
Visual Links across Applications
Manuela Waldner∗ Werner Puff† Alexander Lex‡ Marc Streit§ Dieter Schmalstieg¶

Institute for Computer Graphics and Vision
Graz University of Technology

Austria

ABSTRACT

The tasks carried out by modern information workers become in-
creasingly complex and time-consuming. They often require to
evaluate, interpret, and compare information from different sources
presented in multiple application windows. With large, high res-
olution displays, multiple application windows can be arranged in
a way so that a large amount of information is visible simultane-
ously. However, individual application windows’ contents and vi-
sual representations are isolated and relations between information
items contained in these windows are not explicit. Thus, relating
and comparing information across applications has to be executed
manually by the user, which is a tedious and error-prone task.

In this paper we present visual links connecting related pieces
of information across application windows and thereby guiding the
user’s attention to relevant information. Applications are coordi-
nated by a management application accessible via a light-weight
interface. User selections are synchronized across registered appli-
cations and visual links are rendered on top of the desktop content
by a window manager. Initial user feedback was very positive and
indicates that visual links improve task efficiency when analyzing
information from multiple sources.

Keywords: visual links, information analysis, multiple coordi-
nated views

Index Terms: H.5.2 [Information interfaces and presentation (e.g.,
HCI)]: User Interfaces—Interaction styles (e.g., commands, menus,
forms, direct manipulation)

1 INTRODUCTION

Information analysis often requires to investigate and evaluate data
from different sources in different visual representations. This anal-
ysis process may incorporate multiple applications – such as web
browsers, document readers, or dedicated visualization software –
arranged in multiple windows on a computer desktop. With in-
creasing display size, these application windows can be arranged
side-by-side, so all relevant information is simultaneously visible.
However, operating systems treat individual application windows
independently without coordinating their content, their visual rep-
resentations, or visualizing correlations across multiple windows.
Relating and comparing information across applications therefore
requires the user to manually search for relevant items, making the
process exhaustive and error-prone.

Multiple coordinated views employ two or more visualization
views for data investigation (e.g., [14, 7, 25]). The individual views
are linked, so changes in one view are reflected in all other views.

∗e-mail: waldner@icg.tugraz.at
†e-mail: puff@icg.tugraz.at
‡e-mail: lex@icg.tugraz.at
§e-mail: streit@icg.tugraz.at
¶e-mail: schmalstieg@icg.tugraz.at

(a)

(b)

Figure 1: Using visual links to relate information on web pages with
geographic locations: Harvard University (a) and South Africa (b).

The application areas for such systems are manifold, for instance:
tasks where detailed and contextual information is required at the
same time [19], tasks where alternative views on the same data are
of interest [6, 21], or tasks where a comparison of different data
sets is needed [20]. Multiple coordinated views typically are em-
bedded in one visualization system. However, these visualization
systems usually provide only specialized visualization views and
data sets for the respective application area. To extend their appli-
cability, unsynchronized separate applications for additional infor-
mation and views are required in many cases. To overcome this
limitation, North and Shneiderman developed a system that coordi-
nates multiple applications through an API [19]. While these ap-
proaches help to keep the workspace consistent and provide visual
indications of relationships through synchronized highlighting or
brushing [2], they fail to actively guide the user’s attention to rele-
vant items.

When working with multiple application windows on a conven-
tional desktop, a large amount of information is visible – in partic-

ular if the available display space is large [13, 3]. With multiple
applications involved, the content is highly heterogeneous, and the
user needs to observe different data types – like text, graphs, im-
ages, or maps – which may or may not contribute to the primary
task. As only a small portion of the display is actively observed
by the user [28], most of the information is located in the visual
periphery. Guiding the attention to peripheral items or showing re-
lationships between information across application windows thus
requires strong visual cues to guide the user’s attention to locations
of interest and to show relationships and patterns explicitly.

In this paper we present visual links – connection lines link-
ing related data items – across application windows (see Figure 1).
Applications communicate with a management application through
a light-weight interface. Rendering of the connection lines is ac-
complished as a plug-in to an OpenGL-based compositing window
manager. To demonstrate the usefulness of cross-application visual
links we present usage scenarios with three application examples –
a web browser, a visualization software, and a map mashup appli-
cation. Initial user feedback is encouraging and showed that users
understood and appreciated the concept of visual links.

2 RELATED WORK

Our work draws from the field of multiple coordinated views, com-
mon in information visualization, and builds upon knowledge from
display space management research, in particular for large-scale
displays.

