
cs2420 | Introduction to Algorithms and Data Structures | Spring 2015
BINARY HEAP

1

administrivia…

2

3

-assignment 10 is due on Thursday

-midterm grades out tomorrow

last time…

4

5

-a hash table is a general storage data structure

-insertion, deletion, and look-up are all O(c)

-like a stack, but not limited to top item

Hash tables

• A hash table is a general storage data structure

• Insertion/deletion/lookup all constant time

• Like a stack, but not limited to top item

!

Access Insertion Deletion Notes

Hash Table Constant Constant Constant Magic?

6

-underlying data structure is just an array

-requires that all data types inserted have a hash
function

-map the hash value to a valid index of the array using %

-use hash value to instantly look-up the index of any item
-insertion, deletion, and search: O(1)

-assuming the hash function is O(1)!

linear probing

7

8

-remember: it is NOT required that two non-equal
object have different hash values

-because of this, it is possible for two different objects
to has to the same index

-this is called a collision

12, 15, 17, 46, 89, 90
insert:

array:

index: 0 1 2 3 4 5 6 7 8 9

12 15 1746 8990

, 92

collision! where can we put 92?

clustering
-if an item’s natural spot is taken, it goes in the next
open spot, making a cluster for that hash

-clustering happens because once there is a
collision, there is a high probability that there will be
more
-this means that any item that hashes into the cluster
will require several attempts to resolve the collision

-feedback loop:
-the bigger the clusters are, the more likely they are
to be hit
-when a cluster gets hit, it gets bigger

9

quadratic probing

10

11

-quadratic probing attempts to deal with the clustering
problem

-if hash(item) = H, and the cell at H is occupied:
-try H+12

-then H+22

-then H+32
-and so on…
-wrap around to beginning of array if necessary

separate chaining

12

13

-why not make each spot in the array capable of
holding more than one item?

-use an array of linked lists
-hash function selects index into array
-called separate chaining

-for insertion, append the item to the end of the list
-insertion is O(1) if we have what?

-searching is a linear scan through the list
-fast if the list is short

a bit more on hash functions…

14

15

-ints have an obvious hash value

-what about Strings? Books? Shapes?…

-we must not overlook the requirement of a good hash
functions

array:

index: 0 1 2 3 4 5 6 7 8 9

12 15 1746 8990

remember…
-hash functions take any item as input and produce an
integer as output

-given the same input the function always returns the
same output

-two different inputs MAY have the same hash value

16

thinking about chars and Strings

-ASCII defines an encoding for characters
-‘a’ = 97
-‘b’ = 98
-…
-‘z’ = 122
-‘2’ = 50
-…

-the char type is actually just a small integer
-8 bits instead of the usual 32

17

18

19

-a String is essentially an array of char

-Java hides these details

-how can we use this to create a hash function for
Strings?

String s = “hello”;

108104 101 108 111

review
-O(1) for all major operations

-assuming λ is managed

-linear probing
-has clustering problems

-quadratic probing
-has lesser clustering problems
-requires λ < 0.5, and prime table size

-separate chaining
-probably the easiest to implement, as well as the best
performing

20

21

what is the load factor λ for the
following hash table?
A) 4
B) 6
C) 0.4
D) 0.5
E) 0.6

104 34 19 111 5298

22

using linear probing, in what index will
item 93 be added?
A) 1
B) 5
C) 6
D) 7

array:

index: 0 1 2 3 4 5 6 7 8 9

891849 349 58

23

using quadratic probing, in what index
will item 22 be added?
A) 1
B) 5
C) 6
D) 7

array:

index: 0 1 2 3 4 5 6 7 8 9

891849 349 58

recap
-i heart hash tables

-collection structure with O(1) for major operations

-but!…
-hash function must minimize collisions

-should evenly distribute values across all possible
integers

-collisions must be carefully dealt with
-hash function runtime must be fast

-no ordering
-how do we find the smallest item in a hash table?
-in a BST?

24

priority queues

25

26

-a priority queue is a data structure in which access is
limited to the minimum item in the set
-add
-findMin
-deleteMin

-add location is unspecified, so long as the the above
is always enforced

-what are our options for implementing this?

27

-option 1: a linked list
-add: O(1)
-findMin: O(N)
-deleteMin: O(N) (including finding)

-option 2: a sorted linked list
-add: O(N)
-findMin: O(1)
-deleteMin: O(1)

-option 3: a self-balancing BST
-add: O(logN)
-findMin: O(logN)
-deleteMin: O(logN)

complete trees

28

29

-a complete binary tree
has its levels completely
filled, with the possible
exception of the bottom
level

-bottom level is filled from
left to right

-each level has twice as
many nodes as the
previous level

complete trees as an array
-if we are guaranteed that tree is complete, we can
implement it as an array instead of a linked structure

-the root goes at index 0, its left child at index 1, its
right child at index 2

-for any node at index i, it two children are at index
(i*2) + 1 and (i*2) + 2

30

31

-for example, d’s children start at (3*2) + 1

-how can we compute the index of any node’s parent?

a

b c

d e f g

h i j

index: 0 1 2 3 4 5 6 7 8 9

gfa ecb d h i j
10

32

-luckily, integer division automatically truncates

-any node’s parent is at index (i-1) / 2

a

b c

d e f g

h i j

index: 0 1 2 3 4 5 6 7 8 9

gfa ecb d h i j
10

complete trees as an array
-keep track of a currentSize variable

-holds the total number of nodes in the tree
-the very last leaf of the bottom level will be at index
currentSize - 1

