
cs2420 | Introduction to Algorithms and Data Structures | Spring 2015
WRAP-UP

1

administration…

2

3

-Ryan’s Review tonight!

-office hours today

-final exam on Thursday, 10:30am

4

current final grades
nu

m
be

r o
f s

tu
de

nt
s

score

topics

5

6

-Java basics
-variables, types
-control flow
-reference types
-classes, methods

-OOP
-inheritance
-polymorphism
-interfaces

7

-generics
-wild cards
-generic classes
-generic static methods

-comparators

-primitive type wrappers

8

-algorithm analysis
-growth rates
-Big-O
-determining the complexity of algorithms

9

-sorting
-selection sort
-insertion sort
-Shell sort
-mergesort
-quicksort

-you must be able to demonstrate that you understand
why these algorithms perform as they do

10

-recursion
-writing recursive methods
-reading recursive methods
-base cases
-when to use recursion vs iteration

11

-linked structures
-memory allocation
-array vs linked structures
-access arrays vs linked structures

-linked lists
-implementation
-performance

12

-stacks
-implementation

-array and linked list versions
-performance

-queues
-implementation

-array and linked list versions
-performance

13

-trees
-traversals

-pre-, in-, and post-orders
-reasoning about:

-depth of nodes
-number and type (leaf, inner, root)
-balance

-you should know the performance characteristics and
usefulness of any data structure we have studied

14

-binary search trees
-importance of a balanced BST
-what cases balance/unbalance
-insertion, deletion, search

-graphs
-uses of graphs
-DFS
-BFS
-Dijkstra’s algorithm

15

-hash tables
-linear probing
-quadratic probing
-separate chaining
-clustering
-load factor
-performance (time and space)

-hash functions
-what makes a good hash functions?
-what rules must a hash function obey?

16

-complete binary trees
-reasoning about height
-how many nodes does each level contain?
-representing complete trees as an array

17

-binary heaps (min, max, and min-max)
-structure property (complete)
-order property (min, max, and min-max)
-performance of all operations

-deleteMin() and deleteMax()
-add()
-percolate up
-percolate down
-build-heap operation

18

-binary
-base two number system
-bits
-bytes

-hexadecimal
-base sixteen number system
-bytes in hex

-converting between bases 2, 10, and 16

-ASCII
-you don’t need to memorize the table!

19

-Huffman compression
-binary tries
-constructing a Huffman tree
-compression
-decompression
-tie-breaking

-and why it’s necessary!
-encoding tree reconstruction information

questions

20

finding the maximum item in an array

21

1) initialize max to the first element

2)scan through each item in the array
- if the item is greater than max, update max

algorithm?

what is the big-o complexity of this algorithm?
1) c
2) log N
3) N
4) N log N
5) N2

6) N3

finding the smallest difference

22

algorithm?

what is the big-o complexity of this algorithm?

diff = MAX_INTEGER;
for(int i=0; i<array.length-1; i++)
{
 num1 = array[i];
 for(int j=i+1; j<array.length; j++)
 {
 num2 = array[j];
 if (abs(num1-num2) < diff)
 diff = abs(num1-num2);
 }
}
return diff;

1) c
2) log N
3) N
4) N log N
5) N2

6) N3

analyze the running time

for(int i=0; i<n; i+=2)
 sum++;

for(int i=0; i<n; i++)
 for(int j=0; j<n*n; j++)
 sum++

for(int i=0; i<n; i*=2)
 sum++;

1) c
2) log N
3) N
4) N log N
5) N2

6) N3

selection sort

24

selection sort
1)find the minimum item in the unsorted part of the array

2)swap it with the first item in the unsorted part of the array

3)repeat steps 1 and 2 to sort the remainder of the array

25

what does this look like?

26

what is the best-case complexity of
selection sort?
A) c
B) log N
C) N
D) N log N
E) N2

F) N3

insertion sort

27

good for small N

insertion sort
1)the first array item is the sorted portion of the array

2)take the second item and insert it in the sorted portion

3)repeat steps 1 and 2 to sort the remainder of the array

28

what does this look like?

worst case scenario…

-what are the number of inversions in the worst case?
-what IS the worst case?

