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administration…
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-Ryan’s Review tonight!

-office hours today

-final exam on Thursday, 10:30am
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-Java basics
-variables, types 
-control flow 
-reference types 
-classes, methods 

-OOP
-inheritance 
-polymorphism 
-interfaces
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-generics
-wild cards 
-generic classes 
-generic static methods 

-comparators

-primitive type wrappers
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-algorithm analysis
-growth rates 
-Big-O 
-determining the complexity of algorithms
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-sorting
-selection sort 
-insertion sort 
-Shell sort 
-mergesort 
-quicksort 

-you must be able to demonstrate that you understand 
why these algorithms perform as they do
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-recursion
-writing recursive methods 
-reading recursive methods 
-base cases 
-when to use recursion vs iteration
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-linked structures
-memory allocation  
-array vs linked structures 
-access arrays vs linked structures 

-linked lists
-implementation 
-performance
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-stacks
-implementation 

-array and linked list versions 
-performance 

-queues
-implementation 

-array and linked list versions 
-performance
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-trees
-traversals 

-pre-, in-, and post-orders 
-reasoning about: 

-depth of nodes 
-number and type (leaf, inner, root) 
-balance 

-you should know the performance characteristics and 
usefulness of any data structure we have studied
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-binary search trees
-importance of a balanced BST 
-what cases balance/unbalance 
-insertion, deletion, search 

-graphs
-uses of graphs 
-DFS 
-BFS 
-Dijkstra’s algorithm
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-hash tables
-linear probing 
-quadratic probing 
-separate chaining 
-clustering 
-load factor 
-performance (time and space) 

-hash functions 
-what makes a good hash functions? 
-what rules must a hash function obey?
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-complete binary trees
-reasoning about height 
-how many nodes does each level contain? 
-representing complete trees as an array



17

-binary heaps (min, max, and min-max)
-structure property (complete) 
-order property (min, max, and min-max) 
-performance of all operations 

-deleteMin() and deleteMax() 
-add() 
-percolate up 
-percolate down 
-build-heap operation
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-binary
-base two number system 
-bits 
-bytes 

-hexadecimal
-base sixteen number system 
-bytes in hex 

-converting between bases 2, 10, and 16

-ASCII
-you don’t need to memorize the table!
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-Huffman compression
-binary tries 
-constructing a Huffman tree 
-compression 
-decompression 
-tie-breaking 

-and why it’s necessary! 
-encoding tree reconstruction information



questions
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finding the maximum item in an array
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1) initialize max to the first element

2)scan through each item in the array
- if the item is greater than max, update max

algorithm?

what is the big-o complexity of this algorithm?
1) c 
2) log N 
3) N 
4) N log N 
5) N2 

6) N3



finding the smallest difference
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algorithm?

what is the big-o complexity of this algorithm?

diff = MAX_INTEGER; 
for(int i=0; i<array.length-1; i++) 
{ 
  num1 = array[i]; 
  for(int j=i+1; j<array.length; j++) 
  { 
    num2 = array[j]; 
    if (abs(num1-num2) < diff)  
      diff = abs(num1-num2); 
  } 
} 
return diff;

1) c 
2) log N 
3) N 
4) N log N 
5) N2 

6) N3



analyze the running time

for(int i=0; i<n; i+=2) 
  sum++;

for(int i=0; i<n; i++) 
  for(int j=0; j<n*n; j++) 
    sum++

for(int i=0; i<n; i*=2) 
  sum++;

1) c 
2) log N 
3) N 
4) N log N 
5) N2 

6) N3



selection sort
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selection sort
1)find the minimum item in the unsorted part of the array

2)swap it with the first item in the unsorted part of the array

3)repeat steps 1 and 2 to sort the remainder of the array

25

what does this look like?
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what is the best-case complexity of 
selection sort?
A) c 
B) log N 
C) N 
D) N log N 
E) N2 

F) N3



insertion sort
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good for small N



insertion sort
1)the first array item is the sorted portion of the array

2)take the second item and insert it in the sorted portion

3)repeat steps 1 and 2 to sort the remainder of the array
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what does this look like?



worst case scenario…

-what are the number of inversions in the worst case?
-what IS the worst case? 

