
cs2420 | Introduction to Algorithms and Data Structures | Spring 2015
GRAPHS, part 2

1

administrivia…

2

3

-assignment 8 due tonight

-assignment 9 is out … due in 2.5 weeks

-midterm in two weeks!

-spring break next week
-no class
-no TA office hours

last time…

4

5

-trees are a subset of graphs

-a graph is a set of nodes connected by edges
-an edge is just a link between two nodes
-nodes don’t have a parent-child relationship
-links can be bi-directional

-graphs are used EXTENSIVELY throughout CS

6

-graphs have no root; must store all nodes

-implementation is more general than a tree

-the order in which neighbors appear in the list is unspecified
-a different order still make the same graph!

class Graph<E> {
List<Node> nodes;
…

}

class Node{
E Data;
List<Node> neighbors;
…

}

pathfinding
-there may be more than one path
from one node to another

-we are often interested in the path
length

-finding the shortest (or cheapest)
path between two nodes is a
common graph operation

7

A

B

C

D

E

8

-depth-first search (just like a tree) — DFS

-breadth-first search — BFS

-if there exists a path from one node to another these
algorithms will find it

-the nodes on this path are the steps to take to get
from point A to point B

-if multiple such paths exist, the algorithms may find
different ones

topological sort
-consider a graph with no cycles

-a topological sort orders nodes such that…
-if there is a path from node A to node B, then A
appears before B in the sorted order

-example: scheduling tasks
-represent the tasks in a graph
-if task A must be completed before task B, then A
has an edge to B

9

today…

10

11

-BFS and the homework

-weighted graphs

-dijkstra’s algorithm

-exam topics

12

13

-in this graph, every spot is a
node

-nodes have edges with
adjacent spots

-expand out equally in all
directions from starting node

-when any path reaches the
goal node… done!

what type of search are we doing here?

14

-while the queue is not empty:
-dequeue the current node
-if current == goal, done!
-otherwise, mark current’s
neighbors as visited and
add them to the queue

-put the starting node in the queue and mark it as visited

3210 654

7

111098 141312

20191817 232221

15 16

15

-while the queue is not empty:
-dequeue the current node
-if current == goal, done!
-otherwise, mark current’s
neighbors as visited and
add them to the queue

-put the starting node in the queue and mark it as visited

3210 654

7

111098 141312

20191817 232221

15 16

queue:
visited

came from

current:

16

-while the queue is not empty:
-dequeue the current node
-if current == goal, done!
-otherwise, mark current’s
neighbors as visited and
add them to the queue

-put the starting node in the queue and mark it as visited

3210 654

7

111098 141312

20191817 232221

15 16

queue:
visited

came from
8

current:

17

-while the queue is not empty:
-dequeue the current node
-if current == goal, done!
-otherwise, mark current’s
neighbors as visited and
add them to the queue

-put the starting node in the queue and mark it as visited

3210 654

7

111098 141312

20191817 232221

15 16

queue:
visited

came from
15

current: 8
9

18

-while the queue is not empty:
-dequeue the current node
-if current == goal, done!
-otherwise, mark current’s
neighbors as visited and
add them to the queue

-put the starting node in the queue and mark it as visited

3210 654

7

111098 141312

20191817 232221

15 16

queue:
visited

came from
9

current:15
17

19

-while the queue is not empty:
-dequeue the current node
-if current == goal, done!
-otherwise, mark current’s
neighbors as visited and
add them to the queue

-put the starting node in the queue and mark it as visited

3210 654

7

111098 141312

20191817 232221

15 16

queue:
visited

came from
17

current: 9
10

20

-while the queue is not empty:
-dequeue the current node
-if current == goal, done!
-otherwise, mark current’s
neighbors as visited and
add them to the queue

-put the starting node in the queue and mark it as visited

3210 654

7

111098 141312

20191817 232221

15 16

queue:
visited

came from
10

current:17
18

21

-while the queue is not empty:
-dequeue the current node
-if current == goal, done!
-otherwise, mark current’s
neighbors as visited and
add them to the queue

-put the starting node in the queue and mark it as visited

3210 654

7

111098 141312

20191817 232221

15 16

queue:
visited

came from
18

current:10
11

22

-while the queue is not empty:
-dequeue the current node
-if current == goal, done!
-otherwise, mark current’s
neighbors as visited and
add them to the queue

