BINARY HEAPS 2

cs2420 | Introduction to Algorithms and Data Structures | Spring 2015

administrivia...

-assignment 10 is due tonight

-assignment 11 is up, due next Thursday

140 7
120

0P

-+

C 100

)

O

D)

"(T) 80

Y

O

(-

qD) 60

£

D)

(- 40
20

assignment 7 scores

130

0-10

11-20

0

21-30

0

31-40

0

41-50

0

51-60

SCOre

3

v -

61-70

11

Y T

71-80

81-90

91-100

let's chat about ethics...

// dib2 hash function
unsigned long hash (unsigned char *str)

{
unsigned long hash = 5381;

int c;
while (c = *str++)
hash = ((hash << 5) + hash) + c¢; /* hash * 33 + ¢ */

return hash;

last time...

complete trees

-a complete binary tree
has its levels completely
filled, with the possible
exception of the bottom

level ‘

-bottom level is filled from

left to right

-each level has twice as

many nodes as the

previous level ‘ ‘ ‘ ‘
9

-a N-node complete tree
has at most (logN) height

-operations are thus at
most O(logN) ‘

-each level has twice as
many nodes as the

previous one ‘ ‘

-how do we use this

rempiemenaion () (O O O
OO OO C
10

complete trees as an array

-If we are guaranteed that tree is complete, we can
implement it as an array instead of a linked structure

-the root goes at index 0, its left child at index 1, its
right child at index 2

-for any node at index i, it two children are at index
(1*2) + 1 and (i*2) + 2

11

a b ¢ d e £ g h 1
index: 0 1 2 3 4 5 6 7 8 9

-for example, d’s children start at (3*2) + 1

-how do we that f has no children?
12

10

a b ¢ d e £ g h 1
index: 0 1 2 3 4 5 6 7 8 9

-any node’s parent is at index (i-1) / 2

13

10

remember the priority queue?

14

-a priority queue is a data structure in which access
IS limited to the minimum item in the set
-add

-findMin
-deleteMin

-add location is unspecified, so long as the the above
Is always enforced

-what are our options for implementing this?

15

binary heap

-a binary heap is a binary tree with two special
properties
-Structure: 1t is a complete tree

-order: the data in any node is less than or equal to
the data of its children

-this is also called a min-heap

-a max-heap would have the opposite property

17

19 (s¢) (45

-where Is the smallest item?

18

adding to a heap

-we must be careful to maintain the two properties
when adding to a heap

-structure and order

-deal with the structure property first... where can the
new item go to maintain a complete tree?

-then, percolate the item upward until the order

property is restored
-swap upwards until > parent

19

ADDING 14
PUT IT AT THE END e

OF THE TREE
2, e
@ @ @ ®

19 (s¢) (43

20

ADDING 14
PUT IT AT THE END e

OF THE TREE
2, e
o OO

1

1

1
“I

21

ADDING 14

PUT [T AT THE END a
OF THE TREE

CEUTYIE @ 9
ORDER
S DN
TIONO

22

ADDING 14

PUT [T AT THE END a
OF THE TREE

CEUTYIE @ 9
ORDER
S DN
TIONO

23

ADDING 14

PUT [T AT THE END a
OF THE TREE

CEUTYIE @ 9
ORDER
OERONNONNG
) @6

24

ADDING 14

PUT [T AT THE END a
OF THE TREE

LY @ 9
ORDER
OENONNCOERG
@) (@6

25

ADDING 14

PUT [T AT THE END a
OF THE TREE

e @ 9
ORDER
OERCINOERC
@) (@6

26

ADDING 14

PUT IT AT THE END e
OF THE TREE

e @ 9
ORDER
OERCINOERC
@) (@6

27

ADDING 14

PUT [T AT THE END a
OF THE TREE

e D 9
ORDER
OERCENONNG
) @6

28

cost of add

-percolate up until smaller than all
nodes below it...

-how many nodes are there on each
level (in terms of N)?

-about half on the lowest level
-about 3/4 in the lowest two levels

29

-If the new item is the smallest in the set, cost is
O(logN)

-must percolate up every level to the root
-complete trees have logN levels
-IS this the worst, average, or best case?

-it has been shown that on average, 1.6 comparisons
are needed for any N

-thus, add terminates early, and average cost IS
O(1)

30

-you may find conflicting information on the average
cost value

-some sources may say O(logN)

-It depends on the level of the analysis and how
tight of a bound we want

-don’t always believe what you read, test for yourself!