-when every unique pair is inverted… 

-how many unique pairs are there?
-(hint: remember Gauss’s trick!)
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76 45 11 9 0 -3 -8 inverted

how many inversions are there?

N * (N-1)/2 = (N2 - N)/2
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insertion sort is O(N+I)
what is the worst-case complexity of insertion sort?
A) c 
B) log N 
C) N 
D) N log N 
E) N2 

F) N3
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insertion sort is O(N+I)
what is the best-case complexity of insertion sort?
A) c 
B) log N 
C) N 
D) N log N 
E) N2 

F) N3



selection vs insertion
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worst: 
average: 

best:

O(N2) 
O(N2) 
O(N2)

O(N2) 
O(N2) 
O(N)

which one performs better in practice?  
A) selection 
B) insertion



shellsort
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the simplest subquadratic sorting algorithm
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shellsort
1)set the gap size to N/2

2)consider the subarrays with elements at gap size from 
each other

3)do insertion sort on each of the subarrays

4)divide the gap size by 2 

5)repeat steps 2 — 4 until the is gap size is <1

what does this look like?

insertion sort, with a twist
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how do we describe insertion sort with respect to shellsort?



exercise 1
-how to compute N! 

N! = N * N-1 * N-2 * … * 2 * 1 

-how would you compute this using a for-loop?

-how would you compute this using recursion?
-think about: 

-what is the base case? 
-what is recursive?
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exercise 1
-how to compute N! 

N! = N * N-1 * N-2 * … * 2 * 1 

-how would you compute this using a for-loop?

-how would you compute this using recursion?
-think about: 

-what is the base case? 
-what is recursive?

37

what is the complexity of the for-loop method?

A) c 
B) log N 
C) N 
D) N log N 
E) N2 

F) N3



exercise 1
-how to compute N!

N! = N * N-1 * N-2 * … * 2 * 1 

-how would you compute this using a for-loop?

-how would you compute this using recursion?
-think about: 

-what is the base case? 
-what is recursive?
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what is the complexity of the recursive method?

A) c 
B) log N 
C) N 
D) N log N 
E) N2 

F) N3



mergesort
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divide and conquer



mergesort
1)divide the array in half

2)sort the left half

3)sort the right half

4)merge the two halves together

40

what does this look like?

2) take the left half, and go back 
to step 1

3) take the right half, and go 
back to step 1

until???

until???



void mergesort(int[] arr, int left, int right) 
{ 
// arrays of size 1 are already sorted 
if(start >= end)  
return; 

int mid = (left + right) / 2; 
mergsort(arr, left, mid); 
mergsort(arr, mid+1, right); 
merge(arr, left, mid+1, right); 

}

41

divide

conquer

what is the complexity of MERGESORT?
A) c 
B) log N 
C) N 
D) N log N 
E) N2 

F) N3

is this the worst || average || best-case?



quicksort
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another divide and conquer



quicksort
1)select an item in the array to be the pivot

2)partition the array so that all items less than the pivot 
are to the left of the pivot, and all the items greater than 
the pivot are to the right

3)sort the left half

4)sort the right half
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what does this look like?

3) take the left half, and go back 
to step 1

4) take the right half, and go 
back to step 1

until???

until???



in-place partitioning
1)select an item in the array to be the pivot

2)swap the pivot with the last item in the array (just get it out of the way)

3)step from left to right until we find an item > pivot
-this item needs to be on the right of the partition 

4)step from right to left until we find an item < pivot
-this item needs to be on the left of the partition 

5)swap items

6)continue until left and right stepping cross

7)swap pivot with left stepping item

44

what does this look like?



quicksort complexity
-performance of quick sort heavily depends on which 
array item is chosen as the pivot

-best case: pivot partions the array into two equally-
sized subarrays at each stage — O(N log N) 

-worst case: partition generates an empty subarray at 
each stage — O(N2)

-average case: bound is O(N log N)
-proof is quite involved, see the textbook if you are 
curious
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http://bigocheatsheet.com


linked list vs array
-cost of accessing a random item at location i?