-when every unique pair is inverted…

-how many unique pairs are there?
-(hint: remember Gauss’s trick!)

29

76 45 11 9 0 -3 -8 inverted

how many inversions are there?

N * (N-1)/2 = (N2 - N)/2

30

insertion sort is O(N+I)
what is the worst-case complexity of insertion sort?
A) c
B) log N
C) N
D) N log N
E) N2

F) N3

31

insertion sort is O(N+I)
what is the best-case complexity of insertion sort?
A) c
B) log N
C) N
D) N log N
E) N2

F) N3

selection vs insertion

32

worst:
average:

best:

O(N2)
O(N2)
O(N2)

O(N2)
O(N2)
O(N)

which one performs better in practice?
A) selection
B) insertion

shellsort

33

the simplest subquadratic sorting algorithm

34

shellsort
1)set the gap size to N/2

2)consider the subarrays with elements at gap size from
each other

3)do insertion sort on each of the subarrays

4)divide the gap size by 2

5)repeat steps 2 — 4 until the is gap size is <1

what does this look like?

insertion sort, with a twist

35

how do we describe insertion sort with respect to shellsort?

exercise 1
-how to compute N!

N! = N * N-1 * N-2 * … * 2 * 1

-how would you compute this using a for-loop?

-how would you compute this using recursion?
-think about:

-what is the base case?
-what is recursive?

36

exercise 1
-how to compute N!

N! = N * N-1 * N-2 * … * 2 * 1

-how would you compute this using a for-loop?

-how would you compute this using recursion?
-think about:

-what is the base case?
-what is recursive?

37

what is the complexity of the for-loop method?

A) c
B) log N
C) N
D) N log N
E) N2

F) N3

exercise 1
-how to compute N!

N! = N * N-1 * N-2 * … * 2 * 1

-how would you compute this using a for-loop?

-how would you compute this using recursion?
-think about:

-what is the base case?
-what is recursive?

38

what is the complexity of the recursive method?

A) c
B) log N
C) N
D) N log N
E) N2

F) N3

mergesort

39

divide and conquer

mergesort
1)divide the array in half

2)sort the left half

3)sort the right half

4)merge the two halves together

40

what does this look like?

2) take the left half, and go back
to step 1

3) take the right half, and go
back to step 1

until???

until???

void mergesort(int[] arr, int left, int right)
{
// arrays of size 1 are already sorted
if(start >= end)
return;

int mid = (left + right) / 2;
mergsort(arr, left, mid);
mergsort(arr, mid+1, right);
merge(arr, left, mid+1, right);

}

41

divide

conquer

what is the complexity of MERGESORT?
A) c
B) log N
C) N
D) N log N
E) N2

F) N3

is this the worst || average || best-case?

quicksort

42

another divide and conquer

quicksort
1)select an item in the array to be the pivot

2)partition the array so that all items less than the pivot
are to the left of the pivot, and all the items greater than
the pivot are to the right

3)sort the left half

4)sort the right half

43

what does this look like?

3) take the left half, and go back
to step 1

4) take the right half, and go
back to step 1

until???

until???

in-place partitioning
1)select an item in the array to be the pivot

2)swap the pivot with the last item in the array (just get it out of the way)

3)step from left to right until we find an item > pivot
-this item needs to be on the right of the partition

4)step from right to left until we find an item < pivot
-this item needs to be on the left of the partition

5)swap items

6)continue until left and right stepping cross

7)swap pivot with left stepping item

44

what does this look like?

quicksort complexity
-performance of quick sort heavily depends on which
array item is chosen as the pivot

-best case: pivot partions the array into two equally-
sized subarrays at each stage — O(N log N)

-worst case: partition generates an empty subarray at
each stage — O(N2)

-average case: bound is O(N log N)
-proof is quite involved, see the textbook if you are
curious

45

46

http://bigocheatsheet.com

linked list vs array
-cost of accessing a random item at location i?

