0@ (< il google.com ¢

GO\) Sle recursion “

Web Images Videos Apps Shopping More ~ Search tools

About 28,600,000 results (0.24 seconds)

Did you mean: recursion

Recursion - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Recursion ¥ Wikipedia ~

Recursion is the process of repeating items in a self-similar way. For instance, when
the surfaces of two mirrors are exactly parallel with each other, the nested ...

Recursion (computer science) Recursive definition

Recursion in computer science is a A recursive definition (or inductive
method where the solutionto a ... definition) in mathematical logic ...
More results from wikipedia.org »

CodingBat Java Recursion-1

codingbat.com/java/Recursion-1 ~
Basic recursion problems. Recursion strategy: first test for one or two base cases
that are so simple, the answer can be returned immediately. Otherwise, make a ...

Recursion - Learn You a Haskell for Great Good!
learnyouahaskell.com/recursion ~ Learn You a Haskell for Great Good! ~
We mention recursion briefly in the previous chapter. In this chapter, we'll take a
closer look at recursion, why it's important to Haskell and how we can work out ...

Recursion

pages.cs.wisc.edu/.../6.RECURSION.ht... ¥ University of Wisconsin-Madison ~
The original call causes 2 to be output, and then a recursive call is made, creating a
clone with k == 1. That clone executes line 1: the if condition is false, line 4: ...

+Miriah

RECURSION

cs2420 | Introduction to Algorithms and Data Structures | Spring 2015

administrivia...

-assignment 4 due on Thursday at midnight
-a personal testimony...
-no change of due dates for homework

-midterm next Tuesday

last time...

selection vs insertion

WORST: O(N?) O(N?)
AVERAGE: O(N?) O(N?)
BEST: O(N?) O(N)

WHICH ONE PERFORMS BETTER IN PRACTICE?

A) selection
B) insertion

what we want...

-a sorting algorithm that has subquadratic complexity

-swapping adjacent items removes exactly 1 inversion
45/-3/ 9 [76/11/-8]| 0

\SWAP REMOVES 1 INVERSION

-what if we consider swapping nonadjacent pairs?
45/-3]/ 9 |76/11/-8 0

_/
SWAP REMOVES 7 INVERSION

-removes inversions not involved with the swap

8

shellsort

the simplest subqguadratic sorting algorithm

shellsort

INnsertion sort, with a twist

1)set the gap size to N/2

2)consider the subarrays with elements at gap size from
each other

3)do insertion sort on each of the subarrays
4)divide the gap size by 2

5)repeat steps 2 — 4 until the is gap size is <1

WHAT DOES THIS LOOK LIKE?

HOW DO WE DESCRIBE INSERTION SORT WITH RESPECT TO SHELLSORT?

11

UNTIL THE INSERTION POSITION IS FOUND, SHIFT SORTED [TEMS

DIMINISHING GAP SEQUENCE

vold shellSort (int[] arr)
{
for(gap = arr.length/2; gap > 0; gap /= 2)
{
for(i = gap; 1 < arr.length; i++)
{
val = arr[1]; ITEM TO BE INSERTED
:for(j = 1—-gap; J >= 0 && arr[3j] > val; 7] —-= gap)
arr[Jj+gap] = arr[j];
arr[Jjtgap] = val; INSERT [TEM
}
}
}

12

today...

-what is recursion? and some examples...
-driver methods

-the overhead of recursion

14

re-cur-sion

[ri-kur-zhuh n]
noun

see recursion.

15

-recursion is a problem solving technigue in which the solution is
defined in terms of a simpler (or smaller) version of the problem

-break the problem into smaller parts
-Solve the smaller problems
-combine the results

-a recursive method calls itself
-some functions are easiest to define recursively

sum (N) = sum(N-1) + N

-there must be at least on base case that can be computed without
recursion
-any recursive call must make progress towards the base case!

16

a simple example

sum(N) = sum(N-1) + N

public static 1nt sum(int n) {

e n == 1) \FIX TO HANDLE ZERO OR
return 1; NEGATIVE VALUES. . .
return sum(n-1) + n;

J

HOW CAN WE SOLVE THE SAME PROBLEM WITHOUT RECURSION?
WHICH 1S BETTER, THE RECURSIVE SOLUTION OR THE ALTERNATIVE?

