HASH TABLES

cs2420 | Introduction to Algorithms and Data Structures | Spring 2015

administrivia...

-assignment 9 is due on Monday
-assignment 10 will go out on Thursday

-midterm on Thursday

last time...

-we can add weight to each edge <Dallas

ahigher weight indicates a = (ew vor City
more costly step

-weighted path length is the Salt Lake Oty
sum of all edge weights on a
path %
-cheapest is not always the Seaﬁ'e
shortest!

15
-will regular BFS find the Paris

cheapest path?
15

-Dijkstra’s algorithm finds the cheapest path

-keep track of the total path cost from start node to the
current node

-cost of path to next node is total cost so far plus
weight of edge to next node

-instead of traversing nodes in the order they were
encountered, traverse in order of cheapest total cost
first

Dijkstra (Node start, Node goal)
{

initialize all nodes’ cost to 1nfinity

PQO.enqueue (start)
while (!PQ.empty())
{
curr = PQ.dequeue ()
if (curr == goal) {return} \\done!
curr.visited = true
foreach unvisited neighbor n of curr:
{
1f(n.cost > curr.cost + edgeweight
{
PQO.enqueue (n) || update n’s position in PQ
n.camekrom = curr
n.cost = curr.cost + edgeweight

today...

-quick review
-quick exercise
-mapping

-hash table

-hash function
-linear probing
-quadratic probing
-chaining

-assignment 10 details

quick review

10

-arrays (and ArrayLists)
-random access,
-insert & delete: O(N)

-linked lists
-linear access
-insert & delete: O(c)

-binary search trees
-everything: O(logN)
-... must be balanced

-stacks
-everything: O(c)
-... limited to top item

-queues
-everything: O(c)
-... limited to front and back

11

Arrays
(ArrayLists)

Linked Lists

Binar Search
Trees

Stacks

Queues

Random
access
(constant)

Linear

log N

Constant

Constant

Linear

Linear, or
O(1) on ends

log N

Constant

Constant

12

Linear

Linear, or
O(1) on ends

log N

Constant

Constant

Must know
size ahead of
time

Can allocate
new items on
demand

Must be
balanced

Access
limited to top

Access
limited to
front/back

quick exercise

13

WHAT IF WE WANT A DATA STRUCTURE THAT HOLDS INTEGERS,
AND HAS CONSTANT TIME INSERTION & DELETION?

14

Access Insertion Deletion
(search)

WHAT [F WE ALSO WANT CONSTANT TIME ACCESS TO ANY [TEM?

-constant time insertion, deletion, and random access

-we Know:
-possible range of integers is [0..MAX INT]

-what Is a naive, brute-force solution?
-hint: use an array

16

-create a gigantic array of size MAX INT
-initialize everything to -1
-when inserting a number n, put it in the array at index n

-when searching for a number n, check if index n Is
equal to -1 or not

-when deleting a number n, set array at index n to -1

DOES THIS FULFILL THE CONSTANT TIME INSERTION,
DELETION, AND ACCESS REQUIREMENTS?

IS THIS REALISTIC???

17

mapping

-let’s try using a smaller array, and mapping large
indices to the range of the smaller array

-assume range of possible itemsis [0..99]
-and assume that we will have <<100 items

-assume array size is only 10

-how can we make this work for integers?

19

-use the mod operator, %

-guaranteed to return a number in the range
[0...(denominator-1)]

-mod the input index by the array size for the new index

INSERT:
12, 15, 17, 46, 89, 90

array: 90 12 15 46 17 89
index: O 1 2 3 4 5 6 7 8)

20

what about data without natural indices?

-how can we do this for non-integer items?

-Integers have an obvious solution... use the integer itselt
as the index

-what index should use for, say, a String”

-one solution is to somehow generate an integer from a string
-length of string”?
-sum of all characters?
-some combination of both?

-a method that generates an integer index given any object is
called a hash function

21

hash table

-a hash table is a general storage data structure
-insertion, deletion, and look-up are all O(c)

-like a stack, but not limited to top item

- Constant Constant Constant Magic?

23

-underlying data structure is just an array
-requires that all data types inserted have a hash function

-map the hash value to a valid index of the array using %

-empty spots in the array are set to null

-use hash value to instantly look-up the index of any item
-insertion, deletion, and search: O(1)
-assuming the hash function is O(1)!

24

hash functions

25

-a hash function is a function that takes any item as
input and produces an integer as output

-always returns the same number for the same object

-If objectl.equals (object?2)
-must return the same integer for both objects

-good hash functions return evenly distributed
numbers for the input items

-it Is not required that two non-equal objects have
different hash values

26

Javas hashCode

-every Object Iin Java has a method hashCode

-returns an integer based on the object

-default for this method (if you don’t override it) is to
return the memory address of the object

-will not be very well-distributed if your items are
contiguous in memory

27

linear probing

-remember: it is NOT required that two non-equal
object have different hash values

-because of this, it is possible for two different objects
to has to the same index

-this I1s called a collision

INSERT:
12, 15, 17, 46, 89, 90, 92

COLLISIONI WHERE CAN WE PUT 927

array: 90 12 15 46 17 89
index: 0 1 2 3 4 5 6 7 8 9

29

resolving collisions

-there are multiple ways to resolve a collision, the first of
which is called linear probing

-when inserting, if the spot is already taken, simply step
forward one index at a time until an empty space is found

-and, then insert item in empty space

-when searching, start at the hashed index, and if this is not
the item we are searching for, begin stepping forward until
the item is found

-what is we hit an empty spot?

