BINARY HEAP

cs2420 | Introduction to Algorithms and Data Structures | Spring 2015

administrivia...

-assignment 10 is due on Thursday

-midterm grades out tomorrow

last time...

-a hash table is a general storage data structure
-insertion, deletion, and look-up are all O(c)

-like a stack, but not limited to top item

- Constant Constant Constant Magic?

-underlying data structure is just an array

-requires that all data types inserted have a hash
function

-map the hash value to a valid index of the array using %

-use hash value to instantly look-up the index of any item
-Insertion, deletion, and search: O(1)
-assuming the hash function is O(1) !/

linear probing

-remember: it is NOT required that two non-equal
object have different hash values

-because of this, it is possible for two different objects
to has to the same index

-this I1s called a collision

INSERT:
12, 15, 17, 46, 89, 90, 92

COLLISIONI WHERE CAN WE PUT 927

array: 90 12 15 46 17 89
index: 0 1 2 3 4 5 6 7 8 9

clustering

-if an item’s natural spot is taken, it goes in the next
open spot, making a cluster for that hash

-clustering happens because once there is a
collision, there is a high probability that there will be
more

-this means that any item that hashes into the cluster
will require several attempts to resolve the collision

-feedback loop:

-the bigger the clusters are, the more likely they are
to be hit

-when a cluster gets hit, it gets bigger

9

quadratic probing

-quadratic probing attempts to deal with the clustering
problem

-If hash (1tem) = H, and the cell at H Is occupied:
iry H+17

-then H+2~

-then H+37

-and so on...
-wrap around to beginning of array it necessary

11

separate chaining

12

-why not make each spot in the array capable of
holding more than one item?

-use an array of linked lists
-hash function selects index into array
-called separate chaining

-for insertion, append the item to the end of the list
-insertion is O(1) if we have what?

-searching is a linear scan through the list
-fast if the list is short

13

a bit more on hash functions...

14

-ints have an obvious hash value

array: 90 12 15 46 17 89
index: 0 1 2 3 4 5 6 7 8 9

-what about Strings? Books? Shapes?...

-we must not overlook the requirement of a good hash
functions

15

remember...

-hash functions take any item as input and produce an
integer as output

-given the same input the function always returns the
same output

-two different inputs MAY have the same hash value

16

thinking about chars and Strings

-ASCII defines an encoding for characters
-a =9/

b’ =98
-z =122

-2 =50

-the char type is actually just a small integer
-8 bits instead of the usual 32

17

Dec HxOct Char Dec Hx Oct Html Chr [Dec Hx Oct Html Chr| Dec Hx Oct Html Chr
0 0 000 NUL (null) 32 20 040 Space| 64 40 100 &«#64; [96 A0 140 `
1l 1 001 50H (start of heading) 33 21 041 ! ! 65 41 101 &«#65; A | 97 61 141 &«#97; a
2 2 002 5TX ([(start of text) 34 22 04z &«#34; " 66 42 102 B b 98 62 142 &«#98; b
3 3 003 ETX (end of text) 35 23 043 # # 67 43 103 &«#67; C 99 /3 143 c ¢
4 4 004 EOT (end of transmission) 36 24 044 $ § 658 44 104 «#68; D (100 64 144 &#l00; d
5 5 005 ENO {encquiry) 37 25 045 % % 69 45 105 &«#69; E (101 65 145 «#l01; ¢
6 6 006 ACKE (acknowledge) 38 26 046 & < 70 46 106 &«#70; F |102 66 146 f €
7 7 007 EEL (bell) 39 27 047 ' ' 71 47 107 &«#71; G |103 67 147 &«#103; O
8 © 010 BES5 (backspace) 40 28 050 (| 72 48 110 &«#72; H (104 68 150 &«#104; h
9 9 011 TAE (horizontal tab) 41 29 051 l;) 73 49 111 «#73; I [105 69 151 i 1
10 A 012 LF (NL line feed, new line)| 42 2A 052 &#d4Z2; * 74 4k 112 «#74; J |106 64 152 j]
11 B 013 VT (wertical tab) 43 2B 053 + + 75 4B 113 &«#75; K (107 6B 153 &«#107; K
12 C 014 FF (NP form feed, new page)| 44 2C 054 , , 76 4C 114 «#76; L [108 6C 154 &«#103; 1
13 D 015 CR (carriage return) 45 2D 055 - - 77 4D 115 &«#77; M |109 6D 155 m n
14 E 016 50 (shift out) 46 2E 056 &«#46; . 76 4E 116 &«#73; N |110 6E 156 n n
15 F 017 5I (shift in) 47 2F 057 «#47; / 79 4F 117 &«#79; 0 |111 6F 157 &#ll1l1; O
16 10 020 DLE (data link escape) 48 30 060 0 0 80 50 120 &«#80; P (112 70 160 &#llz; p
17 11 021 DC1 (device control 1) 49 31 061 1 1 81 51 121 «#81; 0 |113 71 161 q d
13 12 022 DCZ (device control 2) 50 32 062 2 Z 82 52 122 &«#82; E (114 72 162 &#l1l4; ¢
19 13 023 DC3 (device control 3) 51 33 063 3 5 83 53 123 &«#83, 5 |115 73 163 s =
20 14 024 DC4 (device control 4) 52 34 064 4 4 84 54 124 «#84; T [116 74 164 &#ll6; ©C
2l 15 025 NAK (negative acknowledge) 53 35 065 5 5 85 55 125 &«#385; U |117 75 165 &#ll1l7; u
22 16 026 5YN (synchronous idle) 54 36 066 6 © 86 56 126 &«#686; V |118 76 166 l1&8; v
23 17 027 ETE (end of trans. block) 55 37 067 7 7 87 57 127 &«#387; U |119 77 167 &#ll19; w
24 18 030 CAN (cancel) S6 38 070 8 5 88 58 130 &«#68; X |120 78 170 &#l20; X
25 19 031 EM (end of medium) 57 39 071 &«#57; 9 89 59 131 &«#89; ¥V (121 79 171 &#lzl; ¥
26 1& 032 5UE (substitute) 58 3A 072 : : 90 5S4 132 &«#90; Z |122 74 172 &#l22; =
27 1B 033 ESC (escape) 59 3B 073 ; ; 91 5B 133 &«#91; [(123 7B 173 { |
28 1C 034 F5 (file separator) 60 3C 074 < < 92 S5C 134 &«#92; % |124 7C 174 &«#l24; |
29 1D 035 G5 (group separator) 61 3D 075 l; = 93 5D 135 &«#93;] |125 7D 175 }
30 1E 036 RS (record separator) 62 3E 076 > = 94 SE 136 &«#94; ~ (126 7E 176 &#lZ6; ~
31 1F 037 U5 (unit separator) 63 3F 077 ? 7 95 S5F 137 «#95; [127 7F 177 DEL

