
cs2420 | Introduction to Algorithms and Data Structures | Spring 2015
QUEUES

1

administrivia…

2

3

-assignment 6 due tonight at midnight

-assignment 7 is out

4

midterm scores
nu

m
be

r o
f s

tu
de

nt
s

score

last time…

5

6

-a stack is a data structure in which insertion and
removal is restricted to the top (or end) of the list

-also called FIRST-IN, LAST-OUT (FILO)
-insertion always adds an item to the end
-deletion always removes an item from the end

performance
-push, pop, and peek must all be O(1)

-we need a very efficient data structure if we expect to
only access the last element

7

how can we implement a stack so that all 3
operations are guaranteed to be O(1)?

as an array…

8

top=-1 top=0 top=1 top=0

a a
b

a

push(a) push(b) pop()

as a linked list…

9

top

null

push(a)

a

top

push(b)

b a

top

pop()

a

top

EXAMPLE: symbol matcher

10

11

for(i=0; i<N; i++)
{
arr[i] = i;

}

push

(

pop

today…

12

13

-ANOTHER STACK EXAMPLE: postfix notation

-queues

-priority queues

-homework 7 hints

EXAMPLE: postfix notation

14

15

-we usually see expression written in infix notation

-place an operator in between a left and right operand
-a + b

-the order of operations is not clear from the
expression without parentheses

-although, left-to-right is often assumed
-1 + 2 * 3 = ?

-answer is 7, but some calculators will give 9!

postfix expressions
-a syntax lacking parentheses that can be parsed
without ambiguity

-also called reverse polish notation

-to operands, followed by an operator
a b +

1 2 3 * +
2 * 3 is evaluated first, result is then added to 1

16

how can we use a stack to
evaluate a postfix expression?

17

1 2 3 * + 4 -
(answer is 3)

HINT:
- when an operand is seen, _________
- when an operator is seen, __________
- when the expression is done, __________

18

-when an operand is seen, push it onto the stack

-when an operator is seen, the right and left
operands are popped, the operation is evaluated,
and the result is pushed back onto the stack

-when the expression is done, the single item
remaining on the stack is the answer

19

1 2 3 * + 4 -

1

operand
push(1)

operand
push(2)

2

operand
push(3)

3

operator
pop(), pop(), push(r)

2 3* = 6
6

20

1 2 3 * + 4 -

1
6

operator
pop(), pop(), push(r)

1+6 = 7
7

operand
push(4)

4

operator
pop(), pop(), push(r)

7
4

21

1 2 3 * + 4 -

7+ 4=11

operator
pop(), pop(), push(r)

11

EOL
pop()

answer is 11

queue

22

23

-a queue is a FIRST-IN, FIRST-OUT data structure
-FIFO

-insert on the back, remove from the front

-operations:
-enqueue… adds an item to the back of the queue
-dequeue… removes and returns the item at the front

-like a stack, all operations are O(1)

terminology avoids confusion with a stack!

24

25

front back11 5 2 14

26

front back11 5 2 14 8

enqueue(8)

27

front back5 2 14 8

enqueue(8)
dequeue()

28

front back5 2 14 8

enqueue(8)
dequeue()
enqueue(7)

7

how can we implement a QUEUE so that all operations
are guaranteed to be O(1)?

as an array…
-keep track of front and back indices

-front and back advance through the array
-enqueueing advances back
-dequeueing advance front

-what happens when back reaches the end of the array?

29

front back

14 8 7

30

14 8 7

front back

10 3

enqueue(3)

14 8 7

front

back

10 3

enqueue(6)

6

performance
-using wrap-around, all operations are O(1) on
average

-but, O(N) array growing is still a problem in the worst
case!

-how do we hand array growth if there is wrap-around
in the queue?

-how do we hand copying?
-this is non-trivial…

31

as a linked list…
-remember, inserting and deleting to the head and tail of a
linked list is automatically O(1)

-front is analogous to head
-back is analogous to tail

-no messy wrap-around, or growth issues

-which linked list operations are analogous to enqueue and
dequeue?

32

7 10

front
(head)

814

back
(tail)

summary
-linked lists and wrap-around arrays are both O(1) for
queue implementations

-BUT, arrays are much more complicated to code

-both queues and stacks require very little code
on top of a good linked list implementation

33

priority queues

34

35

-like a queue, but items returned in order of priority
-dequeue operation always returns the item with the
highest priority
-if two items have the same priority, the first one in
the queue is returned

-how can we implement this?
-can operations be O(1)?

using a linked list…
-always add items in correct, sorted spot

-dequeue will return smallest item O(1)

-what is the cost of enqueue?

-we will study a more advanced priority queue later…

36

10 11

front
(head)

85

back
(tail)

enqueue(10)

homework hints…

37

38

-suppose we want to print the String:

-will this work?

this is a quote: “hello”

println(“this is a quote: “hello””);

String literals
-certain characters in Strings are special cases

-to include a quote character, we must escape it

-we can also escape the escape character

39

“
‘
\ (escape character)

println(“this is a quote: \“hello\””);

println(“this is a backslash: \\”);

char literals
-checking for a backslash:

-checking for a double quote:

-checking for a single quote:

40

if(c == ‘\”')

if(c == ‘\\')

if(c == ‘\’')

41

public void test()
{
/*) */
System.out.println(“ \” [} “);

}

// {](

is this balanced?

next time…

42

43

-reading
-chapters 8 and 19 in book
-chapter 6

-http://opendatastructures.org/ods-java/

-homework
-assignment 6 due tonight