17

exercise 1

-how to compute N!
NI=N*N-1*N-2*..%2%*1

-how would you compute this using a for-loop?

-how would you compute this using recursion?
-think about:
-what is the base case?
-what is recursive?

18

exercise 1

-how to compute N!
NI=N*N-1*N-2*..%2%*1

-how would you compute this using a for-loop?

-how would you compute this using recursion? A) ¢
think about: B) log N
-what is the base case? (D:g ﬁ log
] - va?
what Is recursive: E) N2
F) N3

WHAT IS THE COMPLEXITY OF THE FOR-LOOP METHQOD?

19

exercise 1

-how to compute N!
NI=N*N-1*N-2*..%2%*1

-how would you compute this using a for-loop?

-how would you compute this using recursion? A) ¢
think about: B) log N
-what is the base case? (D:g ﬁ log
] - va?
what Is recursive: E) N2
F) N3

WHAT IS THE COMPLEXITY OF THE RECURSIVE METHQOD?

20

exercise 2

-write a recursive method that computes A/B
-do Integer division
-/ operator not allowed, can only use -
-don’t worry about negative input or divide-by-zero

public static 1nt divide(int a, 1nt Db)

{

=
HINT: 9/2 = 1 + (7/2)

21

¢ ’ o
recurs ke MAGIC
recursion often seems like M,%\G!C

-use this to your advantage
-when writing a recursive method, just assume that
the function you’re writing already works, so you can
use it to help solve the problem

-once you’'ve worked out the recursion, think about the
base case, and you’re done

22

driver methods

23

divide and conquer

-divide and conquer is an important problem solving
technique that makes use of recursion

-divide: smaller problems are solved recursively
(except for base cases!)

-conquer: solutions to the subproblems form the
solution to the original problem

-typically, an algorithm containing more than one
recursive call is referred to as divide and conquer

-subproblems are usually disjoint (non-overlapping)

24

exerc1se 3

binary search (recursive)

-write a recursive method to perform a binary search
-assume an (ascending) sorted list

-HINT
-check if middle item is what we're looking for
-If so, return true
-else, figure out if item Is the left or right half
-repeat on that half

-base case(s)???

25

-recursive methods often have unusual parameters
-at the top level, we just want:

binarySearch (arr, 1tem);

-but in reality, we have to call:

binarySearch (arr, item, 0, arr.length-1);

-driver methods are wrappers for calling recursive
methods

-driver makes the initial call to the recursive method,
Knowing what parameters to use

-1IS not recursive itself

public static boolean bilnarySearch (arr, 1tem) {
return binarySearchRecursive (
arr, 1tem, 0, arr.length-1);

} 26

-another useful feature of driver methods is error
checking (or, validity checks)

-do the error checking only in the driver method,
instead of redundantly doing it every time in the
recursion

WHAT |S SOMETHING TO CHECK FOR IN OUR BINARY SEARCH METHOD?

public static boolean bilnarySearch (arr, 1tem) {
if (arr == null) // only check this once
return false;

return blnarySearchRecursive (
arr, 1item, 0, arr.length-1);

27

overhead of recursion

28

method calls

-every time a method is invoked, a
unique “frame” is created

-contains local variables and state
-put on the call stack

-when that method returns, execution
resumes in the calling method

-this 1Is how methods know where to
return to!

29

swap

sSOort

findAnagrams

maln

call stack

recursive calls

-create multiple frames of the same

method factorial (1)
-but each frame has different
arguments factorial (2)

factorial (3)

factorial (4)

maln

call stack

30

recursion, beware

-do not use recursion when a simple loop will do
-growth rates may be the same, but...

-...there is a lot of overhead involved in setting up the
method frame

-way more overhead than one iteration of a for-loop

-do not do redundant work in a recursive method
-move validity checks to a driver method

-too many recursive calls will overflow the call stack
-stack stores state from all preceding calls

31

recap

32

4 recursion rules

1.always have at least one case that can be solved
without using recursion

2.any recursive call must progress toward a base
case

3. always assume that the recursive call works, and
use this assumption to design your algorithms

4.never duplicate work by solving the same instance
of a problem in separate recursive calls

33

next time...

34

-reading
-chapters 7 & 8.5 - 8.8

-homework
-assignment 4 due Thursday

-(short) midterm review on Thursday

35

