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administrivia…
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-assignment 2 is due Friday at midnight
-note change in due date, and time 

-tutoring experiment

http://doodle.com/89cbb4u5n5acy9ag

http://doodle.com/89cbb4u5n5acy9ag


clickers!!!
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are you here? 
1) yes

2) no



last time…
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generics
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-we always see <> associated with ArrayList…

-ArrayList is a generic class — we can create any 
version of it that we want

-generic programming: algorithms are written in 
terms of types to-be-specified-later 

-algorithms instantiated when needed for specific 
types defined by parameters

ArrayList<Shape> list = new ArrayList<Shape>();



11

-here’s what the code actually looks like:

-the placeholder T is replaced with the real type when 
you instantiate an ArrayList with <>

-T can be used as a type anywhere in ArrayList 
class

public class ArrayList<T> { 
T storage[]; 
int capacity, numItems; 

public void add(T item) 
{ … } 

}
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-generics allow for type-checking at compile time 
instead of run-time

-can detect type mismatch BEFORE your code runs
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before generics:

ArrayList l; 
l.add(new String(“hi”)); 
Shape i = (Shape)l.get(0); // crash

Alternative:

ArrayList<String> l; 
l.add(new String(“hi”)); 
Shape i = (Shape)l.get(0); // compile error

compile-time errors are always better than run-time!
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-static methods can have their own generic types

-declare the generic type before the return type:

-we can refer to T as a type within that method only!

-example:

public static <T> boolean doWork(…){…}

public static <T> boolean contains(T[] array, T item) 
{ 

for(int i=0; i < array.length; i++) 
if(array[i].equals(item)) 

return true; 

return false; 
}



today…
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-algorithm analysis

-complexity growth rate

-big-O notation



algorithm analysis

17



18

-correctness is only half the battle

-programs are expected to terminate in a reasonable 
amount of time

-running time of a program is strongly correlated to the 
choice of algorithms used in problem solving

-how much time and space does an algorithm 
require?



example…
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finding a word in a dictionary

1)start on the first page, first entry

2) if word not found, move to the next entry

3) if very end of dictionary reached, word not found

20

algorithm 1:

is this algorithm correct? 
1) yes

2) no can we do better? 

1) yes

2) no



finding a word in a dictionary

1)guess which page the entry is on

2)did we go too far?
- go back some pages 

3)did we not go far enough?
- go forward some pages 

4)continue narrowing
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algorithm 2:

what does this algorithm assume about the dictionary?
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-algorithm 1: linear search 
-running time directly related to size of dictionary 

-assume 180K words, and 0.25s to check one word 
-12 hours to complete! 

-algorithm 2: binary search 
-more like what humans do 

-4 seconds to complete! 

-what if the dictionary doubles?

time * 2
time + 0.25

O(N)
O(logN)

Algorithm 1 run-time? 
1) time * 0.5

2) time * 2

3) time + 0.25

4) time + 10

Algorithm 2 run-time? 
1) time * 0.5

2) time * 2

3) time + 0.25

4) time + 10



a note on logarithms
-a logarithm is an exponent indicating the power to 
which a base is raised to produce a given number

-by default the base is 2 …we’ll come back to this

-the logarithm grows slowly

-N log N is closer to N than N2
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logB N = X          BX = N how many bits does it take 
to represent a number?

9 < log 1000 < 10 
19 < log 1,000,000 < 20 
29 < log 1,000,000,000 < 30



why is binary search O(log N)? 

why is the default base 2?
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finding a word in a dictionary

-binary search will always win for large dictionaries
-as N increases, the gap between the algorithms 
becomes larger 

-linear search has linear growth rate
-graph is a straight line 
-run time for N = T units of time 
-run time for 2N = 2T units of time 

-binary search has logarithmic growth rate
-run time for N = T units of time 
-run time for 2N = T+1 units of time
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1) exponential

2) straight

3) negative-slope

1) 1

2) 2

3) 10



growth rate
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typical run-time complexitiesGrowth rates 
• Typical run-time complexities: 
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N2 and N3 are 
typically not 
tractable for 
moderate input 
sizes (N) 

N2 and N3 are typically 
not acceptable for 

moderate input sizes! 
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-knowing that F(N) < G(N) for a particular N is not very 
useful

-instead, we measure the functions’ growth rates 

-for sufficiently large N, a function’s growth rate is 
determined by its dominate term

10N2 + 40N + 760 what is the dominate term?

c 
log N 

N 
N log N 

N2 

N3

constant 
logarithmic 
linear 
linearithmic 
quadratic 
cubic in
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how to get log growth?
-how many bits are needed to represent N 
consecutive integers?

-starting at x=1, how many iterations of x*2 before 
x>=N?

-the repeated doubling principle 

-starting at x=N, how many iterations of x/2 before 
x<=1?

-the repeated halving principle
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big-O notation
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-big-O notation (O) is used to capture the dominate 
term in an algorithm

-assuming large N! 

-for example, the running time of a quadratic algorithm 
is N2 is specified O(N2)

-pronounced “order N squared” 

-this notation allows us to establish a relative order 
among algorithms

-O(N log N) is better than O(N2)



what’s code got to do, got to do with it…

-O(N2) and O(N3) are impractical for most N

-clever programming tricks CANNOT make an 
inefficient algorithm fast

-a poorly coded linear algorithm trumps a quadratic 
algorithm in a highly efficient machine language
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optimizing the algorithm (or choosing the best one) will get 
you much further than optimizing the code

take away:



worst, average, best
-worst-case is a guarantee on all inputs — it will 
never be worse than this

-average-case is the common case, measured over 
all possible inputs

-this is the most useful! 

-best-case is the absolute fastest that an algorithm 
can terminate

-we don’t care about this because it rarely happens
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example…
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finding the maximum item in an array
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1) initialize max to the first element

2)scan through each item in the array
- if the item is greater than max, update max

algorithm?

what is the big-o complexity of this algorithm?
1) c 
2) log N 
3) N 
4) N log N 
5) N2 

6) N3



finding the smallest difference
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algorithm?

what is the big-o complexity of this algorithm?

diff = MAX_INTEGER; 
for(int i=0; i<array.length-1; i++) 
{ 
  num1 = array[i]; 
  for(int j=i+1; j<array.length; j++) 
  { 
    num2 = array[j]; 
    if (abs(num1-num2) < diff)  
      diff = abs(num1-num2); 
  } 
} 
return diff;

1) c 
2) log N 
3) N 
4) N log N 
5) N2 

6) N3



next time…
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-reading
-chapters 5 & 6 

-homework
-assignment 2 due Friday at 11:59pm 

-must complete with a partner!