2.1 Multiple Coordinated Views
Multiple coordinated views have been used in visualization for
decades in different application domains (e.g., flow data simula-
tion [7] or biomedical data analysis [25]). While such systems
typically embed multiple views in a special-purpose visualization
application, Snap-Together Visualization [19] is a notable excep-
tion. It provides a light-weight API based on COM and uses a
database for data synchronization across views and applications,
respectively. Snapped applications provide synchronized mecha-
nisms, such as “load”, “select” (synchronized highlighting), and
synchronized scrolling. Views are coordinated pairwise based on
a set of actions and join relationships. Similar to Snap-Together
Visualization, we provide a minimally-invasive interface for cross-
application communication of arbitrary applications. However, our
work differs as we focus on the effect of visualizing relationships
across applications, while Snap-Together uses application specific
highlighting only.

North and Shneiderman [19] pointed out the strength of coor-
dinated views for tasks involving analysis of overview informa-
tion and detailed information on demand. Plumlee and Ware [21]
showed that multiple windows are more efficient if the number of
items to be investigated is high and, as a consequence, the demands
on visual memory are high. Baldonado et al. [27] set up rules for
multiple view usage and recommend to employ them when the in-
formation can be represented in diverse ways (like overview and
detail), if multiple views illustrate correlations, or if complex data
can be split into smaller, easily manageable chunks. They also
pointed out the importance of making the relationships among mul-
tiple views apparent to the user – the key aspect of our work.

Relationships across multiple views are traditionally expressed
through highlighting or color coding (for example in Tableau [24],
prefuse [10] or SimVis [7]). Only a few multiple view systems
use more expressive highlighting mechanisms like line connections.
Spiral calendar [18] shows the relationships among multiple calen-
dar hierarchies through half-transparent connections. Shneiderman
and Aris [23] link categories of network visualizations to another.
To avoid visual clutter, the user can filter the number of links by
dynamic queries. In VisLink, Collins and Carpendale [4] visualize
the relationships of individual 2D visualization planes arranged in

3D space through multiple edge connections. They argue that these
edge connections help to reveal relationships, patterns, and connec-
tions between views. Streit et al. [25] use visual links to show de-
pendencies between 2D pathways (models of biological processes)
and gene activity and developed a 3D view arrangement, the Bucket,
to show relations between arbitrary views. Bubblesets [5] visualize
set relationships within existing visualizations. Although this con-
cept can be conceptually applied across multiple views, the imple-
mentation is limited to single view applications. Our approach dif-
fers from these applications as we do not only link views managed
by one application, but include information from different sources
and applications, like web pages and maps.

In LivOlay, Jiang et al. [15] relate two remote desktop views on
a large projected display by overlaying the two view planes based
on a manual spatial registration. Tan et al. [26] replicate arbitrary
window regions into independent small WinCuts. Their main appli-
cation areas are convenient side-by-side comparisons of arbitrary
data sets and effective spatial organization of information on lim-
ited screen space. While WinCuts potentially removes the informa-
tion items from their contextual surroundings, LivOlay only works
for information which is spatially related, like maps. In addition,
these approaches both disrupt the user’s spatial arrangement of ap-
plication windows – which is particularly important for the user’s
task management [16, 3]. In contrast, our approach does not in-
terfere with the user’s spatial window layout and combines infor-
mation from various application sources, thereby dealing with arbi-
trary data which cannot easily be spatially registered.

2.2 Display Space Management

Relating information from multiple application windows is an in-
creasingly demanding topic, as display sizes, as well as the amount
of available information, steadily grow. Investigations of users’
display space management on multi-monitor systems [8, 3] and
large displays [13, 3] showed that the number of visible application
windows increases with the available display size. Hutchings and
Stasko [13] showed that users rarely maximize windows on single
large displays, but rather “carefully coordinate” multiple windows
on the available screen space. The users’ main consideration is that
they use information from multiple windows to interact with the
primary task window. They furthermore observed that users tend
to get distracted by irrelevant information shown in secondary win-
dows. Our work focuses on this issue and aims to explicitly visual-
ize information which is relevant to conduct an information analysis
task.

Research on perception showed that only a very small portion
of the display is in the active user’s visual field [28]. Thus, inter-
action on large or multiple displays requires guidance mechanisms
to make users aware of changes in the display and regions of in-
terest. Khan et al. [17] use a spotlight metaphor to illuminate the
region on a large-scale projection wall, where the presenter is cur-
rently interacting. They showed that users more easily spot the cur-
sor on a large display wall using their technique than without any
highlighting technique. Rekimoto and Saitoh [22] visualize mouse
pointer locations in a multi-display environment by anchoring the
cursor at a fixed location on the user’s laptop and drawing a line
connection to the current spot on tabletop or wall display. Hoff-
mann et al. [11] designed visual cues for window switching. They
investigated several highlighting techniques for guiding the user’s
attention to the new active window on a triple monitor setup. They
found that combinations of frames and trials are most effective. All
those techniques aim to guide the user to a single spot – the loca-
tion where interaction takes place or new information is appearing.
In contrast, we investigate attention guidance to multiple regions of
interest scattered arbitrarily on the available display space.