31

remove from a heap

-priority queues only support removing the smallest
item
-In heap this is always what”

-remove and return the root

-we have a hole at the top, structure property Is
violated

fill the whole with another item in the tree
-which one?
-percolate down

32

SRR

TAKE OUT 3

ORI COENCORENC
SIONOIO

33

SRR

TAKE OUT 3

ORI COENCORENC
SIONOIO

34

SRR

TAKE OUT 3
D o
EVEL. WHY?
@ m @ @
fo0(a9) (&) 15

35

SRR

TAKE OUT 3
D o
EVEL. WHY?
@ m @ @
fo0(a9) (&) 15

36

SRR

TAKE OUT 3
D o
EVEL. WHY?
@ m @ @
fo0(a0) (s

37

SRR

TAKE OUT 3

-[LL WITH LAST
TEM ON LAST @ @
|EVEL. WHY?

PERCOLATE DOWN @ @ Q @
19 (s¢) (43

38

SRR

TAKE OUT 3

-[LL WITH LAST
EMONLAST GO e
|EVEL. WHY?

PERCOLATE DOWN @ @ Q @
19 (s¢) (43

39

SRR

TAKE OUT 3

-[LL WITH LAST
EMONLAST (D e
|EVEL. WHY?

PERCOLATE DOWN @ @ Q @
19 (s¢) (43

40

SRR

TAKE OUT 3

-[LL WITH LAST
EMONLAST (D e
|EVEL. WHY?

PERCOLATE DOWN @ @ Q @
19 (s¢) (43

41

SRR

TAKE OUT 3

-[LL WITH LAST
TEM ON LAST @ @
|EVEL. WHY?

PERCOLATE DOWN @ @ Q @
19 (s¢) (43

42

SRR

TAKE OUT 3

-[LL WITH LAST
TEM ON LAST @ @
|EVEL. WHY?

PERCOLATE DOWN @ @ Q @
19 (se) (42

43

SRR

TAKE OUT 3

-[LL WITH LAST
TEM ON LAST @ @
|EVEL. WHY?

PERCOLATE DOWN @ @ Q @
19 (s¢) (43

44

cost of remove

-worst case is O(logN)
-percolating down to the bottom level

-average case is also O(logN)

-rarely terminates more than 1-2 levels from the
bottom... why?

45

back to the priority queue...

46

-option 1: a linked list

-add: O(1)

-findMin: O(N)

-deleteMin: O(N) (including finding)

-option 2: a sorted linked list
-add: O(N)

findMin: O(1)
-deleteMin: O(1)

-option 3: a self-balancing BST
-add: O(logN)

-findMin: O(logN)
-deleteMin: O(logN)

-option 4: a binary heap

-add: O(1) (percolate up average of 1.6 swaps)

-findMin: O(1) (just access the root)

-deleteMin: O(logN) (percolate down but rarely terminates before bottom)

47

today...

-min-max heaps
-add

-delete max
-delete min

-delete algorithm

49

min-max heaps

50

-a min-max heap further extends the heap order

property
-for any node E at even depth, E is the minimum
element in its subtree

-for any node O at odd depth, O is the maximum
element in its subtree

-the root is considered to be at even depth (zero)

51

-------------------------- B e VI
----------- MAX

(e (e 2
OO O e — MAX

52

=
-

AERE 1S THE SMALLEST ITEM?
HERE 1S THE LARGEST [TEM?

=
-

53

add

-AGAIN, we must ensure the heap property structure
-must be a complete tree
-add an item to the next open leat node

-THEN, restore order with its parent

-does it belong on a min level or a max level?

-swap If necessary

-the new location determines if it is @ min or max node

-percolate up the appropriate levels
-If new item Is a max node, percolate up max levels
-else, percolate up min levels

55

WANT TO ADD 13

WANT TO ADD 13
ADD TO FIRST OPEN SPACE

PARENT ON A MIN LEVEL, AND 1315
GREATER THAN PARENT, SO NO SWAP
NECESSARY

15 1S NOW A MAX NODE

PERCOLATE UP THE MAX LEVELS
COMPARE TO GRANDPARENT

PERCOLATE UP THE MAX LEVELS
COMPARE TO GRANDPARENT

PERCOLATE UP THE MAX LEVELS
COMPARE TO GRANDPARENT

DOES 13 HAVE ANOTHER GRANDPARENT?

DONE!

-If the parent is on a min level, new node must be
greater than the parent

-If the parent is on a max level, new node must be
less than the parent

-percolate up like normal, except skip every other level

62

delete max

63

-max node is one of the two children of the root

-replace max node with the last leaf node in the tree
-preserve structure property!

