
cs2420 | Introduction to Algorithms and Data Structures | Spring 2015
HASH TABLES

1

administrivia…

2

3

-assignment 9 is due on Monday

-assignment 10 will go out on Thursday

-midterm on Thursday

last time…

4

5

-we can add weight to each edge
-a higher weight indicates a
more costly step

-weighted path length is the
sum of all edge weights on a
path

-cheapest is not always the
shortest!

-will regular BFS find the
cheapest path?

Salt Lake City

Dallas

New York City

Paris

Seattle

8
10

20

21

14

15

15

4

2

6

-Dijkstra’s algorithm finds the cheapest path

-keep track of the total path cost from start node to the
current node

-cost of path to next node is total cost so far plus
weight of edge to next node

-instead of traversing nodes in the order they were
encountered, traverse in order of cheapest total cost
first

7

Dijkstra(Node start, Node goal)
{
initialize all nodes’ cost to infinity

PQ.enqueue(start)
while(!PQ.empty())
{
curr = PQ.dequeue()
if(curr == goal) {return} \\done!
curr.visited = true
foreach unvisited neighbor n of curr:
{
if(n.cost > curr.cost + edgeweight
{
PQ.enqueue(n) || update n’s position in PQ
n.cameFrom = curr
n.cost = curr.cost + edgeweight

}
}

}
}

today…

8

9

-quick review

-quick exercise

-mapping

-hash table

-hash function

-linear probing

-quadratic probing

-chaining

-assignment 10 details

quick review

10

11

-arrays (and ArrayLists)
-random access,
-insert & delete: O(N)

-linked lists
-linear access
-insert & delete: O(c)

-binary search trees
-everything: O(logN)
-… must be balanced

-stacks
-everything: O(c)
-… limited to top item

-queues
-everything: O(c)
-… limited to front and back

12

Review

!

Access
(search) Insertion Deletion Notes

Arrays
(ArrayLists)

Random
access

(constant)
Linear Linear

Must know
size ahead of

time

Linked Lists Linear Linear, or
O(1) on ends

Linear, or
O(1) on ends

Can allocate
new items on

demand

Binar Search
Trees log N log N log N Must be

balanced

Stacks Constant Constant Constant Access
limited to top

Queues Constant Constant Constant
Access

limited to
front/back

quick exercise

13

14

what if we want a data structure that holds integers,
and has constant time insertion & deletion?

15

Review

!

Access
(search) Insertion Deletion Notes

Arrays
(ArrayLists)

Random
access

(constant)
Linear Linear

Must know
size ahead of

time

Linked Lists Linear Linear, or
O(1) on ends

Linear, or
O(1) on ends

Can allocate
new items on

demand

Binar Search
Trees log N log N log N Must be

balanced

Stacks Constant Constant Constant Access
limited to top

Queues Constant Constant Constant
Access

limited to
front/back

What if we also want constant time access to any item?

16

-constant time insertion, deletion, and random access

-we know:
-possible range of integers is [0…MAX_INT]

-what is a naïve, brute-force solution?
-hint: use an array

17

-create a gigantic array of size MAX_INT

-initialize everything to -1

-when inserting a number n, put it in the array at index n

-when searching for a number n, check if index n is
equal to -1 or not

-when deleting a number n, set array at index n to -1

does this fulfill the constant time insertion,
deletion, and access requirements?

is this realistic???

mapping

18

19

-let’s try using a smaller array, and mapping large
indices to the range of the smaller array

-assume range of possible items is [0…99]
-and assume that we will have <<100 items

-assume array size is only 10

-how can we make this work for integers?

20

-use the mod operator, %
-guaranteed to return a number in the range
[0…(denominator-1)]

-mod the input index by the array size for the new index

12, 15, 17, 46, 89, 90
insert:

array:

index: 0 1 2 3 4 5 6 7 8 9

12 15 1746 8990

what about data without natural indices?