Others have developed techniques to visualize off-screen loca-
tions for small-scale displays on handheld devices (e.g. [1, 9]). In

contrast, we investigate how visible pieces of information can be
connected to retrieve their relationships and to see patterns. How-
ever, we do consider the aspect of information being available but
currently invisible (e.g., when scrolled away in a web browser) and
apply an arrow-based off-screen visualization for these situations.

3 VISUAL LINKS ON THE DESKTOP

Information analysis requires to evaluate, compare, and relate in-
formation from different sources to find trends and patterns. To
support these tasks, visualization systems use techniques like high-
lighting or color coding. However, supportive information sources,
such as web pages or spreadsheets, lack such functionality. There,
information is encoded in structures like text, maps, or images.
When working with data sources shown in separate applications,
the information is contained in multiple application windows, spa-
tially arranged within the display space, and potentially surrounded
by other application windows not contributing to the analysis task.
Without coordination of applications and visual linking, the user
first has to gain an overview of available information in all appli-
cation windows, followed by a closer investigation of potentially
relevant items in these windows, to finally relate these items in or-
der to identify trends, patterns, and correlations.

Supportive information located at the periphery of the display is
likely to be overlooked, even when highlighted. Hoffmann et al.
[11] found that for targets appearing at a large distance from the
focus window, trails to the target location performed better than
highlighting the target with a colored frame. They also identified
curved, asymmetric trails to be more easily detectable, as they are
more distinguishable from the merely rectangular screen content.

Based on these considerations and inspired by previous work in
multiple view visualization (e.g., [4, 25]), we created visual links
for the desktop, connecting related, but spatially distributed, data
items of various sources and different representations. With visual
links we can explicitly and consistently show related items across
independent applications.

3.1 Application Coordination
Similar to Snap-Together Visualization [19], our software infras-
tructure uses a minimally invasive approach to coordinate exist-
ing applications. It supports rendering of visual links across ap-
plications registered to a management process running in the back-
ground. Multiple client applications can register to this process and
report selection identifiers upon local user selection. The registered
applications themselves determine how a user selection is triggered.
Possible selection events are: hovering the mouse pointer over an
element, marking text, or entering a search string. The selection ID
is sent to the management application as character string where it
is distributed to all registered applications. Each client application
evaluates the incoming selection ID individually. For instance, in
text documents, these selection identifiers correspond directly to a
substring of the document (e.g., single words), while in a spread-
sheet application, it may be mapped to a whole column of a table
with the selection identifier as column headline. To resolve more
complex relations, client applications are free to map the incom-
ing selection ID to others. For instance, an application may trans-
late the incoming identifier string so it matches the language of the
displayed data set or can determine a suitable hierarchy level for
mapping hierarchical data structures. Once a client application has
found an entity matching the provided selection ID, it reports the
bounding rectangle of the selection, or alternatively, a single point,
to the management application, where it is used to render the visual
links.

3.2 Visualizing Connections
The selection regions reported by the client applications may en-
close a string in a text document (Figure 2a), mark a country in

a map application (Figure 2b), or highlight an element in a chart.
Following Hoffmann et al.’s guidelines [11], we indicate related re-
gions by rendering frames around the selection regions, as well as
by connection lines from the user’s current interaction window to
the selection regions. If multiple selection regions are reported in
a single application window, connection lines are bundled [12] to
reduce visual clutter. Bundling also clearly indicates relatedness of
selection regions with regard to their application window.

(a) (b) (c)

Figure 2: Close-ups on single connection lines and selection regions
highlighting (a) text and (b) a map location. Hidden items on a web-
site are indicated by an arrow (c).

We distinguish two window types: The source window is the ap-
plication window where the user selection has been registered. As
the user focus is currently on this window, all visual links to related
information emerge from this spot. If multiple selection regions are
located in the source window, each region is highlighted and con-
nected to a bundling point in the center of gravity of all regions (c.f.,
Figure 3 A), where the connections to the target windows emerge.