-put the starting node in the queue and mark it as visited

3210 654

7

111098 141312

20191817 232221

15 16

queue:
visited

came from
11

current:18
19

23

-while the queue is not empty:
-dequeue the current node
-if current == goal, done!
-otherwise, mark current’s
neighbors as visited and
add them to the queue

-put the starting node in the queue and mark it as visited

3210 654

7

111098 141312

20191817 232221

15 16

queue:
visited

came from
19

current:11
7 12

24

-while the queue is not empty:
-dequeue the current node
-if current == goal, done!
-otherwise, mark current’s
neighbors as visited and
add them to the queue

-put the starting node in the queue and mark it as visited

3210 654

7

111098 141312

20191817 232221

15 16

queue:
visited

came from
7

current:19
12
Goal!

25

-while the queue is not empty:
-dequeue the current node
-if current == goal, done!
-otherwise, mark current’s
neighbors as visited and
add them to the queue

-reconstruct the path…

-put the starting node in the queue and mark it as visited

3210 654

7

111098 141312

20191817 232221

15 16

queue:
visited

came from
7

current:19
12
Goal!

26

-shortest pathfinding problem

-the problem:
-input: a simple text file describing the maze

-includes wall locations, start point, and end point
-output: a similar text file with the shortest path from
start to end indicated in the maze

-represent all possible moves with a graph, then do a
breadth first search

27

5 10
XXXXXXXXXX
X S X
X X
X G X
XXXXXXXXXX

5 10
XXXXXXXXXX
X S.... X
X . X
X G X
XXXXXXXXXX

input output

X

S

G

.

wall segment

starting point

goal

an open space

solution path indicator

28

input output

X

S

G

.

wall segment

starting point

goal

an open space

solution path indicator

5 10
XXXXXXXXXX
X S X
XXXXXXXX X
X G X
XXXXXXXXXX

5 10
XXXXXXXXXX
X S......X
XXXXXXXX.X
X G......X
XXXXXXXXXX

29

input output

X

S

G

.

wall segment

starting point

goal

an open space

solution path indicator

10 19
XXXXXXXXXXXXXXXXXXX
X S X
X X
X X
XX X X X
X X XXX X X
X G XX X
X X
X X
XXXXXXXXXXXXXXXXXXX

10 19
XXXXXXXXXXXXXXXXXXX
X S. X
X . X
X . X
XX X . X X
X X XXX . X X
X G....XX. X
X X
X X
XXXXXXXXXXXXXXXXXXX

30

can any node have an edge
to any other node?

how do we represent walls?

31

-for this specific problem, we can store the graph as a
2D array

-Node class doesn’t need a list of edges
-neighbors are implied (up, down, left right)
-ie. for node N, the up neighbor would be:

-walls are null
-ie. no neighbor if null

Node nodes[][];
nodes = new Node[5][10;

nodes[N.row-1][N.col]

32

-while reading the input:
-for every character that makes up the maze [i][j]

-if it is a wall

-else

-make sure to hand the start and goal nodes

nodes[i][j] = null

nodes[i][j] = new Node(…)

rules
-the path cannot go through or on top of walls

-the path must be connected (no skips or jumps)

-diagonally-adjacent spaces are not connected
-only up, down, left, right

-if no path exists, the output file will have no dots

-if multiple shortest paths exist, any of them are valid

-must produce output in exact format specified

33

34

-all you have to do is read in a file and produce a new
file

-BUT, we are providing a program to read in your
solution and display it as a pacman game board

