company representatives. Snacks will be provided!

Register early at http://goo.gl/forms/8QYcPiabIS.

Email uofuswepdc@gmail.com for questions

4

-assignment 1 due today at 5pm

-assignment 2 will be out by 5pm
-due next Thursday at 5pm
-requires pair programming!

-labs start on Monday
-lab assignment up by Sunday night

http://www.eng.utah.edu/~cs2420/pair-programming.pdf

last time…

5

inheritance

6

7

public class Triangle{
 String color;
 double area;
}

public class Circle{
 String color;
 double area;
}

public class Rectangle{
 String color;
 double area;
}

public class Square{
 String color;
 double area;
}

what if I want to redfine color
as an integer array (R,G,B)?

What if I want to give each
shape an outline color?

what can I do?

extends

8

public class Shape{
String color;
double area;

}

public class Triangle extends Shape{
}

public class Circle extends Shape{
}

public class Rectangle extends Shape{
}

public class Square extends Shape{
}

}inherit all
public fields
and methods
of Shape

called a base class
(or superclass)

9

suppose you are making a video game about skiing

public class Ski{
public void turn();

}

public class AlpineSki extends Ski{
// override
public void turn(){
//how to turn on alpine skis

}
}

public class TelemarkSki extends Ski{
//override
public void turn(){
//how to turn on tele skis

}
}

10

suppose you are making a video game about skiing

switch(skier.ski_type)
{
case ALPINE:

turnAlpine();
break;
case TELEMARK:

turnTelemark();
break;
…

}

skier.ski.turn();

without inheritance: with inheritance:

11

-polymorphism is a fancy word for automatically
determining an object’s type at runtime

-the most specific type possible is used

-suppose Triangle does not override toString()

Shape s1 = new Circle();
Shape s2 = new Triangle();

s1.getArea();
s2.getArea();

what type is s1 treated as?
what type is s2 treated as?

s2.toString(); what type is s2 treated as?

12

-a class with at least one abstract method is an
abstract class

-derived classes MUST implement abstract methods

-abstract classes cannot be instantiated

-abstract classes are ONLY designated as base
classes

Shape s = new Shape();

Shape s = new Triangle();
which of these
is illegal?}

13

-an interface is the ultimate abstract class
-every method is abstract
-can contain only public static final fields
-declared with the interface keyword instead of
class

-derived classes use keyword implements instead of
extends

-subclasses can implement multiple interfaces, but
can only extend one base class

today…

14

15

-generic programming

-generic placeholder

-why generics

-primitive types and generics

-generic static methods

-function objects

generic programming

16

17

-suppose we want a data structure that just contains
“things”

-we want it to:
-automatically grow if it gets full
-be able to remove items from it
-be able to add items to it

-will an array work?
Shape[] shape_array = new Shape[5];

18

-how about an ArrayList?
-here’s what the code might look like:

public class ArrayList {
Shape storage[];
int capacity, numItems;

public void addItem(Shape item)
{ /*some code*/ }

public void autoGrow()
{ /*some code*/ }

}

what’s the problem with this?

19

-this is why we always see <> associated with
ArrayList

-ArrayList is a generic class — we can create any
version of it that we want

-generic programming: algorithms are written in
terms of types to-be-specified-later

-algorithms instantiated when needed for specific
types defined by parameters

ArrayList<Shape> list = new ArrayList<Shape>();

20

-here’s what the code actually looks like:

-the placeholder T is replaced with the real type when
you instantiate an ArrayList with <>

-T can be used as a type anywhere in ArrayList
class

public class ArrayList<T> {
T storage[];
int capacity, numItems;

public void add(T item)
{ … }

}

generic placeholder

21

generic placeholder <>

22

ArrayList<Shape>
what is the dynamic type of T?

ArrayList<ClassThatArrayListDoesntKnowAbout>

-the generic placeholder type is VERY specific
-ArrayList<Triangle> is not an
ArrayList<Shape>, even though Triangle is a
Shape!

-ArrayList<type> is only EXACTLY an
ArrayList<type>, regardless of type’s heritage

inheritance and generics
-example:

-we can still add Triangles to shape_list

-restriction applies only to the generic object itself

23

public void doStuff(ArrayList<Shape>) {…}

ArrayList<Triangle> tri_list;
ArrayList<Shape> shape_list;

doStuff(tri_list); // ILLEGAL
doStuff(shape_list); // OK

24

-Java has a way around the restriction: the wildcard
placeholder ?

-<? extends Shape> refers to Shape or anything
that extends Shape
-Shape, Triangle, Circle, …

what types can be used here?

<? super Circle>

<?> is this a good idea?

why generics?

25

26

-everything in Java is an Object
-so, why not just make all data structures hold
Objects?

-generics allow for type-checking at compile time
instead of run-time

-can detect type mismatch BEFORE your code runs

27

before generics:

ArrayList l;
l.add(new String(“hi”));
Shape i = (Shape)l.get(0); // crash

Alternative:

ArrayList<String> l;
l.add(new String(“hi”));
Shape i = (Shape)l.get(0); // compile error

compile-time errors are always better than run-time!

primitive types and generics

28

29

-generics only work with reference types
-no int, char, float, double, …

-what if we need an ArrayList of ints?

-Java has “wrapper” classes
-Integer, Float, Double
-these are reference types containing a single
primitive…
-…and methods to access it

-intValue(), doubleValue()

30

-Java will automatically insert the appropriate code to
convert between primitive/reference

ArrayList<Integer> l;

l.add(new Integer(5));

l.add(5);

int i = l.get(n);

int i = l.get(n).intValue();

equivalent to

equivalent to

questions…
<? super Triangle>what types are included in

1. Shape
2. Triangle, Circle, Rectangle, Square
3. Triangle, Shape, Object

<Shape>what types are included in

1. Shape
2. Triangle, Circle, Rectangle, Square
3. both 1 and 2

generic static methods

32

33

-static methods can have their own generic types

-declare the generic type before the return type:

-we can refer to T as a type within that method only!

-example:

public static <T> boolean doWork(…){…}

public static <T> boolean contains(T[] array, T item)
{

for(int i=0; i < array.length; i++)
if(array[i].equals(item))

return true;

return false;
}

function objects

34

35

-suppose we want a generic sorting function
-and we want it to be able to sort ANY type…
-what can we do?
-what do we need to be able to do?

decide which item is larger

Comparable interface

-defines a natural ordering (in fact, it is contractually
obligated to!)

-String, Integer, … all implement Comparable

-what if we want a different ordering? or to order
Shapes? or to order Strings based on length?

36

public interface Comparable<T> {
public int compareTo(T item);

}

function objects
-a function object is an object that defines a single
method

-example:
-a Comparator has a single method: compare

-takes two arguments
-decides which one is greater

-we write a sorting function that takes a Comparator

37

what does this allow us to do?

Comparator interface

-returns a number <0 if left < right

-returns a 0 if they are equal

-returns a number >0 if left > right

38

public interface Comparator<T> {
int compare(T left, T right);

}

next time…

39

40

-reading
-chapters 5 & 6

-homework
-assignment 1 due today at 5pm
-assignment 2 due next Thursday at 5pm

-must complete with a partner!