-when computing the index of a child node, if that
index is >= currentSize, then the child does not
exist

33

traversal helper methods
int leftChildIndex(int i) {
return (i*2) + 1;

}

int rightChildIndex(int i) {
return (i*2) + 2;

}

int parentIndex(int i) {
return (i-1) / 2;

}

binary heap

35

36

-a binary heap is a binary tree with two special
properties

-structure: it is a complete tree
-order: the data in any node is less than or equal to
the data of its children

-this is also called a min-heap

-a max-heap would have the opposite property

37

-order of children does not matter, only that they are
greater than their parent

3

22 6

31 43 17 92

100 56 45

38

is this a min-heap?
A) yes
B) no 1

14 12

31 29 17 4

39

is this a min-heap?
A) yes
B) no 1

14 12

31 29 17 90

42 23

adding to a heap

40

41

-we must be careful to maintain the two properties
when adding to a heap

-structure and order

-deal with the structure property first… where can the
new item go to maintain a complete tree?

-then, percolate the item upward until the order
property is restored

-swap upwards until > parent

42

3

22 6

31 43 17 92

100 56 45

adding 14

put it at the end
of the tree

43

3

22 6

31 43 17 92

100 56 45

adding 14

put it at the end
of the tree

14

44

3

22 6

31 43 17 92

100 56 45

adding 14

put it at the end
of the tree

percolate up the
tree to fix the
order

14

45

3

22 6

31 43 17 92

100 56 45

adding 14

put it at the end
of the tree

percolate up the
tree to fix the
order

14

46

3

22 6

31 14 17 92

100 56 45

adding 14

put it at the end
of the tree

percolate up the
tree to fix the
order

43

47

3

22 6

31 14 17 92

100 56 45

adding 14

put it at the end
of the tree

percolate up the
tree to fix the
order

43

48

3

14 6

31 22 17 92

100 56 45

adding 14

put it at the end
of the tree

percolate up the
tree to fix the
order

43

49

3

14 6

31 22 17 92

100 56 45

adding 14

put it at the end
of the tree

percolate up the
tree to fix the
order

43

50

3

14 6

31 22 17 92

100 56 45

adding 14

put it at the end
of the tree

percolate up the
tree to fix the
order

43

cost of add
-percolate up until smaller than all
nodes below it…

-how many nodes are there on each
level (in terms of N)?

-about half on the lowest level
-about 3/4 in the lowest two levels

51

52

-if the new item is the smallest in the set, cost is
O(logN)

-must percolate up every level to the root
-complete trees have logN levels

-is this the worst, average, or best case?

-it has been shown that on average, 2.6 comparisons
are needed for any N

-thus, add terminates early, and average cost is
O(1)

remove

53

54

3

14 16

31 22 17 92

100 56 45

let’s remove the
smallest item

Take out 3

43

55

14

31 22 17 92

100 56 45

let’s remove the
smallest item

Take out 3

43

16

56

14

31 22 17 92

100 56 45

let’s remove the
smallest item

Take out 3

fill with last
item on last
level. why?

43

16

57

14

31 22 17 92

100 56 45

let’s remove the
smallest item

Take out 3

fill with last
item on last
level. why?

43

16

58

14

31 22 17 92

100 56 45

let’s remove the
smallest item

Take out 3

fill with last
item on last
level. why?

43

16

59

14

31 22 17 92

100 56 45

let’s remove the
smallest item

Take out 3

fill with last
item on last
level. why?

percolate down

43

16

60

14

31 22 17 92

100 56 45

let’s remove the
smallest item

Take out 3

fill with last
item on last
level. why?

percolate down

43

16

61

43

31 22 17 92

100 56 45

let’s remove the
smallest item

Take out 3

fill with last
item on last
level. why?

percolate down

14

16

62

43

31 22 17 92

100 56 45

let’s remove the
smallest item

Take out 3

fill with last
item on last
level. why?

percolate down

14

16

63

22

31 43 17 92

100 56 45

let’s remove the
smallest item

Take out 3

fill with last
item on last
level. why?

percolate down

14

16

64

22

31 43 17 92

100 56 45

let’s remove the
smallest item

Take out 3

fill with last
item on last
level. why?

percolate down

14

16

65

22

31 43 17 92

100 56 45

let’s remove the
smallest item

Take out 3

fill with last
item on last
level. why?

percolate down

14

16

cost of remove
-worst case is O(logN)

-percolating down to the bottom level

-average case is also O(logN)
-rarely terminates more than 1-2 levels from the
bottom… why?

66

recap

67

68

-priority queues can be implemented any number of
ways

-a binary heap’s main use is for implementing priority
queues

-remember, the basic priority queue operations are:
-add
-findMin
-deleteMin

69

-the average cases for a PQ implemented with a
binary heap:

-add
-O(1): percolate up (average of 2.6 compares)

-findMin
- O(1): just return the root

-deleteMin
- O(logN): percolate down (rarely terminates
before near the bottom of the tree)

next time…

70

71

-reading
-chapter 21 in book

-homework
-assignment 10 due Thursday