-cost of removeFirst()?

-cost of addFirst()?

47

A) c
B) log N
C) N
D) N log N
E) N2

F) N3

48

inserting into an array:
5 9 12 17 25

8

5 8 9 12 17 25

what is the cost of insertion?

A) c
B) log N
C) N
D) N log N
E) N2

F) N3

inserting into a linked list:

5 9 12 17 25

8

5 9 12 17 25

8

The root is ___.
The height is ___.
The parent of v3 is ___.

The depth of v3 is ___.

The children of v6 are ___.

The ancestors of v1 are ___.

The descendants of v6 are ___.

The leaves are ___.
Every node other than ___ is the root of a subtree.

4949

v2

v1 v3

v4

v6

v5 v7 v8

v9

50

is this a BST?
A) yes
B) no

dog

cat fish

alpaca
elephant

zebra

bee

unicorn

bird

51

is this a BST?
A) yes
B) no

p

k y

ni

c

rg j

a d

zt

u

v

52

d

eb

a

which of the following trees is
the result of adding c to this bst?

d

eb

a

d

eb

a

d

eb

ac c c

A) B) C)

53

9

5 16

6 192

3

11

12

what will 5’s left child be after deleting 2?
A) 3
B) 6
C) null

54

9

5 16

6 192

3

12

13

what node will replace 9 after deleting 9?
A) 6
B) 10
C) 13
D) 19

10

11

55

9

5 16

6 192

3

11

12

what node will replace 5 after deleting 5?
A) 2
B) 3
C) 6
D) 12

56

http://bigocheatsheet.com

57

what path will BFS find from B to C?

A) B E C
B) B E A D C
C) B E D C
D) none

A

B

C

D

E

58

what path will DFS find from A to D?

A) A B E D
B) A D
C) none
D) this is a trick question

A

B

C

D

E

59

what is true of DFS, searching from a start
node to a goal node?
A) if a path exists, it will find it
B) it is guaranteed to find the shortest path
C) it is guaranteed to not find the shortest path
D) it must be careful about cycles
E) a, b, and d
F) a, c, and d
G) a and d

60

what is true of BFS, searching from a start
node to a goal node?
A) if a path exists, it will find it
B) it is guaranteed to find the shortest path
C) it is guaranteed to not find the shortest path
D) it must be careful about cycles
E) a, b, and d
F) a, c, and d
G) a and d

61

what path will Dijkstra’s find from A to C?

A) A B E C
B) A D C
C) A B E D C

A

B

C

D

E

3

4

2

8

3

12

62

what is the load factor λ for the
following hash table?
A) 4
B) 6
C) 0.4
D) 0.5
E) 0.6

104 34 19 111 5298

63

using linear probing, in what index will
item 93 be added?
A) 1
B) 5
C) 6
D) 7

array:

index: 0 1 2 3 4 5 6 7 8 9

891849 349 58

64

using quadratic probing, in what index
will item 22 be added?
A) 1
B) 5
C) 6
D) 7

array:

index: 0 1 2 3 4 5 6 7 8 9

891849 349 58

65

is this a min-heap?
A) yes
B) no 1

14 12

31 29 17 4

66

is this a min-heap?
A) yes
B) no 1

14 12

31 29 17 90

42 23

67

what is the binary representation of
the number 39?

A) 1 0 1 0 0 1
B) 1 0 0 1 1 1
C) 0 1 0 1 1 1
D) 1 1 0 0 0 1

68

how many different values
can 4 bits hold?

A) 7
B) 8
C) 15
D) 16
E) 31
F) 32

69

what is the hex value of these 8 bits?
1010 0010

A) B2
B) A2
C) 12
D) 10

70

what string do these bits encode?
0 1 1 0 0 0 0 1 0

A) low
B) wow
C) wool
D) were

o

wr

l

H‘ ‘ ed

