BASIC SORTING, PART 2
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administrivia...



-assignment 3 is due tonight at midnight (11:59pm)

-assignment 4 is out later today
-requires pair programming
-due next Thursday

-midterm 1 in two weeks

-Monday’s lab will cover exam review questions
-review questions posted by Sunday night

-no lab the week of the midterm



last time...



sorting

-sorting is a fundamental application in computing
-one of the most intensively studied and important

operations

-most data is useless unless it is in some kind of order

-for any given problem, or specific goal isn’t
necessarily sorting... but we often need to sort to

efficiently solve problems
-computer graphics
-look-up tables
-games



selection sort

the simplest sorting algorithm

insertion sort

good for small N



selection sort

1)find the minimum item in the unsorted part of the array
2)swap it with the first item in the unsorted part of the array

3)repeat steps 1 and 2 to sort the remainder of the array

WHAT DOES THIS LOOK LIKE?



vold selectionSort(int[] arr)
{
for(int 1=0; 1 < arr.length-1,; 1++)
{
min = 1;
for(int J=1i+1; J < arr.length; j++)
1f (arr[j] < arr[min])

min = 7J;
_ : A) ¢
temp = arr|1i];
arr[1] = arr[min] g) }\cl)gN
arr[min] = temp; Dg N lo
} E) N2
} F) N3

WHAT IS THE COMPLEXITY OF SELECTION SORT?
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insertion sort

1)the first array item is the sorted portion of the array
2)take the second item and insert it in the sorted portion

3)repeat steps 1 and 2 to sort the remainder of the array

WHAT DOES THIS LOOK LIKE?



vold 1nsertionSort(int[] arr)
{
for(int 1=1; 1 < arr.length; 1++)
{
index = arr[i];
] = 1y
while (3>0 && arr[j-1]>1ndex)
{

arr[J]] = arr[j-1];
J—=7

}

arr[J]] = 1ndex;

J
J

WHAT IS THE COMPLEXITY OF INSERTION SORT?



unsortedness

-requires a measure of unsortedness for array

-inversion: a pair of array items that are out of order

45/-3] 9 [76/11/-8] 0
HOW MANY INVERSIONS ARE THERE?

-sorting efficiency depends on how many inversions
are removed per step
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insertion sort complexity

each swap to the left removes one inversion...
...we must visit each item at least once (N)...

...and we must undo I inversions

45 -3| 9 |76 11 -8 O

\éWAP REMOVES ONE INVERSION

insertion sort is O(N+I)
HOW DO WE FIGURE OUT WHAT I |S?

12



today...



-measuring the complexity of insertion sort

-shellsort
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insertion sort is O(N+I)
HOW DO WE FIGURE OUT WHAT I [S?
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worst case scenaro...

-what are the number of inversions in the worst case?
-what IS the worst case”

76 45 11 9 0 -3|-8 ——|NVERTED
HOW MANY INVERSIONS ARE THERE?

-when every unique pair is inverted. ..

-how many unigue pairs are there?
-(hint: remember Gauss’s trick!)

N * (N-1)/2 = (N2 - N)/2
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insertion sort is O(N+I)
WHAT IS THE WORST-CASE COMPLEXITY OF INSERTION SORT?
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insertion sort is O(N+I)

WHAT IS THE BEST-CASE COMPLEXITY OF INSERTION SORT?
A) ¢

B) log N

) N

)

D
E)
F)

O

NlogN

ZZ
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average case scenario...

-assume that there is a 50% chance that any given
pair is inverted

-average number of inversions = (number of pairs) / 2

((N°-N)/2)/2=(N2-N)/4

NUMBER OF PAIRS
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insertion sort is O(N+I)
WHAT |S THE AVERAGE-CASE COMPLEXITY OF INSERTION SORT?
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recap...
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selection vs insertion

WORST: O(N?) O(N?)
AVERAGE: O(N?) O(N?)
BEST:  O(N?) O(N)

WHICH ONE PERFORMS BETTER IN PRACTICE?

A) selection
B) insertion
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summary

-an inversion is a pair of items that are out of order
-a sorted array has O inversions
-an average (and worst) array has ~N2 inversions

-thus, we must undo N2 inversions

to do better than O(N?2) we must remove more than 1
iInversion per step
-(insertion sort only removes 1 inversion per step!)
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what we want...

-a sorting algorithm that has subquadratic complexity

-swapping adjacent items removes exactly 1 inversion
45/-3/ 9 [76/11/-8]| 0

\SWAP REMOVES 1 INVERSION

-what if we consider swapping nonadjacent pairs?
45/-3]/ 9 |76/11/-8 0

\_/
SWAP REMOVES 7 INVERSION

-removes inversions not involved with the swap
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shellsort

the simplest subqguadratic sorting algorithm
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shellsort

INnsertion sort, with a twist

1)set the gap size to N/2

2)consider the subarrays with elements at gap size from
each other

3)do insertion sort on each of the subarrays
4)divide the gap size by 2

5)repeat steps 2 — 4 until the is gap size is <1

WHAT DOES THIS LOOK LIKE?



HOW DO WE DESCRIBE INSERTION SORT WITH RESPECT TO SHELLSORT?
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-each x-sort (for a gap x) is performing an insertion sort
on x independent subarrays

-Is also known as the diminishing gap sort

-Shell originally suggested gaps N/2, N/4, N/8, ..., 1

-gap sequences In which consecutive gaps share no
common factors have been shown to perform better
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UNTIL THE INSERTION POSITION IS FOUND, SHIFT SORTED ITEMS

DIMINISHING GAP SEQUENCE
vold shellSort(int[] arr)
{ |

for(gap = arr.length/2; gap > 0; gap /= 2)
{
for(i = gap; 1 < arr.length; i++)
{
val = arr[1]; ITEM TO BE INSERTED
:for(j = 1—-gap; J >= 0 && arr[3j] > val; 7] —-= gap)
arr[Jj+gap] = arr[j];

INSERT [TEM

arr[jtgap] = val;
}

J

J
WHAT IS THE COMPLEXITY OF SHELLSORT?
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shellsort complexity

-worst case: O(N?) with Shell’s gaps, O(N>2) with
better gaps

-average case: O(N3%2) with Shell’s gaps, O(N>4) with
better gaps

-proofs of these bounds are complicated
-the O(N>/4) bound is based on simulations only!

-insertion sort performs better the more sorted the array
-remember, approaches O(N) for a sorted array!
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shellsort complexity

-still, O(N*>*) is an encouraging bound for the average case
-for moderate N, this is better than O(N log N) algorithms
-around N=100K, O(N log N) wins

-best sorting algorithms are O(N log N)
-log N suggests repeated dividing by 2
-“divide and conquer”

WHAT ALGORITHM DO WE KNOW OF THAT IS log N?

WHAT DOES THIS IMPLY ABOUT THE "CONQUER" STEP?
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next time...
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-reading
-chapters 7 & 8.5 - 8.8

-homework
-assignment 3 due today
-assignment 4 out today
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