STACKS

cs2420 | Introduction to Algorithms and Data Structures | Spring 2015

administrivia...

-assignment 6 due on Thursday at midnight

60

50

40

30

number of students

10

assignment 4 scores

L4

0-10

11-20

21-30

31-40

41-50 51-60

SCOre

59
51
28
9 10 10
3 3
0 H B

61-70

71-80

81-90

91-100

last time...

linked lists

linked list vs array

-cost of accessing a random item at location 17

-cost of removeFirst () ?

-cost of addFirst ()?

moow=

ZZZZg50
W N Q
=

Tm
o
Q
Z

inserting into an array:

*I
*I

deletion from a linked list:

9 IS NOW STRANDED — GARBAGE
COLLECTOR WILL CLEAN [T UP

10

doubly-linked lists

-nodes have a link to next and previous node

-allows for traversal in either forward or reverse order

-maintains a tail node as well as a head node

12

doubly-linked list insertion:

tail

newNode = new Node<Character>();
newNode.data = 'n’;
newNode.prev = current;
newNode.next = current.next;
newNode.prev.next = newNode;
newNode.next.prev = newNode;
head current
— — -
a - € < K Y<_

\

\

13

doubly-linked list deletion:

current.prev.next = current.next;
current.next.prev = current.prev;
head current tail

/

a __:__ C _:__ k \ | O _':__ y
n

14

LinkedList VS ArraylList

iInsertion & deletion:
(assuming position is known) O(c) O(N)

accessing a random item: O(N) O(c)

-choose the structure based on the expected use
-what is the common case?

15

today...

stacks

17

-a stack is a data structure in which insertion and
removal is restricted to the top (or end) of the list

-also called FIRST-IN, LAST-OUT (FILO)
-Insertion always adds an item to the end
-deletion always removes an item from the end

18

important methods

-push
-Inserts an item on to the top of the stack

“POop
-removes and returns the item on the top of the
stack

-peek
-returns but does not remove the top of the stack

-consecutive calls to pop wil return items in the
reverse order that they were pushed

19

pop () ;

push (o) ;

Cop 23 5
87 87 87
2 2 2
10 10 10
9 9 9

[T 1S USEFUL TO THINK OF STACKS AS STANDING UPRIGHT!
(LIKE A STACK OF DISHES)

20

performance

-push, pop, and peek must all be O(1)

-we need a very efficient data structure if we expect to
only access the last element

HOW CAN WE IMPLEMENT A STACK SO THAT ALL 3
OPERATIONS ARE GUARANTEED TO BE O(1)?

21

as an array...

-NOTE: keep track of a top index
-to push, iIncrement top, then add the item at that index

-to pop, return the item at index top, and decrement top

push (a) push (b) pop ()
b
a a a

top=-1 top=0 top=1 top=0

22

performance

-If we try to push when the underlying array is full, the
array must be grown

-any push that requires resizing the array takes O(N)
time

-all other operations are constant, O(1)

-since pushes that resize the array are rare, the
average case for push is still O(1)

23

as a linked list...

-treat the head as the top of the stack
-0 push, add to the beginning of the linked list

-to pop, return the top and remove the first item

push (a) push (b) pop ()

null a b — a a

top top top top

24

performance

-linked lists never incur the penalty or resizing
-adds to a linked list are always O(1)

-no wasted extra array space
-all stack operations are O(1)

-a stack can be easily implemented on top of an
existing linked list with very little extra code!

25

EXAMPLE: call stack (again!)

-every time a method is invoked a unique frame is
created

-when that method returns, execution resumes in the
calling frame

-methods return in reverse order in which they were
called

-FILO!
-what method is the first in and last out?

27

compare
sort
println

main

call stack

EXAMPLE: symbol matcher

-part of the compilation process for Java’s compiler
(and many others) is symbol matching

-every { must be matched with a corresponding }
-same for () and []

-how can we use a stack to determine if all brace
symbols are matched?

for (1i=0; 1<N; 1++)
{
arr[i] = 1i;

J

30

l?ush

for (1=0;

{

arr[1i]

J

1<N;

1;

léqp

1++)

31

for (1=0; 1<N; 1++)
push
> {
arr[i] = 1; [
pop .) A 4 (
pushl |[pop

IF END OF INPUT [S REACHED AND THE STACK IS EMPTY...
ALL THE SYMBOLS ARE BALANCED!

32

next time...

33

-reading

-chapter 16

-chapter 2
-http.//opendatastructures.org/ods-java/

-homework
-assignment 6 due Thursday

34

