
cs2420 | Introduction to Algorithms and Data Structures | Spring 2015
ALGORITHM ANALYSIS

1

administrivia…

2

3

-assignment 2 is due Friday at midnight
-note change in due date, and time

-tutoring experiment

http://doodle.com/89cbb4u5n5acy9ag

http://doodle.com/89cbb4u5n5acy9ag

clickers!!!

4

5

6

7

are you here?
1) yes

2) no

last time…

8

generics

9

10

-we always see <> associated with ArrayList…

-ArrayList is a generic class — we can create any
version of it that we want

-generic programming: algorithms are written in
terms of types to-be-specified-later

-algorithms instantiated when needed for specific
types defined by parameters

ArrayList<Shape> list = new ArrayList<Shape>();

11

-here’s what the code actually looks like:

-the placeholder T is replaced with the real type when
you instantiate an ArrayList with <>

-T can be used as a type anywhere in ArrayList
class

public class ArrayList<T> {
T storage[];
int capacity, numItems;

public void add(T item)
{ … }

}

12

-generics allow for type-checking at compile time
instead of run-time

-can detect type mismatch BEFORE your code runs

13

before generics:

ArrayList l;
l.add(new String(“hi”));
Shape i = (Shape)l.get(0); // crash

Alternative:

ArrayList<String> l;
l.add(new String(“hi”));
Shape i = (Shape)l.get(0); // compile error

compile-time errors are always better than run-time!

14

-static methods can have their own generic types

-declare the generic type before the return type:

-we can refer to T as a type within that method only!

-example:

public static <T> boolean doWork(…){…}

public static <T> boolean contains(T[] array, T item)
{

for(int i=0; i < array.length; i++)
if(array[i].equals(item))

return true;

return false;
}

today…

15

16

-algorithm analysis

-complexity growth rate

-big-O notation

algorithm analysis

17

18

-correctness is only half the battle

-programs are expected to terminate in a reasonable
amount of time

-running time of a program is strongly correlated to the
choice of algorithms used in problem solving

-how much time and space does an algorithm
require?

example…

19

finding a word in a dictionary

1)start on the first page, first entry

2) if word not found, move to the next entry

3) if very end of dictionary reached, word not found

20

algorithm 1:

is this algorithm correct?
1) yes

2) no can we do better?

1) yes

2) no

finding a word in a dictionary

1)guess which page the entry is on

2)did we go too far?
- go back some pages

3)did we not go far enough?
- go forward some pages

4)continue narrowing

21

algorithm 2:

what does this algorithm assume about the dictionary?

22

-algorithm 1: linear search
-running time directly related to size of dictionary

-assume 180K words, and 0.25s to check one word
-12 hours to complete!

-algorithm 2: binary search
-more like what humans do

-4 seconds to complete!

-what if the dictionary doubles?

time * 2
time + 0.25

O(N)
O(logN)

Algorithm 1 run-time?
1) time * 0.5

2) time * 2

3) time + 0.25

4) time + 10

Algorithm 2 run-time?
1) time * 0.5

2) time * 2

3) time + 0.25

4) time + 10

a note on logarithms
-a logarithm is an exponent indicating the power to
which a base is raised to produce a given number

-by default the base is 2 …we’ll come back to this

-the logarithm grows slowly

-N log N is closer to N than N2

23

logB N = X BX = N how many bits does it take
to represent a number?

9 < log 1000 < 10
19 < log 1,000,000 < 20
29 < log 1,000,000,000 < 30

why is binary search O(log N)?

why is the default base 2?

24

finding a word in a dictionary

-binary search will always win for large dictionaries
-as N increases, the gap between the algorithms
becomes larger

-linear search has linear growth rate
-graph is a straight line
-run time for N = T units of time
-run time for 2N = 2T units of time

-binary search has logarithmic growth rate
-run time for N = T units of time
-run time for 2N = T+1 units of time

25

1) exponential

2) straight

3) negative-slope

1) 1

2) 2

3) 10

growth rate

26

typical run-time complexitiesGrowth rates
• Typical run-time complexities:

! "
!
#

$
$
$
%

&
'
(
&

#
)
#
*

'
(

*
!
*
"

"
#
%
$
%
%

)

)+!

)+$

)+&

)+(

)+#

)+'

)+*

)+"

)+%

,-./01

0

02,-.20

03$

03&

4567829:;<2/01

=
7
5
5
:5
.
28
:>
<

N2 and N3 are
typically not
tractable for
moderate input
sizes (N)

N2 and N3 are typically
not acceptable for

moderate input sizes!

28

-knowing that F(N) < G(N) for a particular N is not very
useful

-instead, we measure the functions’ growth rates

-for sufficiently large N, a function’s growth rate is
determined by its dominate term

10N2 + 40N + 760 what is the dominate term?

c
log N

N
N log N

N2

N3

constant
logarithmic
linear
linearithmic
quadratic
cubic in

c
re

a
si

n
g
 g

ro
w

th
 r

a
te

how to get log growth?
-how many bits are needed to represent N
consecutive integers?

-starting at x=1, how many iterations of x*2 before
x>=N?

-the repeated doubling principle

-starting at x=N, how many iterations of x/2 before
x<=1?

-the repeated halving principle

29

big-O notation

30

31

-big-O notation (O) is used to capture the dominate
term in an algorithm

-assuming large N!

-for example, the running time of a quadratic algorithm
is N2 is specified O(N2)

-pronounced “order N squared”

-this notation allows us to establish a relative order
among algorithms

-O(N log N) is better than O(N2)

what’s code got to do, got to do with it…

-O(N2) and O(N3) are impractical for most N

-clever programming tricks CANNOT make an
inefficient algorithm fast

-a poorly coded linear algorithm trumps a quadratic
algorithm in a highly efficient machine language

32

optimizing the algorithm (or choosing the best one) will get
you much further than optimizing the code

take away:

worst, average, best
-worst-case is a guarantee on all inputs — it will
never be worse than this

-average-case is the common case, measured over
all possible inputs

-this is the most useful!

-best-case is the absolute fastest that an algorithm
can terminate

-we don’t care about this because it rarely happens

33

example…

34

finding the maximum item in an array

35

1) initialize max to the first element

2)scan through each item in the array
- if the item is greater than max, update max

algorithm?

what is the big-o complexity of this algorithm?
1) c
2) log N
3) N
4) N log N
5) N2

6) N3

finding the smallest difference

36

algorithm?

what is the big-o complexity of this algorithm?

diff = MAX_INTEGER;
for(int i=0; i<array.length-1; i++)
{
 num1 = array[i];
 for(int j=i+1; j<array.length; j++)
 {
 num2 = array[j];
 if (abs(num1-num2) < diff)
 diff = abs(num1-num2);
 }
}
return diff;

1) c
2) log N
3) N
4) N log N
5) N2

6) N3

next time…

38

39

-reading
-chapters 5 & 6

-homework
-assignment 2 due Friday at 11:59pm

-must complete with a partner!