5 10
XXXXXXXXXX
X S......X
XXXXXXXX.X
X G......X
XXXXXXXXXX

35

XXXXXXXXXXXXXXXXXXX
X S. X
X . X
X . X
XX X . X X
X X XXX . X X
X G....XX. X
X X
X X
XXXXXXXXXXXXXXXXXXX

36

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
X X X X X X X X
X XXXXXXX X XXX.X XXX.XXX XXXXXXX X X
X X X X . X X X X
XXXXX XXXXX.XXX X X X.XXX XXXXX X XXX
X X X X X. X X X X. X X X X X
X XXX X X X.XXX XXXXX.XXX X XXX XXX X
X X ...X X .X X X X...X
XXX XXXXXXXXX.XXXXXXX.XXX XXX X X.X.X
X X.......X X X.....X.X
X X.XXXXX X XXX.X X XXX X XXX.XXX X.X
X X.X X X X.X X X X.X X X.X
X X.X XXXXXXX X.XXXXXXXXX XXX.X XXX.X
X X.X X X .X X X. X .X
XXX.XXX X XXXXX.XXXXX XXX XXX.XXXXX.X
X . X X X ...X X X X...X X X.X
X X.X X X XXX.XXX XXX XXX X.X X X X.X
X X.X X X X.X X.....X
XXX.XXXXXXX X X XXXXX XXX.X.XXX.XXXXX
X ... X X X X X X... X.X X
XXXXX.X X XXXXXXXXX XXXXXXXXXXX.X XXX
X X.X X X X...X.X X
X XXX.XXXXX XXXXXXXXX XXXXX.X.X.XXX X
X X...X XX.....X... X
X X.X XXXXX XXX.X X X.X.XXXXXXXXXXXXX
X X.X X X.X X X... X X X X
X X.XXX XXX X X.X XXXXXXXXX XXX X X X
X X...X X X X.X X X X X X X
X XXX.XXX XXXXX.XXX X X XXXXX X XXXXX
X ... X X ...X X X X X X
XXX.X XXXXX XXXXX.XXX XXX X XXX X XXX
X X.X X X X X X... X X X X...X X X
X X.XXX X X X X.XXXXXXXXX X X.X.X X X
X...X X X X.....X
X.X X X XXX XXX XXXXXXX XXX XXX XXX.X
XGX X X X X X X X SX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

37

XXXXXXXXXXXXXXXXXXX
X S X
X X
X X
XX X X X
XXXXXXX X X
X G X XX X
XXXXX X
X X
XXXXXXXXXXXXXXXXXXX

no solution

file output
try
{
PrintWriter output = new PrintWriter(
new FileWriter(“example.txt”));

output.print(“G”);
output.print(“X”);
output.println();

ouput.close();
}

file will contain “GX” and a newline

reading numbers
int height, width;

String[] dimensions =
input.readLine().split(“ “);

try
{
height = Integer.parseInt(dimensions[0]);
width = Integer.parseInt(dimensions[1]);

}

weighted graphs

40

41

-sometimes it makes sense to
associate a cost with traversing an
edge

-we can add weight to each edge
-this is just a number!

-a higher weight indicates a more
costly step

-weighted path length is the sum
of all edge weights on a path

-this is NOT the same as path
length!

Salt Lake City

Dallas

New York City

Paris

Seattle

8
10

20

21

14

15

15

4

2

42

-what is the shortest path
from SLC to Paris?

-what is the cheapest path
from SLC to Paris?

-cheapest is not always the
shortest!

-will regular BFS find the
cheapest path?

Salt Lake City

Dallas

New York City

Paris

Seattle

8
10

20

21

14

15

15

4

2

43

-make a new Edge class, which contains the reference
and the weight

-instead of nodes having direct references to neighbors

class Node{
E data;
List<Edge> neighbors;

}

class Edge{
Node otherEnd;
double weight;

}

dijkstra’s algorithm

44

45

-Dijkstra’s algorithm finds the cheapest path

-keep track of the total path cost from start node to the
current node

-cost of path to next node is total cost so far plus
weight of edge to next node

-instead of traversing nodes in the order they were
encountered, traverse in order of cheapest total cost
first

46

we want to find a path from A to C

priority queue: visited

unvisited

this time we use a priority queue.
Mark nodes after removal from
the queue.

A

B

C

D

E

3

4

2

9

4

21

47

we want to find a path from A to C

priority queue: visited

unvisited

A.costSoFar = 0

A(0)

A

B

C

D

E

3

4

2

9

4

21

Dequeue A(0), and enqueue A’s

neighbors with A’s cost-so-far
plus the edge weight

48

we want to find a path from A to C

priority queue: visited

unvisited

B.costSoFar = A.costSoFar + 3
D.costSoFar = A.costSoFar + 9
B.cameFrom = A
D.cameFrom = A

B(3) D(9)

