
1

cs2420 | Introduction to Algorithms and Data Structures | Spring 2015
RECURSION

2

administrivia…

3

4

-assignment 4 due on Thursday at midnight

-a personal testimony…

-no change of due dates for homework

-midterm next Tuesday

last time…

6

selection vs insertion

7

worst:
average:

best:

O(N2)
O(N2)
O(N2)

O(N2)
O(N2)
O(N)

which one performs better in practice?
A) selection
B) insertion

what we want…
-a sorting algorithm that has subquadratic complexity

-swapping adjacent items removes exactly 1 inversion

-what if we consider swapping nonadjacent pairs?

-removes inversions not involved with the swap

8

45 -3 9 76 11 -8 0

swap removes 1 inversion

45 -3 9 76 11 -8 0

swap removes 7 inversion

shellsort

9

the simplest subquadratic sorting algorithm

10

shellsort
1)set the gap size to N/2

2)consider the subarrays with elements at gap size from
each other

3)do insertion sort on each of the subarrays

4)divide the gap size by 2

5)repeat steps 2 — 4 until the is gap size is <1

what does this look like?

insertion sort, with a twist

11

how do we describe insertion sort with respect to shellsort?

12

diminishing gap sequence

item to be inserted

u
n
ti

l
th

e
in

s
er

ti
o

n
 p

o
s
it

io
n
 is

 f
o

u
n
d
,

s
h
if

t
s
o

rt
ed

 it
em

s

insert item

void shellSort(int[] arr)
{
for(gap = arr.length/2; gap > 0; gap /= 2)
{

for(i = gap; i < arr.length; i++)
{
val = arr[i];
for(j = i-gap; j >= 0 && arr[j] > val; j -= gap)
arr[j+gap] = arr[j];

arr[j+gap] = val;
}

}
}

today…

13

14

-what is recursion? and some examples…

-driver methods

-the overhead of recursion

re⋅cur⋅sion
[ri-kur-zhuh n]
noun

see recursion.

15

16

-recursion is a problem solving technique in which the solution is
defined in terms of a simpler (or smaller) version of the problem

-break the problem into smaller parts
-solve the smaller problems
-combine the results

-a recursive method calls itself

-some functions are easiest to define recursively

-there must be at least on base case that can be computed without
recursion

-any recursive call must make progress towards the base case!

sum(N) = sum(N-1) + N

a simple example

17

sum(N) = sum(N-1) + N

public static int sum(int n) {
if(n == 1)
return 1;

return sum(n-1) + n;
}

how can we solve the same problem without recursion?

which is better, the recursive solution or the alternative?

fix to handle zero or
negative values. . .

exercise 1
-how to compute N!

N! = N * N-1 * N-2 * … * 2 * 1

-how would you compute this using a for-loop?

-how would you compute this using recursion?
-think about:

-what is the base case?
-what is recursive?

18

exercise 1
-how to compute N!

N! = N * N-1 * N-2 * … * 2 * 1

-how would you compute this using a for-loop?

-how would you compute this using recursion?
-think about:

-what is the base case?
-what is recursive?

19

what is the complexity of the for-loop method?

A) c
B) log N
C) N
D) N log N
E) N2

F) N3

exercise 1
-how to compute N!

N! = N * N-1 * N-2 * … * 2 * 1

-how would you compute this using a for-loop?

-how would you compute this using recursion?
-think about:

-what is the base case?
-what is recursive?

20

what is the complexity of the recursive method?

A) c
B) log N
C) N
D) N log N
E) N2

F) N3

exercise 2
-write a recursive method that computes A/B

-do integer division
-/ operator not allowed, can only use -
-don’t worry about negative input or divide-by-zero

21

public static int divide(int a, int b)
{
…

}

hint: 9/2 = 1 + (7/2)

22

-recursion often seems like
-use this to your advantage

-when writing a recursive method, just assume that
the function you’re writing already works, so you can
use it to help solve the problem

-once you’ve worked out the recursion, think about the
base case, and you’re done

MAGIC

driver methods

23

divide and conquer
-divide and conquer is an important problem solving
technique that makes use of recursion

-divide: smaller problems are solved recursively
(except for base cases!)
-conquer: solutions to the subproblems form the
solution to the original problem

-typically, an algorithm containing more than one
recursive call is referred to as divide and conquer

-subproblems are usually disjoint (non-overlapping)

24

exercise 3
-write a recursive method to perform a binary search

-assume an (ascending) sorted list

-HINT
-check if middle item is what we’re looking for

-if so, return true
-else, figure out if item is the left or right half

-repeat on that half

-base case(s)???

25

binary search (recursive)

26

-recursive methods often have unusual parameters
-at the top level, we just want:

-but in reality, we have to call:

-driver methods are wrappers for calling recursive
methods

-driver makes the initial call to the recursive method,
knowing what parameters to use
-is not recursive itself

binarySearch(arr, item);

binarySearch(arr, item, 0, arr.length-1);

public static boolean binarySearch(arr, item){
return binarySearchRecursive(
arr, item, 0, arr.length-1);

}

27

-another useful feature of driver methods is error
checking (or, validity checks)

-do the error checking only in the driver method,
instead of redundantly doing it every time in the
recursion

public static boolean binarySearch(arr, item){
if (arr == null) // only check this once
return false;

return binarySearchRecursive(
arr, item, 0, arr.length-1);

}

what is something to check for in our binary search method?

overhead of recursion

28

method calls
-every time a method is invoked, a
unique “frame” is created

-contains local variables and state
-put on the call stack

-when that method returns, execution
resumes in the calling method

-this is how methods know where to
return to!

29

call stack

main

findAnagrams

sort

swap

recursive calls
-create multiple frames of the same
method

-but each frame has different
arguments

30

call stack

main

factorial(4)

factorial(3)

factorial(2)

factorial(1)

recursion, beware
-do not use recursion when a simple loop will do

-growth rates may be the same, but…
-…there is a lot of overhead involved in setting up the
method frame

-way more overhead than one iteration of a for-loop

-do not do redundant work in a recursive method
-move validity checks to a driver method

-too many recursive calls will overflow the call stack
-stack stores state from all preceding calls

31

recap

32

4 recursion rules
1.always have at least one case that can be solved

without using recursion

2.any recursive call must progress toward a base
case

3.always assume that the recursive call works, and
use this assumption to design your algorithms

4.never duplicate work by solving the same instance
of a problem in separate recursive calls

33

next time…

34

35

-reading
-chapters 7 & 8.5 - 8.8

-homework
-assignment 4 due Thursday

-(short) midterm review on Thursday

