
cs2420 | Introduction to Algorithms and Data Structures | Spring 2015
BINARY SEARCH TREES

1

administrivia…

2

3

-assignment 7 due tonight at midnight

-asking for regrades through assignment 5 and
midterm must be complete by Friday

last time…

4

5

6

-trees are a linked data structure with a hierarchical
formation

-any node is a subtree of some larger tree
-except the very top node!

-there is a strict parent-to-child relationship among
nodes

-links only go from parent to child a

b c

d

-there is exactly one path from the
root to any other node

7

root

parent

children

Leaf nodes

nodes

8

subtree rooted at node d

a

b

e

h i

d

f g

c

subtree rooted at node c
(leaf nodes are trees too!)

9

public static void DFT(BinaryNode N)
{
if(N == null)
return;

System.out.println(N.data);

DFT(N.left);
DFT(N.right);

}

a

b c

d e

f

what does this print out?
a b d f e c

-pre-order:

-in-order:

-post-order:

10

use N // eg. print N
DFT(N.left);
DFT(N.right);

DFT(N.left);
use N // eg. print N
DFT(N.right);

DFT(N.left);
DFT(N.right);
use N // eg. print N

a

b c

d e

f

note: Nodes are still traversed in the same order, but
“used” (printed) in a different order

11

how to compute the height of a binary tree?

int height(Node n)
{
if(n == null)
return -1;

else
return max(height(n.left),
 height(n.right)) + 1;

}

complexity?

12

+

- *

/ ^3

15 11

7

2 4

evaluating an expression tree uses which
of the following traversal orders?
A) pre-order
B) in-order
C) post-order

13

*

3-

5 2

what is the value of this expression tree?
A) 9
B) -1
C) -5

14

d

eb

a c

what order are the nodes printed
using pre-order traversal?
A) d b a c e
B) a b c d e
C) a c b e d

15

http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html

today…

16

17

-binary search trees

-insertion

-performance

-deletion

binary search trees (BSTs)

18

19

-a binary search tree is a binary tree with a restriction
on the ordering of nodes

-all items in the left subtree of a node are less than
the item in the node
-all items in the right subtree of a node are greater
than or equal to the item in the node

-BSTs allow for fast searching of nodes

20

looking for h i

d j

fb

e ha c

g

is h less than or
greater than i?

21

d

fb

e ha c

g

looking for h

is h less than or
greater than d?

22

f

e h

g

looking for h

is h less than or
greater than f?

23

h

g

looking for h

return true

24

-NOTE: at each step we eliminate approximately half
of the tree

-what does this imply about the search complexity?

-what if the item is not found in the tree? how do we
know when to stop and return false?

25

is this a BST?
A) yes
B) no

dog

cat fish

alpaca
elephant

zebra

bee

unicorn

bird

26

is this a BST?
A) yes
B) no

p

k y

ni

c

rg j

a d

zt

u

v

insertion

27

28

i

d j

fb

e ha c

we want to insert g is g less than or
greater than i?

29

i

d j

fb

e ha c

we want to insert g

is g less than or
greater than d?

30

i

d j

fb

e ha c

we want to insert g

is g less than or
greater than f?

31

i

d j

fb

e ha c

we want to insert g

is g less than or
greater than h?

32

we want to insert g i

d j

fb

e ha c

g
code demo…

performance

33

-big-O complexity of BST searching
-we disregard one subtree at each step

-roughly half of the remaining nodes!
-O(log N)

-what is the big-O complexity of BST insertion?

-searching and insertion are both O(log N)

34

-O(log N) performance requires
eliminating half of the possibilities on
each step…

-are all left and right subtrees the
same size?

35

i

d j

fb

e ha c

g

-is this a valid BST?

-what is the big-O complexity of
searching and insertion for this tree?

-the order in which nodes are
inserted determines the structure
of the tree

-these nodes were inserted in
descending order

36

i

d

b

a

code demo…

insertion & searching
-average case: O(log N)

-inserted in random order

-worst case:O(N)
-inserted in ascending or descending order

-best case: O(log N)

-how does this compare to a sorted array?

