
cs2420 | Introduction to Algorithms and Data Structures | Spring 2015
MERGESORT & QUICKSORT

1

administrivia…

2

3

-assignment 4 due tonight at midnight

-assignment 5 is out

-midterm next Tuesday

last time…

4

re⋅cur⋅sion
[ri-kur-zhuh n]
noun

see recursion.

5

6

-recursion is a problem solving technique in which the solution is
defined in terms of a simpler (or smaller) version of the problem

-break the problem into smaller parts
-solve the smaller problems
-combine the results

-a recursive method calls itself

-some functions are easiest to define recursively

-there must be at least on base case that can be computed without
recursion

-any recursive call must make progress towards the base case!

sum(N) = sum(N-1) + N

a simple example

7

sum(N) = sum(N-1) + N

public static int sum(int n) {
if(n == 1)
return 1;

return sum(n-1) + n;
}

how can we solve the same problem without recursion?

which is better, the recursive solution or the alternative?

fix to handle zero or
negative values. . .

8

-recursive methods often have unusual parameters
-at the top level, we just want:

-but in reality, we have to call:

-driver methods are wrappers for calling recursive
methods

-driver makes the initial call to the recursive method,
knowing what parameters to use
-is not recursive itself

binarySearch(arr, item);

binarySearch(arr, item, 0, arr.length-1);

public static boolean binarySearch(arr, item){
return binarySearchRecursive(
arr, item, 0, arr.length-1);

}

recursion, beware
-do not use recursion when a simple loop will do

-growth rates may be the same, but…
-…there is a lot of overhead involved in setting up the
method frame

-way more overhead than one iteration of a for-loop

-do not do redundant work in a recursive method
-move validity checks to a driver method

-too many recursive calls will overflow the call stack
-stack stores state from all preceding calls

9

4 recursion rules
1.always have at least one case that can be solved

without using recursion

2.any recursive call must progress toward a base
case

3.always assume that the recursive call works, and
use this assumption to design your algorithms

4.never duplicate work by solving the same instance
of a problem in separate recursive calls

10

today…

11

12

-mergesort

-quicksort

-midterm stuff

mergesort

13

divide and conquer

but first, merging…
-say we have two sorted lists, how can we efficiently
merge them?

-idea: compare the first element in each list to each
other, take the smallest and add to the merged list

-AND… repeat

14

what does this look like?

mergesort
1)divide the array in half

2)sort the left half

3)sort the right half

4)merge the two halves together

15

what is missing here?

how do we sort?
can we avoid sorting? how?

mergesort
1)divide the array in half

2)sort the left half

3)sort the right half

4)merge the two halves together

16

what does this look like?

2) take the left half, and go back
to step 1

3) take the right half, and go
back to step 1

until???

until???

void mergesort(int[] arr, int left, int right)
{
int mid = (left + right) / 2;
mergsort(arr, left, mid);
mergsort(arr, mid+1, right);
merge(arr, left, mid+1, right);

}

17

divide

conquer

what are we missing?

void mergesort(int[] arr, int left, int right)
{
// arrays of size 1 are already sorted
if(start >= end)
return;

int mid = (left + right) / 2;
mergsort(arr, left, mid);
mergsort(arr, mid+1, right);
merge(arr, left, mid+1, right);

}

18

divide

conquer

what is the complexity of the divide step?
A) c
B) log N
C) N
D) N log N
E) N2

F) N3

void mergesort(int[] arr, int left, int right)
{
// arrays of size 1 are already sorted
if(start >= end)
return;

int mid = (left + right) / 2;
mergsort(arr, left, mid);
mergsort(arr, mid+1, right);
merge(arr, left, mid+1, right);

}

19

divide

conquer

what is the complexity of the conquer step?
A) c
B) log N
C) N
D) N log N
E) N2

F) N3

void mergesort(int[] arr, int left, int right)
{
// arrays of size 1 are already sorted
if(start >= end)
return;

int mid = (left + right) / 2;
mergsort(arr, left, mid);
mergsort(arr, mid+1, right);
merge(arr, left, mid+1, right);

}

20

divide

conquer

what is the complexity of MERGESORT?
A) c
B) log N
C) N
D) N log N
E) N2

F) N3

is this the worst || average || best-case?

merging sorted arrays
-easy concept, tricky code…

-lots of special cases:
-keep track of two indices to step through both arrays
(the “front” of each array)

-indices do not necessarily move at the same speed
-have to stop the loop when either index reaches the
end of their array
-the two arrays are not necessarily the same size
-what to do when you reach the end of one array but
not the other?
-copy from temp back into the array

21

void Merge(int[] arr, start, mid, end)
{

// create temp array for holding merged arr
int[] temp = new int[end – start + 1];

 int i1 = 0, i2 = mid;

while(i1 < mid && i2 < end)
{

put smaller of arr[i1], arr[i2] into temp;
}

copy anything left over from larger half to temp;

copy temp over to arr;
}

22

Is there anything we should do different?

void Merge(int[] arr, int[] temp, start, mid, end)
{

int i1 = 0, i2 = mid;
while(i1 < mid && i2 < end)
{

put smaller of arr[i1], arr[i2] into temp;
}

copy anything left over from larger half to temp;

copy temp over to arr;
}

23

Is there anything we should do different?

allocate Temp in driver method!

notes on merging
-the major disadvantage of mergesort is that the merging
of two arrays requires an extra, temporary array

-this means that mergesort requires 2x as much space
as the array itself

-can be an issue if space is limited!
-an in-place mergesort exists, but is complicated and
has worse performance

-to achieve the overall running time of O(N log N) it is
critical that the running time of the merge phase be
linear

24

mergesort variation
-it is a good idea to invoke insertion sort when the
subarray size reaches a small enough threshold

-why???
-HINT: what is the complexity of insertion sort? of
mergesort? what are other runtime
considerations?