-restore order with the new node’s children
-It any child is larger, swap
-percolate swapped child down the max levels

-It no child was larger, percolate the new node down
the max levels

-If the node reaches the second to last level of tree, may
require one more swap with direct children

64

WANT TO DELETE THE MAX
COMPARE CHILDREN OF ROOT

WANT TO DELETE THE MAX
COMPARE CHILDREN OF ROOT
22 1S MAX

WANT TO DELETE THE MAX
COMPARE CHILDREN OF ROOT
22 1S MAX

REPLACE WITH LAST LEAF NODE

REPLACE WITH LAST LEAF NODE

REPLACE WITH LAST LEAF NODE

RESTORE ORDER WITH CHILDREN
7 15 ON A MAX LEVEL, SO MUST BE > THAN CHILDREN

RESTORE ORDER WITH CHILDREN
7 15 ON A MAX LEVEL, SO MUST BE > THAN CHILDREN
NO SWAP REQUIRED

7 1S NOW A MAX NODE
PERCOLATE DOWN MAX LEVELS

COMPARE TO ALL 4 GRANDCHILDREN
(OR, 3 IN THIS CASE)
IS # GREATER THAN ALL?

COMPARE TO ALL 4 GRANDCHILDREN
(OR, 3 IN THIS CASE)
IS # GREATER THAN ALL?

e O Gl i
............. 0 MAX

- MAX

COMPARE TO ALL 4 GRANDCHILDREN
(OR, 3 IN THIS CASE)
IS # GREATER THAN ALL?

e O Gl i
............. @ MAX

- MAX

DOES 7 HAVE MORE GRANDCHILDREN?

DONE!

-iIf 7 had been less than one of its DIRECT children we
would have swapped them

-we would have then percolated that child down the
max levels instead of 7

-very similar to a regular min-heap, except we skip
every other level when percolating

79

deleting the min

80

-the min node is always the ___
-replace it with last leaf node

-restore order with direct children

-then, percolate new root down the min levels

81

WANT TO DELETE THE MIN

WANT TO DELETE THE MIN

WANT TO DELETE THE MIN
REPLACE WITH THE LAST LEAF NODE

WANT TO DELETE THE MIN
REPLACE WITH THE LAST LEAF NODE

WANT TO DELETE THE MIN
REPLACE WITH THE LAST LEAF NODE

RESTORE ORDER WITH DIRECT CHILDREN

RESTORE ORDER WITH DIRECT CHILDREN
IS # < BOTH CHILDREN?

RESTORE ORDER WITH DIRECT CHILDREN
IS # < BOTH CHILDREN?

SWAP WITH SMALLEST () "
.............) e () Rl

MAX

RESTORE ORDER WITH DIRECT CHILDREN
IS # < BOTH CHILDREN?
SWAP WITH SMALLEST

PERCOLATE 6 DOWN MIN LEVELS

PERCOLATE 6 DOWN MIN LEVELS
COMPARE TO ALL GRANDCHILDREN
S 6 < ALL THE GRANDCHILDREN?

PERCOLATE 6 DOWN MIN LEVELS

COMPARE TO ALL GRANDCHILDREN

S 6 < ALL THE GRANDCHILDREN?

PERCOLATE 6 DOWN MIN LEVELS

COMPARE TO ALL GRANDCHILDREN

S 6 < ALL THE GRANDCHILDREN?

PERCOLATE 6 DOWN MIN LEVELS

COMPARE TO ALL GRANDCHILDREN

S 6 < ALL THE GRANDCHILDREN?

DOES 6 HAVE GRANDCHILDREN?

6 HAS NO GRANDCHILDREN, BUT IS NOT A LEAF NODE
COMPARE WITH DIRECT CHILDREN TO ENSURE ORDER PROPERTY

6 1S ON A MIN LEVEL, SO IT MUST BE SMALLER THAN CHILDREN
SWAP WITH SMALLEST

6 1S ON A MIN LEVEL, SO IT MUST BE SMALLER THAN CHILDREN
SWAP WITH SMALLEST

6 1S ON A MIN LEVEL, SO IT MUST BE SMALLER THAN CHILDREN
SWAP WITH SMALLEST

6 1S ON A MIN LEVEL, SO IT MUST BE SMALLER THAN CHILDREN
SWAP WITH SMALLEST
DONE!

delete algorithm

delete max (min is analogous)

1.locate node X (node containing max item)
2.replace X with last node in tree (last index in array!)
3.determine if new X is violating order property with
direct children
- If s0, swap contents of X with the largest child

4.percolate new item X down max levels

5.1f lowest max level reached, restore order with
lowest min level (if applicable)

103

doubly-ended priority queue

104

-add
-findMin
-findMax

-deleteMin

-deleteMax

-min AND max items can be found in constant time
with a min-max heap

-BUT... lots of special cases

-tutorial on website with diagrams and step-by-step
explanations

105

next time...

106

-reading
-chapter 12 in book

-homework
-assignment 10 due tonight
-assignment 11 Is out

107

