
cs2420 | Introduction to Algorithms and Data Structures | Spring 2015
INTRO TO SORTING

1

administrivia…

2

3

-assignment 3 is due Thursday at midnight (11:59pm)

-tutoring
-Doodle polls up on the website

4

7
1 1 2 4

11

39

124

0

20

40

60

80

100

120

140

0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

assignment 1 scores
nu

m
be

r o
f s

tu
de

nt
s

score

clickers!!!

5

…it’s gonna work!

6

7

are you here?
A) yes

B) no

last time…

8

9

-a Collection is a data structure that holds items
-very unspecific as to how the items are held

-ie. the data structure

-supports various operations:
-add, remove, contains, …

-examples:
-ArrayList
-PriorityQueue
-LinkedList
-TreeSet

what if we use an array under the hood?

10

add

5 17 9

int[] data = new int[6];
data.add(5);
data.add(17);
data.add(9);
data.add(12);
data.add(1);
data.add(33);

12 1 33

data.add(22);

now what???

what is the complexity of add?
A) c
B) log N
C) N
D) N log N
E) N2

F) N3

grow

tmp = new int[data.length*2];

copy all from data to tmp

data 5 17 9 12 1 33

tmp

tmp 5 17 9 12 1 33

data = tmp;

data 5 17 9 12 1 33

A) c
B) log N
C) N
D) N log N
E) N2

F) N3what is the complexity of growing?

remove
5 17 9 12 1 33

data.remove(9);

5 17 12 1 33

what is the complexity of remove?
A) c
B) log N
C) N
D) N log N
E) N2

F) N3

5 17 12 1 33

Iterator
-an Iterator is specific to a data structure, and knows how to
traverse the structure

-hasNext: determines if iteration is complete

-next: gets the next item

-remove: removes the las seen item

-internally, keeps track of where the next item is (as well as
other state)

-actually points to between items

14

today…

15

16

-why sort?

-selection sort

-insertion sort

why sort?

17

18

-sorting is a fundamental application in computing
-one of the most intensively studied and important
operations

-most data is useless unless it is in some kind of order

-for any given problem, or specific goal isn’t
necessarily sorting… but we often need to sort to
efficiently solve problems

-computer graphics
-look-up tables
-games

19

-sorting algorithms that are easy to understand (and
implement) run in quadratic time

-more complicated algorithms cut it to O(N log N)
-implementation details are critical to attaining this
bound!

-for very specific types of data we can actually do
better

-but we won’t study these algorithms extensively

without thinking too hard, how
can we sort any array of items?

20

selection sort

21

the simplest sorting algorithm

selection sort
1)find the minimum item in the unsorted part of the array

2)swap it with the first item in the unsorted part of the array

3)repeat steps 1 and 2 to sort the remainder of the array

22

what does this look like?

23

what is the complexity of selection sort?

last item in sorted part of array

lo
o

k fo
r item

 les
s
 th

an

th
o

s
e in

 s
o

rted
 part o

f array

swap items

void selectionSort(int[] arr)
{
for(int i=0; i < arr.length-1; i++)
{
min = i;
for(int j=i+1; j < arr.length; j++)
if (arr[j] < arr[min])
min = j;

temp = arr[i];
arr[i] = arr[min]
arr[min] = temp;

}
}

24

for(int i=0; i < arr.length-1; i++)
for(int j=i+1; j < arr.length; j++)

L1
L2

25

void selectionSort(int[] arr)
{
for(int i=0; i < arr.length-1; i++)
{
min = i;
for(int j=i+1; j < arr.length; j++)
if (arr[j] < arr[min])
min = j;

temp = arr[i];
arr[i] = arr[min]
arr[min] = temp;

}
}

what is the best-case complexity of selection sort?

A) c
B) log N
C) N
D) N log N
E) N2

F) N3

insertion sort

26

good for small N

insertion sort
1)the first array item is the sorted portion of the array

2)take the second item and insert it in the sorted portion

3)repeat steps 1 and 2 to sort the remainder of the array

27

what does this look like?

28

what is the complexity of insertion sort?

item to be inserted

insert item

u
n
til th

e in
s
ertio

n

po
s
itio

n
 is

 fo
u
n
d
,

s
h
ift s

o
rted

 iteM
s

void insertionSort(int[] arr)
{
for(int i=1; i < arr.length; i++)
{
index = arr[i];
j = i;
while(j>0 && arr[j-1]>index)
{
arr[j] = arr[j-1];
j--;

}
arr[j] = index;

}
}

-requires a measure of unsortedness for array

-inversion: a pair of array items that are out of order

-sorting efficiency depends on how many inversions
are removed per step

29

45 -3 9 76 11 -8 0

how many inversions are there?

unsortedness

insertion sort complexity
each swap to the left removes one inversion…

…we must visit each item at least once (N)…

…and we must undo I inversions

insertion sort is O(N+I)

30

45 -3 9 76 11 -8 0

swap removes one inversion

how do we figure out what I is?

next time…

31

32

-reading
-chapters 8.1 - 8.4

-homework
-assignment 3 due on Thursday

