BASIC SORTING, PART 2

cs2420 | Introduction to Algorithms and Data Structures | Spring 2015

administrivia...

-assignment 3 is due tonight at midnight (11:59pm)

-assignment 4 is out later today
-requires pair programming
-due next Thursday

-midterm 1 in two weeks

-Monday’s lab will cover exam review questions
-review questions posted by Sunday night

-no lab the week of the midterm

last time...

sorting

-sorting is a fundamental application in computing
-one of the most intensively studied and important

operations

-most data is useless unless it is in some kind of order

-for any given problem, or specific goal isn’t
necessarily sorting... but we often need to sort to

efficiently solve problems
-computer graphics
-look-up tables
-games

selection sort

the simplest sorting algorithm

insertion sort

good for small N

selection sort

1)find the minimum item in the unsorted part of the array
2)swap it with the first item in the unsorted part of the array

3)repeat steps 1 and 2 to sort the remainder of the array

WHAT DOES THIS LOOK LIKE?

vold selectionSort(int[] arr)
{
for(int 1=0; 1 < arr.length-1,; 1++)
{
min = 1;
for(int J=1i+1; J < arr.length; j++)
1f (arr[j] < arr[min])

min = 7J;
_ : A) ¢
temp = arr|1i];
arr[1] = arr[min] g) }\cl)gN
arr[min] = temp; Dg N lo
} E) N2
} F) N3

WHAT IS THE COMPLEXITY OF SELECTION SORT?

8

insertion sort

1)the first array item is the sorted portion of the array
2)take the second item and insert it in the sorted portion

3)repeat steps 1 and 2 to sort the remainder of the array

WHAT DOES THIS LOOK LIKE?

vold 1nsertionSort(int[] arr)
{
for(int 1=1; 1 < arr.length; 1++)
{
index = arr[i];
] = 1y
while (3>0 && arr[j-1]>1ndex)
{

arr[J]] = arr[j-1];
J—=7

}

arr[J]] = 1ndex;

J
J

WHAT IS THE COMPLEXITY OF INSERTION SORT?

unsortedness

-requires a measure of unsortedness for array

-inversion: a pair of array items that are out of order

45/-3] 9 [76/11/-8] 0
HOW MANY INVERSIONS ARE THERE?

-sorting efficiency depends on how many inversions
are removed per step

11

insertion sort complexity

each swap to the left removes one inversion...
...we must visit each item at least once (N)...

...and we must undo I inversions

45 -3| 9 |76 11 -8 O

\éWAP REMOVES ONE INVERSION

insertion sort is O(N+I)
HOW DO WE FIGURE OUT WHAT I |S?

12

today...

-measuring the complexity of insertion sort

-shellsort

14

insertion sort is O(N+I)
HOW DO WE FIGURE OUT WHAT I [S?

15

worst case scenaro...

-what are the number of inversions in the worst case?
-what IS the worst case”

76 45 11 9 0 -3|-8 ——|NVERTED
HOW MANY INVERSIONS ARE THERE?

-when every unique pair is inverted. ..

-how many unigue pairs are there?
-(hint: remember Gauss’s trick!)

N * (N-1)/2 = (N2 - N)/2

16

insertion sort is O(N+I)
WHAT IS THE WORST-CASE COMPLEXITY OF INSERTION SORT?

17

insertion sort is O(N+I)

WHAT IS THE BEST-CASE COMPLEXITY OF INSERTION SORT?
A) ¢

B) log N

) N

)

D
E)
F)

O

NlogN

ZZ

18

average case scenario...

-assume that there is a 50% chance that any given
pair is inverted

-average number of inversions = (number of pairs) / 2

((N°-N)/2)/2=(N2-N)/4

NUMBER OF PAIRS

19

insertion sort is O(N+I)
WHAT |S THE AVERAGE-CASE COMPLEXITY OF INSERTION SORT?

20

recap...

21

selection vs insertion

WORST: O(N?) O(N?)
AVERAGE: O(N?) O(N?)
BEST: O(N?) O(N)

WHICH ONE PERFORMS BETTER IN PRACTICE?

A) selection
B) insertion

22

summary

-an inversion is a pair of items that are out of order
-a sorted array has O inversions
-an average (and worst) array has ~N2 inversions

-thus, we must undo N2 inversions

to do better than O(N?2) we must remove more than 1
iInversion per step
-(insertion sort only removes 1 inversion per step!)

23

what we want...

-a sorting algorithm that has subquadratic complexity

-swapping adjacent items removes exactly 1 inversion
45/-3/ 9 [76/11/-8]| 0

\SWAP REMOVES 1 INVERSION

-what if we consider swapping nonadjacent pairs?
45/-3]/ 9 |76/11/-8 0

_/
SWAP REMOVES 7 INVERSION

-removes inversions not involved with the swap

24

shellsort

the simplest subqguadratic sorting algorithm

25

shellsort

INnsertion sort, with a twist

1)set the gap size to N/2

2)consider the subarrays with elements at gap size from
each other

3)do insertion sort on each of the subarrays
4)divide the gap size by 2

5)repeat steps 2 — 4 until the is gap size is <1

WHAT DOES THIS LOOK LIKE?

HOW DO WE DESCRIBE INSERTION SORT WITH RESPECT TO SHELLSORT?

27

-each x-sort (for a gap x) is performing an insertion sort
on x independent subarrays

-Is also known as the diminishing gap sort

-Shell originally suggested gaps N/2, N/4, N/8, ..., 1

-gap sequences In which consecutive gaps share no
common factors have been shown to perform better

28

UNTIL THE INSERTION POSITION IS FOUND, SHIFT SORTED ITEMS

DIMINISHING GAP SEQUENCE
vold shellSort(int[] arr)
{ |

for(gap = arr.length/2; gap > 0; gap /= 2)
{
for(i = gap; 1 < arr.length; i++)
{
val = arr[1]; ITEM TO BE INSERTED
:for(j = 1—-gap; J >= 0 && arr[3j] > val; 7] —-= gap)
arr[Jj+gap] = arr[j];

INSERT [TEM

arr[jtgap] = val;
}

J

J
WHAT IS THE COMPLEXITY OF SHELLSORT?

29

shellsort complexity

-worst case: O(N?) with Shell’s gaps, O(N>2) with
better gaps

-average case: O(N3%2) with Shell’s gaps, O(N>4) with
better gaps

-proofs of these bounds are complicated
-the O(N>/4) bound is based on simulations only!

-insertion sort performs better the more sorted the array
-remember, approaches O(N) for a sorted array!

30

shellsort complexity

-still, O(N*>*) is an encouraging bound for the average case
-for moderate N, this is better than O(N log N) algorithms
-around N=100K, O(N log N) wins

-best sorting algorithms are O(N log N)
-log N suggests repeated dividing by 2
-“divide and conquer”

WHAT ALGORITHM DO WE KNOW OF THAT IS log N?

WHAT DOES THIS IMPLY ABOUT THE "CONQUER" STEP?

31

next time...

32

-reading
-chapters 7 & 8.5 - 8.8

-homework
-assignment 3 due today
-assignment 4 out today

33

