QUEUES

cs2420 | Introduction to Algorithms and Data Structures | Spring 2015

administrivia...

-assignment 6 due tonight at midnight

-assignment 7 is out

number of students

60

50 -

40

30

20

10

midterm scores

1

T . T

5

0-10

11-20

21-30

31-40

41-50 51-60

SCOre

61-70

71-80

81-90

91-100

last time...

-a stack is a data structure in which insertion and
removal is restricted to the top (or end) of the list

-also called FIRST-IN, LAST-OUT (FILO)
-Insertion always adds an item to the end
-deletion always removes an item from the end

performance

-push, pop, and peek must all be O(1)

-we need a very efficient data structure if we expect to
only access the last element

HOW CAN WE IMPLEMENT A STACK SO THAT ALL 3
OPERATIONS ARE GUARANTEED TO BE O(1)?

as an array...

push (a) push (b) pop ()
b
a a a

top=-1 top=0 top=1 top=0

as a linked list...

push (a) push (b) pop ()

null a b — a a

top top top top

EXAMPLE: symbol matcher

l?ush

for (1=0;

{

arr[1i]

J

1<N;

1;

léqp

1++)

11

today...

-ANOTHER STACK EXAMPLE: postfix notation

-queues
-priority queues

-homework 7 hints

13

EXAMPLE: postfix notation

-we usually see expression written in infix notation

-place an operator in between a left and right operand
-a + Db

-the order of operations is not clear from the
expression without parentheses

-although, left-to-right is often assumed
-1 + 2 * 3 =7
-answer is 7/, but some calculators will give 9!

15

postfix expressions

-a syntax lacking parentheses that can be parsed
without ambiguity

-also called reverse polish notation

-t0 operands, followed by an operator
a b +

1 2 3 * +
— 2 * 3 s evaluated first, result is then added to 1

16

HOW CAN WE USE A STACK TO
EVALUATE A POSTFIX EXPRESSION?

1 2 3 * + 4 -
(ANSWER 1S 3)

HINT:

when an operand is seen,
- when an operator is seen,
- when the expression Is done,

-when an operand is seen, push it onto the stack
-when an operator is seen, the right and left
operands are popped, the operation is evaluated,
and the result is pushed back onto the stack

-when the expression is done, the single item
remaining on the stack is the answer

18

1 2 3 * + 4 -
A4 4 4

operapefa erator
pushysfptpeépB)X) , pop() , push(r)

2x3=6

R & W

19

1 2 3 * + 4
A

4 4

Qrezrdberand
pop () , pop (), pi=in@ghrdp () , push(r)

1+6=17

<~ >

20

1 2 3 * + 4 -

A A

operator |EOL
pop (), pop (), push(mgp ()

ANSWER 13 11

11

21

queue

22

-a queue is a FIRST-IN, FIRST-OUT data structure
-FIFO

-iInsert on the back, remove from the front

-operations:
-enqueue... adds an item to the back of the queue
-dequeue... removes and returns the item at the front

TTERMINOLOGY AVOIDS CONFUSION WITH A STACK!

-like a stack, all operations are O(1)

23

Chat Click to update queue status...

Queue
Cory jake @ lab2-5 Remove PutBack
Helping jake Devin & Andrain @ Lab1-22
Miriah yan @ lab2-20

Deactivate Freeze Sign Out

Report bugs via GitHub orema

=) a\v/al\Y/ ~la

front

11

14

25

back

front

enqueue (8)

11

14

26

back

front

enqueue (
dequeue (

3)
)

14

27

back

enqueue (8)
dequeue ()
enqueue (/)

front 5 2 14| 8 7 |back

HOW CAN WE IMPLEMENT A QUEUE SO THAT ALL OPERATIONS
ARE GUARANTEED TO BE O(1)?

28

as an array...

-keep track of front and back indices

-front and back advance through the array
-enqueueing advances back
-dequeueing advance front

14| 8 7

f rontT Tback

-what happens when back reaches the end of the array?

29

enqueue (3)

14 8 | 7 |10 3

frcntT tback

engqueue (0)

6 14, 8 7 10| 3
A

frontw

back

30

performance

-using wrap-around, all operations are O(1) on
average

-but, O(N) array growing is still a problem in the worst
case!

-how do we hand array growth if there is wrap-around
in the queue?

-how do we hand copying?

-this Is non-trivial...

31

as a linked list...

-remember, inserting and deleting to the head and tail of a
linked list is automatically O(1)

-front Is analogous to head
-back is analogous to tail

-N0 Messy wrap-around, or growth issues

14 — 8 — 7 —p> 10

front back
(head) (tail)

-which linked list operations are analogous to enqueue and
dequeue?

32

summary

-linked lists and wrap-around arrays are both O(1) for
gueue implementations

-BUT, arrays are much more complicated to code

-both queues and stacks require very little code
on top of a good linked list implementation

33

priority queues

34

-like a queue, but items returned in order of priority
-dequeue operation always returns the item with the
highest priority

-If two items have the same priority, the first one in
the queue is returned

-how can we implement this?
-can operations be O(1)?

35

using a linked list...

-always add items in correct, sorted spot

enqueue (10) 5 ., 8 l 11

front back
(head) (tail)

-dequeue will return smallest item O(1)
-what is the cost of enqueue?

-we will study a more advanced priority queue later...

36

homework hints...

37

-suppose we want to print the string:

this 1s a quote: “hello”

» println (“this 1s a quote: “hello””);

-will this work?

38

String literals

-certain characters in Strings are special cases

\\

\

\ (escape character)

-to include a quote character, we must escape it
println (“this is a quote: \“hello\””);

-we can also escape the escape character
println (“this is a backslash: \\”);

39

char literals

-checking for a backslash:
1f(c == "\\")

-checking for a double quote:

lf(C == \""')

-checking for a single quote:
lf (C — \\I l)

40

public void test ()

{
/*) */
System.out.println (™ \” [} ™);
}

/7 {1

IS THIS BALANCED?

41

next time...

42

-reading

-chapters 8 and 19 in book

-chapter ©
-http.//opendatastructures.org/ods-java/

-homework
-assignment 6 due tonight

43