A

B

C

D

E

3

4

2

9

4

21

Dequeue B(3), and enqueue B’s

neighbors with B’s cost-so-far
plus the edge weight

49

we want to find a path from A to C

priority queue: visited

unvisited

E.costSoFar = B.costSoFar + 4
E.cameFrom = B

E(7) D(9)

A

B

C

D

E

3

4

2

9

4

21

Dequeue E(7), and enqueue E’s

neighbors with E’s cost-so-far
plus the edge weight

50

we want to find a path from A to C

priority queue: visited

unvisited

// A visited, so skip
// shorter path to D found!
C.costSoFar = E.costSoFar + 4
D.costSoFar = E.costSoFar + 1
D.cameFrom = E

D(8) C(11)

A

B

C

D

E

3

4

2

9

4

21

Dequeue D(8), and enqueue D’s

neighbors with D’s cost-so-far
plus the edge weight

51

we want to find a path from A to C

priority queue: visited

unvisited

// shorter path to C found!
C.costSoFar = D.costSoFar + 2
C.cameFrom = D

C(10)

A

B

C

D

E

3

4

2

9

4

21

Dequeue C(10). We found our
goal! Final cost is 10. Reconstruct
path.

52

we want to find a path from A to C

priority queue: visited

unvisited

A

B

C

D

E

3

4

2

9

4

21

A — B — E — D — C

53

Dijkstra(Node start, Node goal)
{
initialize all nodes’ cost to infinity

PQ.enqueue(start)
while(!PQ.empty())
{
curr = PQ.dequeue()
if(curr == goal) {return} \\done!
curr.visited = true
foreach unvisited neighbor n of curr:
{
if(n.cost > curr.cost + edgeweight
{
PQ.enqueue(n) || update n’s position in PQ
n.cameFrom = curr
n.cost = curr.cost + edgeweight

}
}

}
}

54

what path will Dijkstra’s find from A to C?

A) A B E C
B) A D C
C) A B E D C

A

B

C

D

E

3

4

2

8

3

12

midterm review

55

56

-midterm 2 will cover all material since the beginning
of the semester

since the last midterm…
-linked structures

-memory allocation (new)
-arrays vs linked structures
-random access of arrays vs linked structures

-linked lists
-implementation
-performance of various operations

57

since the last midterm…
-stacks

-implementation
-array & linked list versions

-performance

-queues
-implementation

-array & linked list versions
-performance

58

since the last midterm…
-trees

-implementation
-performance
-traversals (DFT)

-pre-order, in-order, post-order

-binary trees

-BSTs
-importance of a balanced BST
-what causes balance / unbalance
-insertion, deletion, search

59

since the last midterm…
-graphs

-use of graphs
-DFS
-BFS
-Dijkstra’s algorithm

-hash tables
-we will cover these on Tuesday after spring break
-questions on HT will not be as involved

60

example questions
-draw a BST that is the result of adding the following
items in the order given: Q F E G Y D W

-what is the result of removing ___?
-…or a similar question for a linked list, stack, queue

-you may be asked to modify a diagram, or draw one
from scratch, then be asked questions about the
diagram

-could be of any data structure

-what order will items be used with ___ traversal order
on this tree?

61

-consider a graph (like this one)
-is it a tree?
-is it acyclic?
-is it weighted
-what path would BFS find
from SLC to NYC?
-what path would Dijkstra’s
find from SLC to Paris?
-what order are nodes
removed from the queue with
Dijkstra’s? BFS?
-explain a situation in which
DFS might visit fewer nodes
than BFS when search for a
path

62

Salt Lake City

Dallas

New York City

Paris

Seattle

8
10

20

21

14

15

15

4

2

63

-given the following BST node definition, write a
method that will find ___

-ie. maybe the “successor of the node”

public class BSTNode<E>
{
E data;
BFSNode<E> left;
BFSNode<E> right;

public BSTNode<E> successor(BFSNode<E> n)
{
// fill in

}
}

64

-suppose you are writing a program that does ___.
what data structure(s) would you use and why?

-you must defend your structure of choice!

65

I will not be giving out specific sample problems this
time!

You should come up with your own sample problems
based on the examples given here.

The lab after spring break will be a test review. Have
your sample problems and questions ready for the TAs.

next time…

66

67

-reading
-chapter 20 in book

-homework
-assignment 8 due tonight
-assignment 9 due Monday, March 30th

