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administrivia...



-assignment 6 due on Thursday at midnight
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last time...



linked lists






linked list vs array

-cost of accessing a random item at location 17

-cost of removeFirst () ?

-cost of addFirst ()?
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inserting into an array:
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deletion from a linked list:

9 IS NOW STRANDED — GARBAGE
COLLECTOR WILL CLEAN [T UP
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doubly-linked lists



-nodes have a link to next and previous node

-allows for traversal in either forward or reverse order

-maintains a tail node as well as a head node
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doubly-linked list insertion:

tail

newNode = new Node<Character>();
newNode.data = 'n’;
newNode.prev = current;
newNode.next = current.next;
newNode.prev.next = newNode;
newNode.next.prev = newNode;
head current
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doubly-linked list deletion:

current.prev.next = current.next;
current.next.prev = current.prev;
head current tail
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LinkedList VS ArraylList

iInsertion & deletion:
(assuming position is known) O(c) O(N)

accessing a random item: O(N) O(c)

-choose the structure based on the expected use
-what is the common case?
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today...



stacks
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-a stack is a data structure in which insertion and
removal is restricted to the top (or end) of the list

-also called FIRST-IN, LAST-OUT (FILO)
-Insertion always adds an item to the end
-deletion always removes an item from the end
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important methods

-push
-Inserts an item on to the top of the stack

“POop
-removes and returns the item on the top of the
stack

-peek
-returns but does not remove the top of the stack

-consecutive calls to pop wil return items in the
reverse order that they were pushed
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pop () ;

push (o) ;

Cop 23 5
87 87 87
2 2 2
10 10 10
9 9 9

[T 1S USEFUL TO THINK OF STACKS AS STANDING UPRIGHT!
(LIKE A STACK OF DISHES)
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performance

-push, pop, and peek must all be O(1)

-we need a very efficient data structure if we expect to
only access the last element

HOW CAN WE IMPLEMENT A STACK SO THAT ALL 3
OPERATIONS ARE GUARANTEED TO BE O(1)?
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as an array...

-NOTE: keep track of a top index
-to push, iIncrement top, then add the item at that index

-to pop, return the item at index top, and decrement top

push (a) push (b) pop ()
b
a a a

top=-1 top=0 top=1 top=0
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performance

-If we try to push when the underlying array is full, the
array must be grown

-any push that requires resizing the array takes O(N)
time

-all other operations are constant, O(1)

-since pushes that resize the array are rare, the
average case for push is still O(1)
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as a linked list...

-treat the head as the top of the stack
-0 push, add to the beginning of the linked list

-to pop, return the top and remove the first item

push (a) push (b) pop ()

null a b — a a

top top top top
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performance

-linked lists never incur the penalty or resizing
-adds to a linked list are always O(1)

-no wasted extra array space
-all stack operations are O(1)

-a stack can be easily implemented on top of an
existing linked list with very little extra code!

25



EXAMPLE: call stack (again!)



-every time a method is invoked a unique frame is
created

-when that method returns, execution resumes in the
calling frame

-methods return in reverse order in which they were
called

-FILO!
-what method is the first in and last out?
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compare
sort
println

main

call stack



EXAMPLE: symbol matcher



-part of the compilation process for Java’s compiler
(and many others) is symbol matching

-every { must be matched with a corresponding }
-same for () and []

-how can we use a stack to determine if all brace
symbols are matched?

for (1i=0; 1<N; 1++)
{
arr[i] = 1i;

J
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l?ush

for (1=0;

{

arr[1i]

J

1<N;

1;

léqp

1++)
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for (1=0; 1<N; 1++)
push
> {
arr[i] = 1; [
pop . ) A 4 (
pushl |[pop

IF END OF INPUT [S REACHED AND THE STACK IS EMPTY...
ALL THE SYMBOLS ARE BALANCED!
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next time...
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-reading

-chapter 16

-chapter 2
-http.//opendatastructures.org/ods-java/

-homework
-assignment 6 due Thursday
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