18

-a String Is essentially an array of char

String s = “hello”;
104101 108108111

-Java hides these details

-how can we use this to create a hash function for
Strings?

19

review

-O(1) for all major operations
-assuming A is managed

-linear probing
-has clustering problems

-quadratic probing
-has lesser clustering problems
-requires A < 0.5, and prime table size

-separate chaining

-probably the easiest to implement, as well as the best
performing

20

WHAT IS THE LOAD FACTOR A FOR THE
FOLLOWING HASH TABLE?

104 34 19 111 98 52

21

USING LINEAR PROBING, IN WHAT INDEX WILL
ITEM 93 BE ADDED?

A) 1

B) 5
C) 6
D) 7

array: 49 9O 58 34 18 89
index: 0 1 2 3 4 5 6 7 8 9

22

USING QUADRATIC PROBING, IN WHAT INDEX
WILL ITEM 22 BE ADDED?

A) 1
B) 5
C) 6
D) 7

array: 49 9O 58 34 18 89
index: 0 1 2 3 4 5 6 7 8 9

23

recap

- heart hash tables
-collection structure with O(1) for major operations

-but!...
-hash function must minimize collisions

-Should evenly distribute values across all possible
Integers

-collisions must be carefully dealt with
-hash function runtime must be fast

-No ordering

-how do we find the smallest item in a hash table?
-ina BST?

24

priority queues

25

-a priority queue Is a data structure in which access is
limited to the minimum item in the set
-add

-findMin
-deleteMin

-add location is unspecified, so long as the the above
Is always enforced

-what are our options for implementing this?

26

-option 1: a linked list

-add: O(1)

-findMin: O(N)

-deleteMin: O(N) (including finding)

-option 2: a sorted linked list
-add: O(N)

-findMin: O(1)

-deleteMin: O(1)

-option 3: a self-balancing BST
-add: O(logN)

-findMin: O(logN)
-deleteMin: O(logN)

27

complete trees

28

-a complete binary tree
has its levels completely
filled, with the possible
exception of the bottom

level ‘

-bottom level is filled from

left to right

-each level has twice as

many nodes as the

previous level ‘ ‘ ‘ ‘
29

complete trees as an array

-If we are guaranteed that tree is complete, we can
implement it as an array instead of a linked structure

-the root goes at index 0, its left child at index 1, its
right child at index 2

-for any node at index i, it two children are at index
(1*2) + 1 and (i*2) + 2

30

a b ¢ d e £ g h 1
index: 0 1 2 3 4 5 6 7 8 9

-for example, d’s children start at (3*2) + 1

-how can we compute the index of any node’s parent?
31

10

a b ¢ d e £ g h 1
index: 0 1 2 3 4 5 6 7 8 9

-luckily, integer division automatically truncates

-any node’s parent is at index (i-1) / 2
32

10

complete trees as an array

-keep track of a currentSize variable

-holds the total number of nodes in the tree

-the very last leaf of the bottom level will be at index
currentSize - 1

-when computing the index of a child node, if that

Index IS >= currentSize, then the child does not
exist

33

traversal helper methods

int leftChildIndex(int 1) {
return (1i*2) + 1;

J

int rightChildIndex (int 1) {
return (i*2) + 2;

J

int parentIndex (int 1) {
return (1i-1) / 2;

J

binary heap

-a binary heap is a binary tree with two special
properties
-Structure: 1t is a complete tree

-order: the data in any node is less than or equal to
the data of its children

-this is also called a min-heap

-a max-heap would have the opposite property

36

19 (s¢) (45

-order of children does not matter, only that they are
greater than their parent

37

IS THIS A MIN-HEAP?

