COLLECTIONS & ITERATORS

cs2420 | Introduction to Algorithms and Data Structures | Spring 2015

administrivia...

-assignment 2 is due tomorrow at midnight (11:59pm)

-next assignment goes out today
-due Thursday at midnight
-requires a partner!

-tutoring experiment

NEW! As a pilot program we will be offering tutoring sessions in two forms -- 30 minute small group
sessions, and 1 hour discussion sessions. The small group sessions are to help students understand the
concepts covered in class and in the assignments. These sessions are aimed to help those who don't have
programming background or who feel that they are lagging in the concepts as compared to their classmates.
In these sessions you can discuss specific concepts that you are interested in with the TA, but not these
sessions WILL NOT BE to debug your homework. Up to 3 students can sign up in single slot. In the
discussion sessions we will discuss topics proposed by you. When you sign up for a discussion session slot
you can propose topics for discussion by leaving a comment -- you must do this at least one day before the
session. Discussion sessions will be with 10-12 students for an hour. Doodle pools for signing up for any of
these sessions will be linked under the weekly lectures below.

W3. ALGORITHM ANALYSIS & DATA STRUCTURES | JAN 27 & 29

reading - Data Structures & Problem Solving Using Java, Chapters 5 and 6.
lab - Lab 1: timing experiments

tutoring - sign-up for small group sessions, located in MEB 3423
- sign-up for discussion sessions, located in MEB 3485

slides - L05-algo-analysis.pdf

CLICKERS!!!

O ® < N = utah.instructure.com C u ") Y

THE MIRIAH MEYER Inbox Settings Logout Help
u UNIVERSITY

OF UTAH™ Courses & Groups ~ Grades

CS 2420-001 Spring A > CS 2420-001 Spring 2015 > Modules
2015
Spring 2015

Home
Announcements
Assignments T renerree ° ’ .
Discussions ii o Clicker Registration Tool o
Grades

People

Pages

Files

Syllabus

Modules
Conferences
Collaborations
Chat
Attendance
My Media
Media Gallery

Settings

I Connection Info
Channel 26

Session ID 283755

ARE YOU HERE?

1) yes
2) no

feedback on Assignment 1

-grade is strongly correlated with the amount, and quality, of your testing
code

-write many tests! keep them organized!
-will get practice with JUnit testing in lalb on Monday

-include name (and partner’s name) on every file submitted
-good practice is to include them in a comment header for each class

-do NOT change the signatures for the methods we give you... this will
break the grader

-we will be requiring Javadoc comments starting with Assignment 3
-TAs will review Javadocs in lab on Monday

-many people lost points on toString method
-read specs carefully!

10

HOW MANY HOURS DID YOU SPEND ON ASSIGNMENT 1°?
A) <5

B) 5-10
C) 10-15
D) 15-20
E) >20

11

last time...

12

algorithm analysis

-correctness is only half the battle

-programs are expected to terminate in a reasonable
amount of time

-running time of a program is strongly correlated to the
choice of algorithms used in problem solving

-how much time and space does an algorithm
require?

14

typical run-time complexities

0.9
0.8
0.7
o 0.6
E 0.5 == |og(N)
£ 0.4 =N
E ' N log N
Z 0.3 —E’A‘g
0.2
0.1
0 N2 AND N* ARE TYPICALLY
NOT ACCEPTABLE FOR

MODERATE INPUT SIZES!

-for sufficiently large N, a function’s growth rate is
determined by its dominate term

10N2 + 40N + 760 > WHAT IS THE DOMINATE TERM?

N2 qguadratic
N3 cubic

cC constant |
log N logarithmic |<
N linear §

N log N linearithmic 2

<

16

how to get log growth?

-now many bits are needed to represent N
consecutive integers?

-starting at x=1, how many iterations of x*2 before
x>=N?
-the repeated doubling principle

-starting at x=N, how many iterations of x/2 before

x<=17?
-the repeated halving principle

17

-big-0 notation (O) is used to capture the dominate
term in an algorithm

-assuming large N/

-for example, the running time of a quadratic algorithm
is N2 is specified O(N?)
-pronounced “order N squared”

-this notation allows us to establish a relative order
among algorithms

-O(N log N) is better than O(N?)