-wrap around to the beginning if at the end of the array

30

insert with linear probing

GOLLISIONS ARE RESOLVED ON INSERTS BY 89 INSERT: 89
SEQUENTIALLY SCANNING, THE TABLE (WITH, , HASH: 9
WRAPARAOUND) UNTIL AN EMPTY CELL IS FOUND

array: 18 89 INSERT: 18

. HASH: 8
index: O 1 2 3 4 5 (3) 7 8 9

array: 49 18 89 INSERT: 49

. HASH: 9
index: O 1 2 3 4 5 6 7 8 9

array: 49 58 18 89 INSERT: 58

. HASH: 8
index: O 1 2 3 4 5 6 7 8 9

array: 49 58 9 18 89 INSERT: 9

. HASH: 9
index: 0 1 2 3 4 5 6 7 8

search with linear probing

-If the table is not full, the item we seek, or an empty cell, will
eventually be found

-cost?
-recall that we are hoping of O(1)

-find operation follows the same path as insert... if empty cell reached,
item not found

-how do we find 587

SEARCH: 58

array: 49 58 O 18 89 ACH. 8

index: O 1 2 3 4 5 6 7 8

32

delete with linear probing

-on a delete, the actual item cannot be deleted from
the table because items serve as placeholders during
collision resolution

HOW DO WE FIND 9?

array: 49 58 9 18 89 DELETE: 89
. HASH: 9
index: 0 1 2 3 4 5 6 7 8

deleted: F E F F T

-we must use lazy deletion, which marks items as
deleted rather than actually removing them

33

performance

-If no collisions occur, performance of insert, delete, and search
is O(1)

-to determine the real cost, define A, the fraction of the table that
is full

-called the load factor
O<=A<=1

-for each probe into the table, the probability that spot is
occupied is A

-assuming the above is correct, the average number of cells
examined on an insert is 1/(1-A)

-t A = 0.5, average of two cells examined

34

clustering

-if an item’s natural spot is taken, it goes in the next
open spot, making a cluster for that hash

-clustering happens because once there is a
collision, there is a high probability that there will be
more

-this means that any item that hashes into the cluster
will require several attempts to resolve the collision

-feedback loop:

-the bigger the clusters are, the more likely they are
to be hit

-when a cluster gets hit, it gets bigger

35

quadratic probing

-quadratic probing attempts to deal with the clustering
problem

-If hash (1tem) = H, and the cell at H Is occupied:
iry H+17

-then H+2~

-then H+37

-and so on...
-wrap around to beginning of array it necessary

37

insert with quadratic probing

array:

index:

array:

index:

array:

index:

array:

index:

array:

index:

49

49

49

58

58

8

18

18

18

18

89
9

89
9

89
9

89

INSERT:
HASH:

INSERT:
HASH:

INSERT:
HASH:

INSERT:
HASH:

INSERT:
HASH:

89
9

concernms...

-Is quadratic probing guaranteed to find an open spot?
can it search the same spot twice?

-suppose the table size is 16, and hash (item) = 0
U816 = 0 LIMITATION: AT MOST, HALF OF THE

(0+1%)%16 = 1 TABLE CAN BE USED TO RESOLVE
(0+22)%16 = 4 COLLISIONS
(0+32)%16 = 9
(0+42)216 = 0 ONCE TABLE IS HALF FULL IT IS
(0+52)%16 = 9 DIFFICULT TO FIND AN EMPTY SPOT
(0+62)316 = 4
(0472316 = 1 ...CALLED SECONDARY CLUSTERING

39

solution...

-the following two guidelines guarantee that every spot
will be examined at least once

-ensure that the size of the array is a prime number

-mapping a hash value to an index will be
modding by a prime number!

-ensure that the table is never more than 50% full
-A< 0.5

-these guidelines also guarantee no cell is visited
twice

-proot Is the textbook

40

resizing the table

-since we now have the requirement that A < 0.5, what
do we do when we need to add another item?

-just like resizing an array, we resize the table to the
next largest prime number

-instead of a simple copy-everything-over, all items
must be rehashed

-why?

-this is called rehashing

41

-quadratic probing does not eliminate the clustering
problem

-but, secondary clustering is not as severe as primary
clustering

-the only reason not to use quadratic probing is when
maintaining a half-empty array is too costly

-can you think of an alternative for collision
management?

42

separate chaining

43

-why not make each spot in the array capable of
holding more than one item?

-use an array of linked lists
-hash function selects index into array
-called separate chaining

-for insertion, append the item to the end of the list
-insertion is O(1) if we have what?

-searching is a linear scan through the list
-fast if the list is short

44

performance

-different definition of the load factor A
-\ = average length of linked lists
-therefore, search and delete operations scan A items

-instead of rehashing when the table is half full,
rehash when A becomes large

-analysis is required to find a good value

-rehashing is never required since lists can grow
indefinitely, but it can be beneficial

45

assignment 10 details

46

-you will implement a quadratic probing hash table AND a
separate chaining hash table for Strings

-the constructors for these hash tables takes a
HashFunctor object

-recall that a functor is an object which encapsulates a
method (just like Comparator)

-the HashFunctor defines a hash method, which
implements a hash function

-you can create any number of different hash functions this
way without changing any code in your hash table

-yay for encapsulation!

47

-start thinking about...

-W
-W

nat is a bad hash function for Strings®?

nat is a good hash function for Strings?

-remember, Strings are just a sequence of chars

-and

a char Is just a smaller int

-we can perform any operation or combination of ops on
the small numbers (chars) that make up the String

-an example String hash function is in the book
-there are also a bunch of good ones on the web

48

next time...

49

-midterm on Thursday in class

-reading for next week

-chapter 21

-homework
-assignmen

IN book

9 due Monday

-assignmen

10 out on Thursday, due next Thursday

50