38

IS THIS A MIN-HEAP?

B) no o
5 2
O ONNCGENC

39

adding to a heap

-we must be careful to maintain the two properties
when adding to a heap

-structure and order

-deal with the structure property first... where can the
new item go to maintain a complete tree?

-then, percolate the item upward until the order
property is restored

-swap upwards until > parent

41

ADDING 14
PUT IT AT THE END e

OF THE TREE
2, ©
@ @ @ ®

19 (s¢) (43

42

ADDING 14
PUT IT AT THE END e

OF THE TREE
2, ©
o OO

1

1

1
“I

43

ADDING 14

PUT [T AT THE END a
OF THE TREE

EUTYIE @ o
ORDER
S DN
TIONO

44

ADDING 14

PUT [T AT THE END a
OF THE TREE

EUTYIE @ o
ORDER
S DN
TIONO

45

ADDING 14

PUT [T AT THE END a
OF THE TREE

EUTYIE @ o
ORDER
OERONNONNG
) @6

46

ADDING 14

PUT [T AT THE END a
OF THE TREE

LI @ O
ORDER
OENONNCOERG
@) (@6

47

ADDING 14

PUT [T AT THE END a
OF THE TREE

eI @ O
ORDER
OERCINOERC
@) (@6

48

ADDING 14

PUT IT AT THE END e
OF THE TREE

eI @ O
ORDER
OERCINOERC
@) (@6

49

ADDING 14

PUT [T AT THE END a
OF THE TREE

EEUTYIE o
ORDER
OERCENONNG
) @6

50

cost of add

-percolate up until smaller than all
nodes below it...

-how many nodes are there on each
level (in terms of N)?

-about half on the lowest level
-about 3/4 in the lowest two levels

51

-If the new item is the smallest in the set, cost is
O(logN)

-must percolate up every level to the root
-complete trees have logN levels
-IS this the worst, average, or best case?

-it has been shown that on average, 2.6 comparisons
are needed for any N

-thus, add terminates early, and average cost IS
O(1)

52

remove

53

R

TAKE OUT 3

ORI COENCORENC
SIONOIO

54

R

TAKE OUT 3

ORI COENCORENC
SIONOIO

55

e

TAKE OUT 3
D o
LEVEL. WHY?
@ m @ @
fo0(a8) ()15

56

e

TAKE OUT 3
DD o
LEVEL. WHY?
@ m @ @
fo0(a9) (&) 15

57

e

TAKE OUT 3
D o
LEVEL. WHY?
@ m @ @
fo0(30) (s

58

e

TAKE OUT 3

-[LL WITH LAST
TEM ON LAST @ @
| EVEL. WHY?

PERCOLATE DOWN @ @ Q @
19 (s¢) (43

59

e

TAKE OUT 3

-[LL WITH LAST
EMONLAST GO e
| EVEL. WHY?

PERCOLATE DOWN @ @ Q @
19 (s¢) (43

60

e

TAKE OUT 3

-[LL WITH LAST
EMONLAST (D e
| EVEL. WHY?

PERCOLATE DOWN @ @ Q @
19 (s¢) (43

61

e

TAKE OUT 3

-[LL WITH LAST
EMONLAST (D e
| EVEL. WHY?

PERCOLATE DOWN @ @ Q @
19 (s¢) (43

62

e

TAKE OUT 3

-[LL WITH LAST
TEM ON LAST @ @
| EVEL. WHY?

PERCOLATE DOWN @ @ Q @
19 (s¢) (43

63

e

TAKE OUT 3

-[LL WITH LAST
TEM ON LAST @ @
| EVEL. WHY?

PERCOLATE DOWN @ @ Q @
19 (se) (42

64

e

TAKE OUT 3

-[LL WITH LAST
TEM ON LAST @ @
| EVEL. WHY?

PERCOLATE DOWN @ @ Q @
19 (s¢) (43

65

cost of remove

-worst case is O(logN)
-percolating down to the bottom level

-average case is also O(logN)

-rarely terminates more than 1-2 levels from the
bottom... why?

66

recap

67

-priority queues can be implemented any number of
ways

-a binary heap’s main use is for implementing priority
gqueues

-remember, the basic priority queue operations are:
-add

-findMin
-deleteMin

68

-the average cases for a PQ implemented with a
binary heap:
-add
-O(1): percolate up (average of 2.6 compares)
-findMin
- O(1): just return the root
-deleteMin

- O(logN): percolate down (rarely terminates
before near the bottom of the tree)

69

next time...

70

-reading
-chapter 21 in book

-homework
-assignment 10 due Thursday

/1