-cost of removeFirst()?

-cost of addFirst()?

47

A) c 
B) log N 
C) N 
D) N log N 
E) N2 

F) N3
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inserting into an array:
5 9 12 17 25

8

5 8 9 12 17 25

what is the cost of insertion?

A) c 
B) log N 
C) N 
D) N log N 
E) N2 

F) N3

inserting into a linked list:

5 9 12 17 25

8

5 9 12 17 25

8



The root is ___. 
The height is ___. 
The parent of v3 is ___. 

The depth of v3 is ___. 

The children of v6 are ___. 

The ancestors of v1 are ___. 

The descendants of v6 are ___. 

The leaves are ___. 
Every node other than ___ is the root of a subtree.

4949

v2

v1 v3

v4

v6

v5 v7 v8

v9
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is this a BST?
A) yes 
B) no

dog

cat fish

alpaca
elephant

zebra

bee

unicorn

bird
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is this a BST?
A) yes 
B) no
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d

eb

a

which of the following trees is 
the result of adding c to this bst?

d

eb

a

d

eb

a

d

eb

ac c c

A) B) C)



53

9

5 16

6 192

3

11

12

what will 5’s left child be after deleting 2?
A) 3 
B) 6 
C) null
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9

5 16

6 192

3

12

13

what node will replace 9 after deleting 9?
A) 6 
B) 10 
C) 13 
D) 19

10

11
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9

5 16

6 192

3

11

12

what node will replace 5 after deleting 5?
A) 2 
B) 3 
C) 6 
D) 12
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what path will BFS find from B to C?

A) B E C 
B) B E A D C 
C) B E D C 
D) none

A

B

C

D

E
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what path will DFS find from A to D?

A) A B E D 
B) A D 
C) none 
D) this is a trick question

A

B

C

D

E
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what is true of DFS, searching from a start 
node to a goal node?
A) if a path exists, it will find it 
B) it is guaranteed to find the shortest path 
C) it is guaranteed to not find the shortest path 
D) it must be careful about cycles 
E) a, b, and d 
F) a, c, and d 
G) a and d
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what is true of BFS, searching from a start 
node to a goal node?
A) if a path exists, it will find it 
B) it is guaranteed to find the shortest path 
C) it is guaranteed to not find the shortest path 
D) it must be careful about cycles 
E) a, b, and d 
F) a, c, and d 
G) a and d
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what path will Dijkstra’s find from A to C?

A) A B E C 
B) A D C 
C) A B E D C

A

B

C

D

E

3

4

2

8

3

12
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what is the load factor λ for the 
following hash table?
A) 4 
B) 6 
C) 0.4 
D) 0.5 
E) 0.6

104 34 19 111 5298
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using linear probing, in what index will 
item 93 be added?
A) 1 
B) 5 
C) 6 
D) 7

array:

index: 0 1 2 3 4 5 6 7 8 9

891849 349 58
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using quadratic probing, in what index 
will item 22 be added?
A) 1 
B) 5 
C) 6 
D) 7

array:

index: 0 1 2 3 4 5 6 7 8 9

891849 349 58
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is this a min-heap?
A) yes 
B) no 1

14 12

31 29 17 4
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is this a min-heap?
A) yes 
B) no 1

14 12

31 29 17 90

42 23
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what is the binary representation of 
the number 39?

A) 1 0 1 0 0 1 
B) 1 0 0 1 1 1  
C) 0 1 0 1 1 1 
D) 1 1 0 0 0 1



68

how many different values 
can 4 bits hold?

A) 7 
B) 8 
C) 15 
D) 16 
E) 31 
F) 32
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what is the hex value of these 8 bits?  
1010  0010

A) B2 
B) A2 
C) 12 
D) 10
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what string do these bits encode? 
0 1 1 0 0 0 0 1 0

A) low 
B) wow 
C) wool 
D) were

o
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