
cs2420 | Introduction to Algorithms and Data Structures | Spring 2015
LINKED LISTS

1

administrivia…

2

3

-assignment 5 due tonight at midnight

-assignment 6 is out
-YOU WILL BE SWITCHING PARTNERS!

4

assignment 2 scores
nu

m
be

r o
f s

tu
de

nt
s

score

5

assignment 3 scores
nu

m
be

r o
f s

tu
de

nt
s

score

last time…

6

mergesort

7

divide and conquer

quicksort
another divide and conquer

mergesort
1)divide the array in half

2)sort the left half

3)sort the right half

4)merge the two halves together

8

what does this look like?

2) take the left half, and go back
to step 1

3) take the right half, and go
back to step 1

until???

until???

watch a video online…

void mergesort(int[] arr, int left, int right)
{
// arrays of size 1 are already sorted
if(start >= end)
return;

int mid = (left + right) / 2;
mergesort(arr, left, mid);
mergesort(arr, mid+1, right);
merge(arr, left, mid+1, right);

}

9

divide

conquer

void merge(int[] arr, start, mid, end)
{

// create temp array for holding merged arr
int[] temp = new int[end – start + 1];

 int i1 = 0, i2 = mid;

while(i1 < mid && i2 < end)
{

put smaller of arr[i1], arr[i2] into temp;
}

copy anything left over from larger half to temp;

copy temp over to arr;
}

10

notes on merging
-the major disadvantage of mergesort is that the merging
of two arrays requires an extra, temporary array

-this means that mergesort requires 2x as much space
as the array itself

-can be an issue if space is limited!
-an in-place mergesort exists, but is complicated and
has worse performance

-to achieve the overall running time of O(N log N) it is
critical that the running time of the merge phase be
linear

11

quicksort
1)select an item in the array to be the pivot

2)partition the array so that all items less than the pivot
are to the left of the pivot, and all the items greater than
the pivot are to the right

3)sort the left half

4)sort the right half

12

what does this look like?

3) take the left half, and go back
to step 1

4) take the right half, and go
back to step 1

until???

until???

watch a video online…

void quicksort(int[] arr, int left, int right)
{
// arrays of size 1 are already sorted
if(start >= end)
return;

int pivot_index = partition(arr, left, right);
quicksort(arr, left, pivot_index-1);
quicksort(arr, pivot_index+1, right);

}

13

what is the divide step?

what is the conquer step?

in-place partitioning
1)select an item in the array to be the pivot

2)swap the pivot with the last item in the array (just get it out of the way)

3)step from left to right until we find an item > pivot
-this item needs to be on the right of the partition

4)step from right to left until we find an item < pivot
-this item needs to be on the left of the partition

5)swap items

6)continue until left and right stepping cross

7)swap pivot with left stepping item

14

choosing a pivot
-the median of all array items is the best possible choice… why?

-is time-consuming to compute
-finding true median is O(N)

-it is important that we avoid the worst case
-what IS the worst case(s)?

-middle array item is a safe choice… why?

-median-of-three: pick a few random items and take median
-why not the first, middle, and last items?

-random pivot: faster than median-of-three, but lower quality

15

quicksort vs mergesort

16

17

-both are O(N log N) in the average case

-mergesort is also O(N log N) in the worst case
-so, why not always use mergesort?

-mergesort requires 2N space
-and, copying everything from the merged array
back to the original takes time

-quicksort requires no extra space
-thus, no copying overhead!
-but, in O(N2) worst case <wha wha>

18

-both are divide and conquer algorithms (recursive)

-mergesort sorts “on the way up”
-after the base case is reached, sorting is done as
the calls return and merge

-quicksort sorts “on the way down”
-once the base case is reached, that part of the
array is sorted

-though quicksort is more popular, it is not always the
right choice!

today…

19

20

-memory allocation

-linked structures

-linked lists

-insertion & deletion

-implementation details

-doubly linked lists

-LinkedList vs ArrayList

memory primer
-all data in your program resides in memory at some
point during its life

-think of memory as giant blocks of bytes

-each byte has its own memory address

-addresses are just numbers [0 — num_bytes]

-byte n is next to byte n-1 and n+1
-ie. memory is ordered

21

memory in Java

22

23

-what actually happens when you use the new
keyword?

-new instructs the system to find a contiguous block of
bytes big enough to hold whatever you are creating
-int arr[] = new int[10];

-finds a block of memory big enough to hold 10
ints

-arr[0] is right next to arr[1] in memory
-the addresses of these two numbers are
contiguous!

24

-arrays are a random access data structure
-any item in the array can be accessed instantly

-EXAMPLE
-to access item 23 in an array, simply take the address
of the beginning of the array and add 23 times the size
of each item
-address of arr[23] is address of arr[0]+(23*4)

-no matter the size of the array, accessing item i can be
done in O(c)

-ie. one addition and one multiplication

25

-each time you call new, the allocated block can be
anywhere in memory

-c1 may be at location 2048, and c2 may be at
location 640

-you have no control over this!