37

BST vs array
-arrays can have O(log N) searching performance
as well

-how?

-what is the cost of inserting into an array?
-we can put it at the end and resort: O(log N)
-or insert it in the right spot: O(N)

38

BST wins for insertion! yay!

balanced vs unbalanced
all operations depend on how well-balanced the tree is

4

2 6

31 75

1

2

3

4

5

6

7

O(log N)
balanced

O(N)
unbalanced

deletion

40

41

-since we must maintain the properties of a tree
structure, deletion is more complicated than with an
array or linked-list

-there are three different cases:
1.deleting a leaf node
2.deleting a node with one child subtree
3.deleting a node with two children subtrees

-first step of deletion is to find the node to delete
-just a regular BST search
-BUT, stop at the parent of the node to be deleted

case 1: deleting a leaf node
20

9 27

165

10

192 6 11

17

current

DELETE NODE 6
-stop at parent node (5)
-set parent’s reference to null

current.right = null;

case 1: deleting a leaf node
20

9 27

165

10

192 11

17

current

current.right = null;

DELETE NODE 6
-stop at parent node (5)
-set parent’s reference to null

case 2: delete node with 1 child
20

9 27

165

10

192 6 11

17

current

DELETE NODE 19
-stop at parent node (16)
-set parent’s reference to
node’s child
-multiple cases depending
on which side the child and
grandchild are on!

current.right =
current.right.left;

case 2: delete node with 1 child
20

9 27

165

10

172 6 11

current

DELETE NODE 19
-stop at parent node (16)
-set parent’s reference to
node’s child
-multiple cases depending
on which side the child and
grandchild are on!

current.right =
current.right.left;

case 3: delete node with 2 children
20

9 27

165

10

192 6 11

17

current

DELETE NODE 9
-stop at parent node (20)
-replace the node with
smallest item in its right
subtree(10)

case 3: delete node with 2 children
20

10 27

165

10

192 6 11

17

current

DELETE NODE 9
-stop at parent node (20)
-replace the node with
smallest item in its right
subtree(10)
-perform a delete on on
successor (10)

case 3: delete node with 2 children
20

10 27

165

192 6 11

17

current

DELETE NODE 9
-stop at parent node (20)
-replace the node with
smallest item in its right
subtree(10)
-perform a delete on
successor (10)
(guaranteed not to have a
left child! case 1 or 2…)

case 3: delete node with 2 children
20

10 27

165

192 6 11

17

current

Replacing the deleted node
with the smallest child in
right subtree guarantees the
BST structure… why?

The smallest item in the right
subtree is greater than any
item in the left subtree, and
smaller than any item in the
new right subtree.

deletion performance

-first, find the node we want to delete:

-cost of:
-case 1 (delete leaf):

-case 2 (delete node with 1 child):

-case 3 (delete node with 2 children):

50

what is the cost of deleting a node from a BST?

O(log N)

O(1)set a single reference to nulL:

O(1)bypass a reference:

Find the successor:

delete the duplicate successor:

O(log N)
O(1)

some other useful properties

-how can we find the smallest node?
-start at the root, go as far left as possible
-O(log N) on a balanced tree

-how can we find the largest node?
-start at the root, go as far right as possible
-O(log N) on a balanced tree

-how can we print nodes in ascending order?
-in-order traversal

51

quick review…

52

53

d

eb

a

which of the following trees is
the result of adding c to this bst?

d

eb

a

d

eb

a

d

eb

ac c c

A) B) C)

54

9

5 16

6 192

3

11

12

what will 5’s left child be after deleting 2?
A) 3
B) 6
C) null

55

9

5 16

6 192

3

12

13

what node will replace 9 after deleting 9?
A) 6
B) 10
C) 13
D) 19

10

11

56

9

5 16

6 192

3

11

12

what node will replace 5 after deleting 5?
A) 2
B) 3
C) 6
D) 12

next time…

57

58

-reading
-chapter 14 in book

-homework
-assignment 7 due tonight
-assignment 8 out later today