Target windows are all registered application windows where
no user interaction is taking place and at least one selection region
was reported. The main purpose of visual links is to lead the user’s
focus to these windows and to express the relationship of relevant
items with respect to the source window. Each target window re-
porting selection regions is linked with the source window by a sin-
gle connection line. This connection line bundles the connections to
all selection regions in the target window. In contrast to the source
window, the bundling point is set to the intersection point of the
line connecting source and target window with the target window’s
boundary. From this bundling point, the individual connection lines
to all selection regions emerge (see Figure 3 C-D).

Figure 3: Visual links emerging from a source window (A) to three
target windows (B-D). Target windows B and D contain hidden items,
indicated by an arrow. Mind the connection lines in window A and C
avoiding selection region obstacles.

Connection lines are rendered as Bézier surfaces, emerging from
the window’s bundling point with a given line width and expand-
ing to the selection region border up to a given maximum width
(c.f., Figure 2). These connections are rendered half-transparent, so
underlying data can still be identified. “Shadows” surrounding the
connections help to discriminate visual links from the desktop con-
tent. To avoid occlusion of potentially valuable information, render-

ing connection lines across selection regions is avoided. If a con-
nection line would intersect a selection region, the corner point of
the intersected region leading to the shortest non-intersecting path
is added to the connection line. This results in the connection being
“curved” around the region (Figure 3 A and C).

If an application reports selection regions outside the visible win-
dow region, arrows at the window boundaries give a visual cue
about invisible related information (see Figure 3 B and D). Contrary
to some off-screen visualization techniques encoding the exact lo-
cation of off-screen items, like Halos [1] or Wedges [9], we group
invisible regions into four off-window directions (up / down / left /
right). The width of the arrows is static, while the length encodes
the number of hidden selection regions in this direction, giving the
user a cue about the amount of invisible information in each direc-
tion. For instance, in Figure 1b, the long arrow on the bottom of
the left browser window indicates a high number of hidden items,
which can be revealed by scrolling the website further down. If
a target window has no visible, but only hidden selection regions,
visual links are drawn only to the window border (c.f., Figure 3 B).

Connection lines, selection region highlights, and arrows are dis-
played until a new user selection, a change in window layout, or a
change in window content (e.g., by scrolling) is registered. As vi-
sual links introduce some visual clutter on the desktop, we provide
two methods to alleviate this problem. The user can toggle visual
links, to only activate them when needed, by pressing a keyboard
shortcut. Additionally, the user can choose to let the links fade out
after some time (as shown in Figure 7) and can fade them back in
whenever they are useful again.

4 IMPLEMENTATION

Our visual links software infrastructure is divided into three lay-
ers (see Figure 4). The central coordinating instance between the
client applications and the rendering layer is the Visual Links Man-
ager. It collects the selection regions of the client applications and
communicates with the rendering layer via a remote procedure call
(RPC) interface. The Visual Links Renderer is the layer responsible
for routing and rendering of the visual links. Client applications
can utilize the interface exposed by the Visual Links Manager by
implementing it either directly or through an add-on.

In this section we discuss those three components, followed by a
description of three sample applications in Section 5.

Visual Link Renderer

Visual Links Manager

Maps
Mashup

Browser
Plugin

Visualization
Framework

Applications

Figure 4: System architecture: client applications connect to the Vi-
sual Links Manager, which coordinates selections and forwards se-
lection regions to the Visual Links Renderer, which routes and ren-
ders the visual links.

4.1 Visual Links Manager
The Visual Links Manager is responsible for propagating selection
identifiers between registered applications and to collect the associ-
ated bounding rectangles for all selection regions. It is based on the
Tomcat Java Application Server1. The servlet container of Tom-
cat provides an HTTP-based connection layer which is capable of

1http://tomcat.apache.org

handling multiple concurrent connections. This way, web browser
applications or plug-ins can directly communicate with the Visual
Links Manager without an additional communication layer.

The Visual Links Manager receives the selection ID and asso-
ciated selection regions from the source window, i.e., the window
where the user is currently interacting. The selection ID is then
reported to all remaining registered applications (target windows),
which send the selection regions associated with the selection ID
as a response. After all registered applications have reported their
selection regions, the Visual Links Manager delivers the list of re-
gions to the Visual Links Renderer.

4.2 Visual Links Renderer
Visual links are rendered by a plug-in for the OpenGL compositing
window manager Compiz2, which is now the default window man-
ager for popular Linux distributions like Ubuntu. The visual links
plug-in launches a C++ application which provides an Ice3 RPC in-
terface for the Visual Links Manager application. As input, this ren-
derer application receives a list of selection regions associated with
application windows. It then calculates the connection lines as well
as the size and position of the arrows that indicate hidden selections.
The resulting graphics primitives are sent to the window manager
plug-in via a Compiz-internal communication routine. The plug-in
renders the primitives on top of all desktop application windows
and triggers a desktop repaint whenever links are received or need
to be animated for fade-out. Bézier connection lines are rendered
as two-dimensional OpenGL evaluators.