-the real threshold depends on several things:
-hardware / OS / compiler
-input characteristics

25

quicksort

26

another divide and conquer

quicksort
1)select an item in the array to be the pivot

2)partition the array so that all items less than the pivot
are to the left of the pivot, and all the items greater than
the pivot are to the right

3)sort the left half

4)sort the right half

27

what do you notice?

NOTE: after partitioning, the pivot is in it’s final position!

quicksort
1)select an item in the array to be the pivot

2)partition the array so that all items less than the pivot
are to the left of the pivot, and all the items greater than
the pivot are to the right

3)sort the left half

4)sort the right half

28

what does this look like?

3) take the left half, and go back
to step 1

4) take the right half, and go
back to step 1

until???

until???

void quicksort(int[] arr, int left, int right)
{
int pivot_index = partition(arr, left, right);
quicksort(arr, left, pivot_index-1);
quicksort(arr, pivot_index+1, right);

}

29

what are we missing?

void quicksort(int[] arr, int left, int right)
{
// arrays of size 1 are already sorted
if(start >= end)
return;

int pivot_index = partition(arr, left, right);
quicksort(arr, left, pivot_index-1);
quicksort(arr, pivot_index+1, right);

}

30

what is the divide step?

what is the conquer step?

quick note…
-a huge benefit of quicksort is that it can be done
in-place

-ie. you can do the sort within the original array

-mergesort requires an extra, temporary array for
merging

-however, in-place partitioning for quicksort
requires some careful thought…

31

in-place partitioning
1)select an item in the array to be the pivot

2)swap the pivot with the last item in the array (just get it out of the way)

3)step from left to right until we find an item > pivot
-this item needs to be on the right of the partition

4)step from right to left until we find an item < pivot
-this item needs to be on the left of the partition

5)swap items

6)continue until left and right stepping cross

7)swap pivot with left stepping item

32

what does this look like?

33

find pivot, swap with right_bound;

L = left_bound, R = right_bound - 1;
while(L <= R)
{
if(arr[L] <= pivot)
{
L++; continue; // find next item > pivot

}

if(arr[R] >= pivot)
{
R--; continue; // find its “swapping partner”

}

swap(arr, L, R); // partners found, swap them
L++; R--;

}

// point where L met R is the pivot location
swap(arr, L, right_bound); // put pivot back

choosing a pivot
-the median of all array items is the best possible choice… why?

-is time-consuming to compute
-finding true median is O(N)

-it is important that we avoid the worst case
-what IS the worst case(s)?

-middle array item is a safe choice… why?

-median-of-three: pick a few random items and take median
-why not the first, middle, and last items?

-random pivot: faster than median-of-three, but lower quality

34

choosing a pivot
-any nonrandom pivot selection has some devious
input that causes O(N2)

-trade-off between quality of pivot and time to select

-selection cost should always be O(c)
-ie. it should not depend on N!

35

quicksort complexity
-performance of quick sort heavily depends on which
array item is chosen as the pivot

-best case: pivot partions the array into two equally-
sized subarrays at each stage — O(N log N)

-worst case: partition generates an empty subarray at
each stage — O(N2)

-average case: bound is O(N log N)
-proof is quite involved, see the textbook if you are
curious

36

quicksort vs mergesort

37

38

-both are O(N log N) in the average case

-mergesort is also O(N log N) in the worst case
-so, why not always use mergesort?

-mergesort requires 2N space
-and, copying everything from the merged array
back to the original takes time

-quicksort requires no extra space
-thus, no copying overhead!
-but, in O(N2) worst case <wha wha>

39

-both are divide and conquer algorithms (recursive)

-mergesort sorts “on the way up”
-after the base case is reached, sorting is done as
the calls return and merge

-quicksort sorts “on the way down”
-once the base case is reached, that part of the
array is sorted

-though quicksort is more popular, it is not always the
right choice!

40

Sorting Review

• a

!

Best Average Worst Notes

Selection
Sort O(N2) O(N2) O(N2) Never used in

practice

Insertion Sort O(N) O(N2) O(N2)
Takes

advantage of
“sortedness”

Shellsort O(N log N) O(N1.25) O(N1.5) Depends on
gap sizes

Mergesort O(N log N) O(N log N) O(N log N)
2x space
overhead,

guaranteed
O(N log N)

Quicksort O(N log N) O(N log N) O(N^2) Depends on
pivot

sorting summary

midterm

41

topics
-Java basics

-variables, types
-control flow
-reference types
-classes, methods

-OOP
-inheritance
-polymorphism
-interfaces
-super

42

topics
-generics

-wild cards
-generic classes

-comparators

-algorithm analysis
-growth rates
-Big-O
-determining complexity of loops and algorithms

43

topics
-Collections

-Iterators

-recursion

-selection sort
-insertion sort
-shellsort
-mergesort
-quicksort

44

be able to reason about
performance and behavior of each!

test format
-problems may be of the following types:

-short answer
-determining output of code
-writing code
-filling in missing code
-multiple choice
-true / false

45

next time…

46

47

-no lab on Monday

-midterm on Tuesday in class

-reading
-chapter 17
-chapter 3

-http://opendatastructures.org/ods-java/

-homework
-assignment 5 due Thursday