Circle c1 = new Circle();
Circle c2 = new Circle();

linked structures

26

27

-linked structures are data storage in which
individual items have links (references) to other items

-items don’t reside in a single contiguous block of
memory

-items can be dynamically added or removed from the
structure, simply by creating or destroying links

item 1

item 2

item 3

how is this different than an array?

28

-linked structures have a reference to another
instance of the structure

-looks a bit like a recursive class definition

class LinkedNode {
//each node stores some data
int ID;
String name;

LinkedNode next; //and one of itself!
}

29

-nodes could also have multiple links
-think of a family tree, or airports

class LinkedNode {
//each node stores some data
int ID;
String name;

ArrayList<LinkedNode> neighbors;
}

linked lists

30

31

-we’ve seen a list implemented with an array in
ArrayList<>

-a linked list is another way to implement a list

-each node, or item in the list, has a link to the next item in
the list

-a single node consists of some data and a reference to
another node

value ref value ref value ref

32

4

8

2

6

1

nodes may not be contiguous in memory!

33

-with an array, we have a single variable that can
access any item with []

-with a linked list, how do we access individual
elements?

-HINT: we need somewhere to start

-always keep track of the first node
-called the head

-from the head node we can access any other node by
following the links

34

4

8

2

6

1

head

35

LinkedNode head = new LinkedNode();
head.ID = 5;
head.name = “head node”;

head.next = new LinkedNode();

LinkedNode temp = head.next;
temp.ID = 12;
temp.name = “next node”;

head node

5

next node

12

linked list vs array
-cost of accessing a random item at location i?

-cost of removeFirst()?

-cost of addFirst()?

36

A) c
B) log N
C) N
D) N log N
E) N2

F) N3

insertion & deletion

37

38

inserting into an array:
5 9 12 17 25

8

5 8 9 12 17 25

what is the cost of insertion?

A) c
B) log N
C) N
D) N log N
E) N2

F) N3

inserting into a linked list:

5 9 12 17 25

8

5 9 12 17 25

8

39

deletion from a linked list:

5 9 12 17 25

9 is now stranded — garbage
collector will clean it up

5 9 12 17 25

implementation details

40

41

-linked lists have some methods, a size, etc.
-but, it doesn’t make sense for every node to store
the size!

-out class LinkedList keeps track of the size,
head node, and defines all methods

-Node should be a simple, inner class (private)
-with a data field, and one or more Nodes (links)

42

nongeneric implementation (only stores ints):
class LinkedList
{
private Node head;
private int size;

private class Node
{
private int data;
private Node next;
…

}
…

}

things to consider…
-what should next be for the last item in the list?

-don’t let a call to new LinkedNode() cause an
infinite loop

-ie. creating a new LinkedNode, which creates a
new LinkedNode, and so on…

-constructor should set next to null

43

44

traversing a linked list:

public boolean contains(int item)
{
Node temp = head;

while(temp != null)
{
if(temp.data == item)
return true;

temp = temp.next;
}

return false;
}

exercise…
-what is the implementation of get()?

-NOTES
-throws NoSuchElementException if i is out of
range
-move the next node with the .next reference

-what is the equivalent method for an ArrayList?

45

public int get(int i) { … }

doubly-linked lists

46

47

-nodes have a link to next and previous node

-allows for traversal in either forward or reverse order

-maintains a tail node as well as a head node
-why?

-how can we use a doubly-linked list to optimize
get(i)?

48

-special cases (empty or single-item lists) are more
tricky due to managing tail as well as head

-what are the values of head and tail for any empty
list?

-what about for a single-item list?

49

doubly-linked list insertion:

newNode = new Node<Character>();
newNode.data = ’n’;

newNode.prev = current;
newNode.next = current.next;
newNode.prev.next = newNode;
newNode.next.prev = newNode;

head tailcurrent
c k o ya

n

50

doubly-linked list deletion:

current.prev.next = current.next;
current.next.prev = current.prev;

head tailcurrent
c k o ya

n

51

generic implementation:
class LinkedList<E>
{
private Node head;
private Node tail;
private int size;

private class Node
{
private E data;
private Node next;
private Node prev;
…

}
…

}

things to consider…
-adding to the front or end of a linked list is a little
different than adding somewhere in the middle

-why?

-removing from a list with 1 node
-what happens to head/tail?

-adding to an empty list
-what is the current value of head/tail?

52

LinkedList vs ArrayList

53

54

LinkedList vs ArrayList
insertion & deletion:

(assuming position is known)

accessing a random item:

O(c) O(N)

O(N) O(c)

-choose the structure based on the expected use
-what is the common case?

-what if insertion / deletion is always from the front / end?

next time…

55

56

-reading
-chapter 16
-chapter 2

-http://opendatastructures.org/ods-java/

-homework
-assignment 5 due tonight
-assignment 6 is out

