TREES

csZ420|InUoducHQ;J



administrivia...



-assignment 7 due Thursday at midnight

-asking for regrades through assignment 5 and
midterm must be complete by Friday



number of students

assignment 5 scores

120

106

100

o 2]
o

-y
c

Py
o

20

5 5 6 .
OJJYO ;_IL--_,_. —

0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

SCOre



last time...



-a queue is a FIRST-IN, FIRST-OUT data structure
-FIFO

-iInsert on the back, remove from the front

-operations:
-enqueue... adds an item to the back of the queue
-dequeue... removes and returns the item at the front

TTERMINOLOGY AVOIDS CONFUSION WITH A STACK!

-like a stack, all operations are O(1)



as an array...

-keep track of front and back indices

-front and back advance through the array
-enqueueing advances back
-dequeueing advance front

14| 8 7

f rontT Tback

-what happens when back reaches the end of the array?



as a linked list...

-remember, inserting and deleting to the head and tail of a
linked list is automatically O(1)

-front Is analogous to head
-back is analogous to tail

-N0 Messy wrap-around, or growth issues

14 — 8 — 7 —p> 10

front back
(head) (tail)

-which linked list operations are analogous to enqueue and
dequeue?



summary

-linked lists and wrap-around arrays are both O(1) for
gueue implementations

-BUT, arrays are much more complicated to code

-both queues and stacks require very little code
on top of a good linked list implementation



priority queues

10



using a linked list...

-always add items in correct, sorted spot

enqueue (10) 5 ., 8 l 11

front back
(head) (tail)

-dequeue will return smallest item O(1)
-what is the cost of enqueue?

-we will study a more advanced priority queue later...

11



today...



-trees

-terminology

-binary trees

-fraversing a tree
-EXAMPLE: expression trees

-DOT format

13



trees

14



-trees are a linked data structure with a hierarchical

formation

-recall that a linked list has a reference to a next (and
sometimes previous) node

d

—_—

b

—_—

C

-frees can have multiple links, called branches

THERE ARE MULTIPLE DIRECTIONS
YOU CAN TAKE AT ANY GIVEN NODE

15

@/

e

©



-frees have a hierarchical structure
-meaning, any node is a subtree of some larger tree
-except the very top node!

-In CS, trees are usually represented with the root at
the top

-trees are recursive Iin nature
-any given node is itself a tree
-a tree consists of:

-a data element. ..

-...and more subtrees

16



-there is a strict parent-to-child relationship among
nodes

-links only go from parent to child
-not from child to parent
-not from sibling to sibling

-every node has exactly one parent, except for the

root, which has none /@\

-there is exactly one path from the
root to any other node @ @

@

17



terminology

18



the single node in a tree that has no
parents

-parent: a node’s parent has a direct reference to it
-nodes have AT MOST one parent

-child: a node B is a child of node
A if A has a direct reference to B /C"D\

-sibling: two nodes are siblings if ’ ‘

they have the same parent

19



-leaf node: a node with no children
-inner node: a node with at least one child

-depth: the number of ancestors a node has
-le. how many steps to the root

-children are exactly one level deeper than their
parents

-a root node has depth O

-height: the depth of a tree’s deepest leaf node

20



ROOT

PARENT

‘ NODES
ORN®

CHILDREN

LEAF NODES

21



(b c

SUBTREE ROOTED AT NODE ¢
(LEAF NODES ARE TREES TOO!)

2O (=

SUBTREE ROOTED AT NODE d

22



example

23



Therootis .
The heightis __ .
The parentofv3is __ .

The depth ofv3is .

The children of v6 are .

The ancestors of vl are .
The descendants of vé are . @

The |leaves are .

Every node other than ___ is the root of a subtree.

24



binary trees

25



-binary trees are a special case of a tree in which a
node can have AT MOST two children

-these nodes are designated left and right

-In this class we will mostly concentrate on binary
trees

WHAT SHOULD THE IMPLEMENTATION OF A BINARY TREE LOOK LIKE?
WHAT ABOUT A BINARY TREE NODE?

26



-each node has two reference variables
-one for each of the two children

-if there is no child, the reference is set to null

plaly 9

27




class BilnaryNode<E>

{
E data;

BinaryNode left;
BinaryNode right;

J

-what are the values of 1eft and right for a leaf
node?

-this is the just the Node class!
-the BinaryTree class would contain what?

28



traversing a tree

29



-tfraversing a linked list is simple /@\
-there Is only one way to go! @ @

-how do we traverse a binary tree if we

want to visit every node? @@

-eg. we want to print out the data at

every node @

-how do we decide which direction to take
at each node?

30



depth-first traversal

-{o visit every node, go both directions at
each node

-trees are recursive Iin nature /@\
-start at root, recursively traverse the left @
subtree, then the right subtree @

-If the subtree is null, stop (return) @@

31



public static void DFT (BinaryNode N)

{
1T (N == null)
return;

System.out.println (N.data);
DFT (N.left) ; xﬁ::l\
DEFT (N.right) ;
} Oflo
WHAT DOES THIS PRINT OUT? @ @

32



traversal orders

-pre-order: use the node before traversing its children

-in-order: traverse left child, use node, traverse right
child

-post-order: use node after traversing both children

33



-pre-order:
use N // eg. print N

DFT (N.left) ;

DFT (N.right) ; ‘Q\‘
-in-order: @
DFT (N.left) ;

use N // eg. print N

DFT (N.right) ; <:;?<::>
-post-order:

DFT (N.left) ; @

DFT (N.ri1ght) ;
use N // eg. print N

NOTE: NODES ARE STILL TRAVERSED IN THE SAME ORDER, BUT
"USED” (PRINTED) IN A DIFFERENT ORDER



EXAMPLE: expression trees



(3-(15/11) )+ (7*2%)

HOW CAN WE TRAVERSE THIS TREE TO EVALUATE THE EXPRESSION?

36



publlic statlic double evaluate (Node n)

{

1f(n.1sLeaf())
return n.value;

double leftVal = evaluate(n.left);
double rightVal = evaluate(n.right);

switch (n.operator) {
case ‘+t+':

return leftVal + rightVal;
case ‘- '‘:

return leftVal - rightVal;

37



publlic statlic double evaluate (Node n)

{

1f(n.isLeaf ())
return n.value;

double leftVal = evaluate(n.left);
double rightVal = evaluate(n.right);

switch (n.operator) {
case ‘+t+':

return leftVal + rightVal;
case ‘—'‘:

return leftVal - rightVal;

Node CLASS HAS THESE FIELDS AND METHOD!I

38



DOT format



-DOT is a tool for tree (and graph) visualization
-It Is part of the GraphViz software
-http://www.graphviz.org

-installed on the CADE machines

-DOT is also a file format for trees (and graphs)

-we can (and will!) write Java code to read them as
iInput to construct a tree, as well as output them
from an existing tree for debugging purposes

40


http://www.graphviz.org

(simplified) DOT format

-the DOT language as many features for specitying
the layout of a tree (and graph)

-the simplest format looks like this:

graph myGraph { o
NP LA\ N

\\ 144 \\ 144
a - C
\\ 144 \\ 144
c” -= Vg
\\ 44 \\ = /7
c” == %]

41



DOT tool

-the CADE Linux machines have the command-line
DOT tool installed

dot -Tgif 1nput.dot -o output.gif
“~Tgif” means create a .gif file as the result

-“~0” means specify the name of the output file

42



next time...

43



-reading

-chapters 8 and 19 in book

-chapter ©
-http.//opendatastructures.org/ods-java/

-homework
-assignment 7 due Thursday

44



