
cs2420 | Introduction to Algorithms and Data Structures | Spring 2015
TREES

1

administrivia…

2

3

-assignment 7 due Thursday at midnight

-asking for regrades through assignment 5 and
midterm must be complete by Friday

4

assignment 5 scores
nu

m
be

r o
f s

tu
de

nt
s

score

last time…

5

6

-a queue is a FIRST-IN, FIRST-OUT data structure
-FIFO

-insert on the back, remove from the front

-operations:
-enqueue… adds an item to the back of the queue
-dequeue… removes and returns the item at the front

-like a stack, all operations are O(1)

terminology avoids confusion with a stack!

as an array…
-keep track of front and back indices

-front and back advance through the array
-enqueueing advances back
-dequeueing advance front

-what happens when back reaches the end of the array?

7

front back

14 8 7

as a linked list…
-remember, inserting and deleting to the head and tail of a
linked list is automatically O(1)

-front is analogous to head
-back is analogous to tail

-no messy wrap-around, or growth issues

-which linked list operations are analogous to enqueue and
dequeue?

8

7 10

front
(head)

814

back
(tail)

summary
-linked lists and wrap-around arrays are both O(1) for
queue implementations

-BUT, arrays are much more complicated to code

-both queues and stacks require very little code
on top of a good linked list implementation

9

priority queues

10

using a linked list…
-always add items in correct, sorted spot

-dequeue will return smallest item O(1)

-what is the cost of enqueue?

-we will study a more advanced priority queue later…

11

10 11

front
(head)

85

back
(tail)

enqueue(10)

today…

12

13

-trees

-terminology

-binary trees

-traversing a tree

-EXAMPLE: expression trees

-DOT format

trees

14

15

-trees are a linked data structure with a hierarchical
formation

-recall that a linked list has a reference to a next (and
sometimes previous) node

-trees can have multiple links, called branches

a b c

there are multiple directions
you can take at any given node

a

b c

16

-trees have a hierarchical structure
-meaning, any node is a subtree of some larger tree

-except the very top node!
-in CS, trees are usually represented with the root at
the top

-trees are recursive in nature
-any given node is itself a tree
-a tree consists of:

-a data element…
-…and more subtrees

17

-there is a strict parent-to-child relationship among
nodes

-links only go from parent to child
-not from child to parent
-not from sibling to sibling

-every node has exactly one parent, except for the
root, which has none

-there is exactly one path from the
root to any other node

a

b c

d

terminology

18

19

-root node: the single node in a tree that has no
parents

-parent: a node’s parent has a direct reference to it
-nodes have AT MOST one parent

-child: a node B is a child of node
A if A has a direct reference to B

-sibling: two nodes are siblings if
they have the same parent

a

b c

d

20

-leaf node: a node with no children

-inner node: a node with at least one child

-depth: the number of ancestors a node has
-ie. how many steps to the root
-children are exactly one level deeper than their
parents
-a root node has depth 0

-height: the depth of a tree’s deepest leaf node

21

root

parent

children

Leaf nodes

nodes

22

subtree rooted at node d

a

b

e

h i

d

f g

c

subtree rooted at node c
(leaf nodes are trees too!)

example

23

The root is ___.
The height is ___.
The parent of v3 is ___.

The depth of v3 is ___.

The children of v6 are ___.

The ancestors of v1 are ___.

The descendants of v6 are ___.

The leaves are ___.
Every node other than ___ is the root of a subtree.

2424

v2

v1 v3

v4

v6

v5 v7 v8

v9

binary trees

25

26

-binary trees are a special case of a tree in which a
node can have AT MOST two children

-these nodes are designated left and right

-in this class we will mostly concentrate on binary
trees

what should the implementation of a binary tree look like?
what about a binary tree node?

27

-each node has two reference variables
-one for each of the two children

-if there is no child, the reference is set to null

d

f

a b

g

c

d

f c

a b

g

28

-what are the values of left and right for a leaf
node?

-this is the just the Node class!
-the BinaryTree class would contain what?

class BinaryNode<E>
{
E data;
BinaryNode left;
BinaryNode right;

}

traversing a tree

29

30

-traversing a linked list is simple
-there is only one way to go!

-how do we traverse a binary tree if we
want to visit every node?

-eg. we want to print out the data at
every node

-how do we decide which direction to take
at each node?

a

b c

d e

f

depth-first traversal
-to visit every node, go both directions at
each node

-trees are recursive in nature

-start at root, recursively traverse the left
subtree, then the right subtree

-if the subtree is null, stop (return)

31

a

b c

d e

f

32

public static void DFT(BinaryNode N)
{
if(N == null)
return;

System.out.println(N.data);

DFT(N.left);
DFT(N.right);

}

a

b c

d e

f

what does this print out?

traversal orders
-pre-order: use the node before traversing its children

-in-order: traverse left child, use node, traverse right
child

-post-order: use node after traversing both children

33

-pre-order:

-in-order:

-post-order:

34

use N // eg. print N
DFT(N.left);
DFT(N.right);

DFT(N.left);
use N // eg. print N
DFT(N.right);

DFT(N.left);
DFT(N.right);
use N // eg. print N

a

b c

d e

f

note: Nodes are still traversed in the same order, but
“used” (printed) in a different order

EXAMPLE: expression trees

35

36

+

- *

/ ^3

15 11

7

2 4

how can we traverse this tree to evaluate the expression?

(3-(15/11))+(7*24)

37

public static double evaluate(Node n)
{
if(n.isLeaf())
return n.value;

double leftVal = evaluate(n.left);
double rightVal = evaluate(n.right);

switch(n.operator){
case ‘+’:
return leftVal + rightVal;

case ‘-‘:
return leftVal - rightVal;

…
}

}

38

public static double evaluate(Node n)
{
if(n.isLeaf())
return n.value;

double leftVal = evaluate(n.left);
double rightVal = evaluate(n.right);

switch(n.operator){
case ‘+’:
return leftVal + rightVal;

case ‘-‘:
return leftVal - rightVal;

…
}

} Node class has these fields and method!

DOT format

39

40

-DOT is a tool for tree (and graph) visualization
-it is part of the GraphViz software
-http://www.graphviz.org
-installed on the CADE machines

-DOT is also a file format for trees (and graphs)
-we can (and will!) write Java code to read them as
input to construct a tree, as well as output them
from an existing tree for debugging purposes

http://www.graphviz.org

(simplified) DOT format
-the DOT language as many features for specifying
the layout of a tree (and graph)

-the simplest format looks like this:

41

graph myGraph{
“a” -- “b”
“a” -- “c”
“c” -- “g”
“c” -- “j”
}

DOT tool
-the CADE Linux machines have the command-line
DOT tool installed

-“-Tgif” means create a .gif file as the result

-“-o” means specify the name of the output file

42

dot -Tgif input.dot -o output.gif

next time…

43

44

-reading
-chapters 8 and 19 in book
-chapter 6

-http://opendatastructures.org/ods-java/

-homework
-assignment 7 due Thursday