18

analyze the running time

for(int 1=0; 1<n; 1+=2)

sum++,;
A) c
for(int 1=0; 1<n; 1++) CB))) }\CI’QN
for(int 3j=0; J<n*n; J++)
sum++ II:E))) Ezlog N
F) N3

for(int 1=0; 1<n; 1*=2)
sum++,;

today...

-collections

-iterators

21

Collection interface

22

-a Collection IS a data structure that holds items

-very unspecific as to how the items are held
-le. the data structure

-supports various operations:
-add, remove, contains, ...

-examples:
-ArrayList
-PriorityQueue
-LinkedList
-Treeset

23

-you’ll be working with Collections for assignment 3

-backed by an array for storage that you will
implement yourselves

-tems will be sorted as they are inserted
-no duplicates allowed

-WHAT ARE SOME OF THE [SSUES WITH USING AN ARRAY?

24

add

int[] data = new 1nt|[6];

data.add (5) ;

data.add (17) ;

data.add (9) ; DON'T FORGET size++

data.a (12) ;

data.add (I WHAT 1S THE COMPLEXITY OF add?
)

data.add (33) ;

slilze =) IOQN
5117 9 |12 1 33 8 C)
D) Nlog N
data.add(22) ; E)hP
NOW WHAT??? F) N°

-we need to grow our array!

-avoid allocating slightly larger arrays
-you will most likely need to grow again soon

-good rule of thumb is to double the size
-con: wastes up to 2x space
-pro: growth will be rare

26

grow

data —

tmp = new int[data.length*2];

tmp ——

5

17

9

12

1

33

copy all from data to tmp

tmp —

5

17

9

12

1

33

data =

tmp;

data—

5

17

12

33

WHAT IS THE COMPLEXITY OF GROWING?

Jnoous

o ©O
Q
Z

ZZ2ZZ
o
Q
Z

remove

517 9 12 1 33 size = 6

!

data.remove (9) ;

5 17 12 1 33 size = 5
T
S THIS CORRECT?
A) yes

B) no

remove

517 9 12 1 33 size = 6

!

data.remove (9) ;

5 17 12 1 (33 size = 5 é\;f .
VAV og
C) N
D) Nlog N
5 1712 1 33 T size = 5 E))Ei

WHAT 1S THE COMPLEXITY OF remove?

wait, what were we talking about?

30

Collection

-a Co

llection is an object that groups multiple

elements into a single unit
-used to store, retrieve, manipulate, and

CO
-1S
dy

mmunicate stored data
ke an array except their size can change

namically, and have more advanced behaviors

-the Java Collections API provides a set of classes and
interfaces for storing data in different types of data
structures

-you will be implementing many of these on your
own in assignments!

31

iterators

32

-not all data structures are guaranteed to use an array
-thus, we can't just do:

for (i=0; i<size; i++)
datal[1]..

-the Iterator interface provides generic retrieval of
items from a data structure

-the Collection interface requires an Iterator

-for example, ArrayCollection has
iterator () method that returns an Iterator

33

Iterator

-an Iterator Is specific to a data structure, and knows how to
traverse the structure

-hasNext : determines if iteration is complete
-next: gets the next item

-remove : removes the las seen item

-internally, keeps track of where the next item is (as well as
other state)

-actually points to between items

34

next

v

lterator

5 17

9

12

33

ilterator.next () ;
lterator.next () ;
l1terator.next () ;

// returns 9
// returns 12
// returns 1

Y€MMOVE reMoVES THE LAST ITEM SEEN

v

lterator

5

17

9

12

1

33

lterator.remove () ; -

v

lterator

17

9

1

33

MUST BE PRECEDED BY A
CALL TO next ()

enhanced for-loop

-allows for simplification of code by representing a visit
to each element of an array or Collection without

explicitly expressing how you get from element to
element

STANDARD WAY:

for(int 1=0; 1 < things.length; 1++)
// do something with things[i]

ENHANCED LOOP:
for (Thing t : things)

// do something with t

-uses an Iterator behind the scenes!

37

next time...

38

-reading
-chapters 8.1 - 8.4

-homework
-assignment 2 due tomorrow at 11:59pm
-assignment 3 out today, due next Thursday

39