-how can we do this for non-integer items?
-integers have an obvious solution… use the integer itself
as the index
-what index should use for, say, a String?

-one solution is to somehow generate an integer from a string
-length of string?
-sum of all characters?
-some combination of both?

-a method that generates an integer index given any object is
called a hash function

21

hash table

22

23

-a hash table is a general storage data structure

-insertion, deletion, and look-up are all O(c)

-like a stack, but not limited to top item

Hash tables

• A hash table is a general storage data structure

• Insertion/deletion/lookup all constant time

• Like a stack, but not limited to top item

!

Access Insertion Deletion Notes

Hash Table Constant Constant Constant Magic?

24

-underlying data structure is just an array

-requires that all data types inserted have a hash function

-map the hash value to a valid index of the array using %

-empty spots in the array are set to null

-use hash value to instantly look-up the index of any item
-insertion, deletion, and search: O(1)

-assuming the hash function is O(1)!

hash functions

25

26

-a hash function is a function that takes any item as
input and produces an integer as output

-always returns the same number for the same object

-if object1.equals(object2)
-must return the same integer for both objects

-good hash functions return evenly distributed
numbers for the input items

-it is not required that two non-equal objects have
different hash values

Java’s hashCode
-every Object in Java has a method hashCode

-returns an integer based on the object

-default for this method (if you don’t override it) is to
return the memory address of the object

-will not be very well-distributed if your items are
contiguous in memory

27

linear probing

28

29

-remember: it is NOT required that two non-equal
object have different hash values

-because of this, it is possible for two different objects
to has to the same index

-this is called a collision

12, 15, 17, 46, 89, 90
insert:

array:

index: 0 1 2 3 4 5 6 7 8 9

12 15 1746 8990

, 92

collision! where can we put 92?

resolving collisions
-there are multiple ways to resolve a collision, the first of
which is called linear probing

-when inserting, if the spot is already taken, simply step
forward one index at a time until an empty space is found

-and, then insert item in empty space

-when searching, start at the hashed index, and if this is not
the item we are searching for, begin stepping forward until
the item is found

-what is we hit an empty spot?

-wrap around to the beginning if at the end of the array

30

insert with linear probing
array:

index: 0 1 2 3 4 5 6 7 8 9

89insert:
hash: 9

89

array:

index: 0 1 2 3 4 5 6 7 8 9

18insert:
hash: 8

8918

array:

index: 0 1 2 3 4 5 6 7 8 9

49insert:
hash: 9

891849

array:

index: 0 1 2 3 4 5 6 7 8 9

9insert:
hash: 9

891849 58

array:

index: 0 1 2 3 4 5 6 7 8 9

58insert:
hash: 8

891849 58

9

collisions are resolved on inserts by
sequentially scanning the table (with
wraparaound) until an empty cell is found

search with linear probing
-if the table is not full, the item we seek, or an empty cell, will
eventually be found

-cost?
-recall that we are hoping of O(1)

-find operation follows the same path as insert… if empty cell reached,
item not found

-how do we find 58?

32

array:

index: 0 1 2 3 4 5 6 7 8 9

58search:
hash: 8

891849 58 9

delete with linear probing
-on a delete, the actual item cannot be deleted from
the table because items serve as placeholders during
collision resolution

-we must use lazy deletion, which marks items as
deleted rather than actually removing them

33

array:

index: 0 1 2 3 4 5 6 7 8 9

89delete:
hash: 9

891849 58 9

how do we find 9?

deleted: F F F F T

performance
-if no collisions occur, performance of insert, delete, and search
is ____

-to determine the real cost, define λ, the fraction of the table that
is full

-called the load factor
-0 <= λ <= 1

-for each probe into the table, the probability that spot is
occupied is λ

-assuming the above is correct, the average number of cells
examined on an insert is 1/(1-λ)

-if λ = 0.5, average of two cells examined

34

O(1)

clustering
-if an item’s natural spot is taken, it goes in the next
open spot, making a cluster for that hash

