
cs2420 | Introduction to Algorithms and Data Structures | Spring 2015
COLLECTIONS & ITERATORS

1

administrivia…

2

3

-assignment 2 is due tomorrow at midnight (11:59pm)

-next assignment goes out today
-due Thursday at midnight
-requires a partner!

-tutoring experiment

4

clickers!!!

5

…again <sigh>

6

7

8

are you here?
1) yes

2) no

feedback on Assignment 1

9

10

-grade is strongly correlated with the amount, and quality, of your testing
code

-write many tests! keep them organized!
-will get practice with JUnit testing in lab on Monday

-include name (and partner’s name) on every file submitted
-good practice is to include them in a comment header for each class

-do NOT change the signatures for the methods we give you… this will
break the grader

-we will be requiring Javadoc comments starting with Assignment 3
-TAs will review Javadocs in lab on Monday

-many people lost points on toString method
-read specs carefully!

11

How many hours did you spend on assignment 1?
A) <5

B) 5-10

C) 10-15

D) 15-20

E) >20

last time…

12

algorithm analysis

13

14

-correctness is only half the battle

-programs are expected to terminate in a reasonable
amount of time

-running time of a program is strongly correlated to the
choice of algorithms used in problem solving

-how much time and space does an algorithm
require?

typical run-time complexitiesGrowth rates
• Typical run-time complexities:

! "
!
#

$
$
$
%

&
'
(
&

#
)
#
*

'
(

*
!
*
"

"
#
%
$
%
%

)

)+!

)+$

)+&

)+(

)+#

)+'

)+*

)+"

)+%

,-./01

0

02,-.20

03$

03&

4567829:;<2/01

=
7
5
5
:5
.
28
:>
<

N2 and N3 are
typically not
tractable for
moderate input
sizes (N)

N2 and N3 are typically
not acceptable for

moderate input sizes!

16

-for sufficiently large N, a function’s growth rate is
determined by its dominate term

10N2 + 40N + 760 what is the dominate term?

c
log N

N
N log N

N2

N3

constant
logarithmic
linear
linearithmic
quadratic
cubic inc

re
as

ing
 g

ro
w

th
 ra

te

how to get log growth?
-how many bits are needed to represent N
consecutive integers?

-starting at x=1, how many iterations of x*2 before
x>=N?

-the repeated doubling principle

-starting at x=N, how many iterations of x/2 before
x<=1?

-the repeated halving principle

17

18

-big-O notation (O) is used to capture the dominate
term in an algorithm

-assuming large N!

-for example, the running time of a quadratic algorithm
is N2 is specified O(N2)

-pronounced “order N squared”

-this notation allows us to establish a relative order
among algorithms

-O(N log N) is better than O(N2)

analyze the running time

for(int i=0; i<n; i+=2)
 sum++;

for(int i=0; i<n; i++)
 for(int j=0; j<n*n; j++)
 sum++

for(int i=0; i<n; i*=2)
 sum++;

A) c
B) log N
C) N
D) N log N
E) N2

F) N3

today…

20

21

-collections

-iterators

Collection interface

22

23

-a Collection is a data structure that holds items
-very unspecific as to how the items are held

-ie. the data structure

-supports various operations:
-add, remove, contains, …

-examples:
-ArrayList
-PriorityQueue
-LinkedList
-TreeSet

24

-you’ll be working with Collections for assignment 3
-backed by an array for storage that you will
implement yourselves
-items will be sorted as they are inserted
-no duplicates allowed

-what are some of the issues with using an array?

add

5 17 9 size = 0123

int[] data = new int[6];
data.add(5);
data.add(17);
data.add(9); don’t forget size++

what is the complexity of add?

12 1 33 6

data.add(12);
data.add(1);
data.add(33);

data.add(22);

now what???

A) c
B) log N
C) N
D) N log N
E) N2

F) N3

26

-we need to grow our array!

-avoid allocating slightly larger arrays
-you will most likely need to grow again soon

-good rule of thumb is to double the size
-con: wastes up to 2x space
-pro: growth will be rare

grow

tmp = new int[data.length*2];

copy all from data to tmp

data 5 17 9 12 1 33

tmp

tmp 5 17 9 12 1 33

data = tmp;

data 5 17 9 12 1 33

A) c
B) log N
C) N
D) N log N
E) N2

F) N3
what is the complexity of growing?…

remove
size = 65 17 9 12 1 33

data.remove(9);

size = 55 17 12 1 33

is this CORRECT?
A) yes
B) no

remove
size = 65 17 9 12 1 33

data.remove(9);

size = 55 17 12 1 33

size = 55 17 12 1 33

what is the complexity of remove?

A) c
B) log N
C) N
D) N log N
E) N2

F) N3

wait, what were we talking about?

30

Collection
-a Collection is an object that groups multiple
elements into a single unit

-used to store, retrieve, manipulate, and
communicate stored data
-is like an array except their size can change
dynamically, and have more advanced behaviors

-the Java Collections API provides a set of classes and
interfaces for storing data in different types of data
structures

-you will be implementing many of these on your
own in assignments!

31

iterators

32

33

-not all data structures are guaranteed to use an array
-thus, we can’t just do:

-the Iterator interface provides generic retrieval of
items from a data structure

-the Collection interface requires an Iterator
-for example, ArrayCollection has
iterator() method that returns an Iterator

for(i=0; i<size; i++)
 data[i]…

Iterator
-an Iterator is specific to a data structure, and knows how to
traverse the structure

-hasNext: determines if iteration is complete

-next: gets the next item

-remove: removes the las seen item

-internally, keeps track of where the next item is (as well as
other state)

-actually points to between items

34

next

5 17 9 12 1 33

iterator

iterator.next(); // returns 9
iterator.next(); // returns 12
iterator.next(); // returns 1

remove

5 17 9 12 1 33

iterator

removes the last item seen

iterator.remove();

5 17 9 1 33

iterator

must be preceded by a
call to next()

enhanced for-loop
-allows for simplification of code by representing a visit
to each element of an array or Collection without
explicitly expressing how you get from element to
element

-uses an Iterator behind the scenes!

37

for(int i=0; i < things.length; i++)
 // do something with things[i]

for(Thing t : things)
 // do something with t

standard way:

Enhanced loop:

next time…

38

39

-reading
-chapters 8.1 - 8.4

-homework
-assignment 2 due tomorrow at 11:59pm
-assignment 3 out today, due next Thursday

