
cs2420 | Introduction to Algorithms and Data Structures | Spring 2015
STACKS

1

administrivia…

2

3

-assignment 6 due on Thursday at midnight

4

assignment 4 scores
nu

m
be

r o
f s

tu
de

nt
s

score

last time…

5

linked lists

6

7

4

8

2

6

1

head

linked list vs array
-cost of accessing a random item at location i?

-cost of removeFirst()?

-cost of addFirst()?

8

A) c
B) log N
C) N
D) N log N
E) N2

F) N3

9

inserting into an array:
5 9 12 17 25

8

5 8 9 12 17 25

inserting into a linked list:

5 9 12 17 25

8

5 9 12 17 25

8

10

deletion from a linked list:

5 9 12 17 25

9 is now stranded — garbage
collector will clean it up

5 9 12 17 25

doubly-linked lists

11

12

-nodes have a link to next and previous node

-allows for traversal in either forward or reverse order

-maintains a tail node as well as a head node

13

doubly-linked list insertion:

newNode = new Node<Character>();
newNode.data = ’n’;

newNode.prev = current;
newNode.next = current.next;
newNode.prev.next = newNode;
newNode.next.prev = newNode;

head tailcurrent
c k o ya

n

14

doubly-linked list deletion:

current.prev.next = current.next;
current.next.prev = current.prev;

head tailcurrent
c k o ya

n

15

LinkedList vs ArrayList
insertion & deletion:

(assuming position is known)

accessing a random item:

O(c) O(N)

O(N) O(c)

-choose the structure based on the expected use
-what is the common case?

today…

16

stacks

17

18

-a stack is a data structure in which insertion and
removal is restricted to the top (or end) of the list

-also called FIRST-IN, LAST-OUT (FILO)
-insertion always adds an item to the end
-deletion always removes an item from the end

important methods
-push

-inserts an item on to the top of the stack

-pop
-removes and returns the item on the top of the
stack

-peek
-returns but does not remove the top of the stack

-consecutive calls to pop wil return items in the
reverse order that they were pushed

19

20

23
87
2
10
9

top

pop();
push(5);

87
2
10
9

5
87
2
10
9

it is useful to think of stacks as standing upright!
(like a stack of dishes)

performance
-push, pop, and peek must all be O(1)

-we need a very efficient data structure if we expect to
only access the last element

21

how can we implement a stack so that all 3
operations are guaranteed to be O(1)?

as an array…
-NOTE: keep track of a top index

-to push, increment top, then add the item at that index

-to pop, return the item at index top, and decrement top

22

top=-1 top=0 top=1 top=0

a a
b

a

push(a) push(b) pop()

performance
-if we try to push when the underlying array is full, the
array must be grown

-any push that requires resizing the array takes O(N)
time

-all other operations are constant, O(1)

-since pushes that resize the array are rare, the
average case for push is still O(1)

23

as a linked list…
-treat the head as the top of the stack

-to push, add to the beginning of the linked list

-to pop, return the top and remove the first item

24

top

null

push(a)

a

top

push(b)

b a

top

pop()

a

top

performance
-linked lists never incur the penalty or resizing

-adds to a linked list are always O(1)

-no wasted extra array space

-all stack operations are O(1)

-a stack can be easily implemented on top of an
existing linked list with very little extra code!

25

EXAMPLE: call stack (again!)

26

27

-every time a method is invoked a unique frame is
created

-when that method returns, execution resumes in the
calling frame

-methods return in reverse order in which they were
called

-FILO!
-what method is the first in and last out?

call stack

main

findAnagrams

sort

swapcomparecompare

println

EXAMPLE: symbol matcher

29

30

-part of the compilation process for Java’s compiler
(and many others) is symbol matching

-every { must be matched with a corresponding }
-same for () and []

-how can we use a stack to determine if all brace
symbols are matched?

for(i=0; i<N; i++)
{
arr[i] = i;

}

31

for(i=0; i<N; i++)
{
arr[i] = i;

}

push

(

pop

32

for(i=0; i<N; i++)
{
arr[i] = i;

}

push

{

push

[

pop

pop

if end of input is reached and the stack is empty...
all the symbols are balanced!

next time…

33

34

-reading
-chapter 16
-chapter 2

-http://opendatastructures.org/ods-java/

-homework
-assignment 6 due Thursday