-clustering happens because once there is a
collision, there is a high probability that there will be
more
-this means that any item that hashes into the cluster
will require several attempts to resolve the collision

-feedback loop:
-the bigger the clusters are, the more likely they are
to be hit
-when a cluster gets hit, it gets bigger

35

quadratic probing

36

37

-quadratic probing attempts to deal with the clustering
problem

-if hash(item) = H, and the cell at H is occupied:
-try H+12

-then H+22

-then H+32
-and so on…
-wrap around to beginning of array if necessary

insert with quadratic probing
array:

index: 0 1 2 3 4 5 6 7 8 9

89insert:
hash: 9

89

array:

index: 0 1 2 3 4 5 6 7 8 9

18insert:
hash: 8

8918

array:

index: 0 1 2 3 4 5 6 7 8 9

49insert:
hash: 9

891849

array:

index: 0 1 2 3 4 5 6 7 8 9

9insert:
hash: 9

891849 58

array:

index: 0 1 2 3 4 5 6 7 8 9

58insert:
hash: 8

891849 58

9

concerns…
-is quadratic probing guaranteed to find an open spot?
can it search the same spot twice?

-suppose the table size is 16, and hash(item) = 0

39

0%16 = 0
(0+12)%16 = 1
(0+22)%16 = 4
(0+32)%16 = 9
(0+42)%16 = 0
(0+52)%16 = 9
(0+62)%16 = 4
(0+72)%16 = 1

limitation: at most, half of the
table can be used to resolve
collisions

once table is half full it is
difficult to find an empty spot

...Called secondary clustering

solution…
-the following two guidelines guarantee that every spot
will be examined at least once

-ensure that the size of the array is a prime number
-mapping a hash value to an index will be
modding by a prime number!

-ensure that the table is never more than 50% full
- λ < 0.5

-these guidelines also guarantee no cell is visited
twice

-proof is the textbook

40

resizing the table
-since we now have the requirement that λ < 0.5, what
do we do when we need to add another item?

-just like resizing an array, we resize the table to the
next largest prime number

-instead of a simple copy-everything-over, all items
must be rehashed

-why?

-this is called rehashing

41

42

-quadratic probing does not eliminate the clustering
problem

-but, secondary clustering is not as severe as primary
clustering

-the only reason not to use quadratic probing is when
maintaining a half-empty array is too costly

-can you think of an alternative for collision
management?

separate chaining

43

44

-why not make each spot in the array capable of
holding more than one item?

-use an array of linked lists
-hash function selects index into array
-called separate chaining

-for insertion, append the item to the end of the list
-insertion is O(1) if we have what?

-searching is a linear scan through the list
-fast if the list is short

performance
-different definition of the load factor λ

-λ = average length of linked lists

-therefore, search and delete operations scan λ items

-instead of rehashing when the table is half full,
rehash when λ becomes large

-analysis is required to find a good value

-rehashing is never required since lists can grow
indefinitely, but it can be beneficial

45

assignment 10 details

46

47

-you will implement a quadratic probing hash table AND a
separate chaining hash table for Strings

-the constructors for these hash tables takes a
HashFunctor object

-recall that a functor is an object which encapsulates a
method (just like Comparator)

-the HashFunctor defines a hash method, which
implements a hash function

-you can create any number of different hash functions this
way without changing any code in your hash table

-yay for encapsulation!

48

-start thinking about…
-what is a bad hash function for Strings?
-what is a good hash function for Strings?

-remember, Strings are just a sequence of chars

-and a char is just a smaller int

-we can perform any operation or combination of ops on
the small numbers (chars) that make up the String

-an example String hash function is in the book
-there are also a bunch of good ones on the web

next time…

49

50

-midterm on Thursday in class

-reading for next week
-chapter 21 in book

-homework
-assignment 9 due Monday
-assignment 10 out on Thursday, due next Thursday