Using a compositing window manager allows us to render visu-
ally appealing links on top of arbitrary application windows in real-
time. However, usage of the Compiz window manager limits us to
the X Window System. To make our system available to a wider
user base, we also developed an alternative Java-based rendering
routine, which is universally deployable, but results in reduced vi-
sual quality of the links.

4.3 Application Integration
An application utilizing the visual links software API needs to sup-
port three basic actions. First, the application has to register with
the Visual Links Manager – either automatically at start-up or by
user request – and report the visible window region to the Visual
Links Manager. Second, it has to provide a user interface to trigger
source selections, find other matches for the current local selection,
and deliver both, a selection ID and a bounding rectangle for every
selection, to the Visual Links Manager. Third, it needs to be able to
process incoming selections from the Visual Links Manager when
acting as a target window. Similarly to source selections, it has to
find matching entities and send the bounding rectangles back to the
Visual Links Manager. Additionally, a client application needs to
be aware of changes in the window content (e.g., if the user scrolls
the content) and re-trigger source selections to update the selection
regions. Application support can be grouped into three categories:

Direct support: A software can be extended to directly utilize
the interface provided by the Visual Links Manager.

Mashup: A web mashup combines functionality from an exist-
ing API with the Visual Links Manager interface.

Software extensions: If an existing software supports extension
mechanisms (e.g., via plug-ins), the required functionality can be
implemented in a minimally invasive manner.

The last category allows for usage of a wide range of applica-
tions at minimal effort, as many common web browsers and office
applications provide extension interfaces. With these applications,
a variety of use cases can be covered, because information from the
web and common document formats are easily supported. How-
ever, when using such applications, data access is often restricted

2http://www.compiz.org
3http://www.zeroc.com

to textual content. As a consequence, ID mapping is limited to text
parsing and string comparisons. In contrast, applications such as
visualization frameworks often provide advanced interaction tech-
niques for item selections and have ID mapping systems available
– but often lack the extendibility required for a minimally invasive
integration.

5 APPLICATION EXAMPLES

As sample applications we chose to use one application which can
be extended via an add-on, one mashup application, and one appli-
cation directly implementing the interface. For the first, we created
an add-on for a popular web browser to include information from
the web. For the second category, we realized a map mashup ap-
plication utilizing a powerful maps API for visualizing and linking
geographic locations. For the last, we extended an existing visual-
ization framework.

5.1 Web Browser Add-On
We implemented an add-on for the popular cross-platform web
browser Mozilla Firefox4. The add-on has full access to the DOM
(document object model) of the displayed HTML-document. This
feature is utilized to find occurrences of the given selection ID string
within the text passages of the document. By temporarily enclos-
ing the matching strings with an HTML- tag, the posi-
tion and size of the selection regions within the browser window
can be retrieved. Communication to the Visual Links Manager to
exchange selection IDs and selection region information is based
on the XMLHttpRequest feature supported by the Firefox web
browser.

The user can choose for every browser window whether it should
be connected to the Visual Links Manager and thereby retains full
control over which web browser windows contribute to the infor-
mation analysis task. User selections are triggered by selecting text
on the displayed website and pressing a button embedded in the
browser UI.

5.2 Map Mashup Application
Our map mashup application consists of a single HTML-page, uti-
lizing JavaScript and the Google Maps API5 for an interactive map
application resembling standard Google Maps, but with added vi-
sual links. The application registers to the Visual Links Manager
whenever the page is loaded. Similar to the Firefox add-on, the map
application utilizes the XMLHttpRequest feature of Firefox for
communication. When receiving a selection ID string, the Google
Maps API is queried for an associated geographic location. The lo-
cation obtained from the first search hit is then converted to screen
coordinates and a small bounding rectangle around this position is
reported to the Visual Links Manager as selection region. The user
can choose whether the map should be centered and zoomed to the
retrieved geographic location or if the map should remain static –
showing, for example, an overview of the world where visual links
point to the selected region.

To trigger a geographical search and to show visual links emerg-
ing from the map application, the user can enter a location search
string. This search string is then reported to the Visual Links Man-
ager as selection ID together with the resulting selection region.

5.3 Visualization Framework
We extended Caleydo [25], an existing multiple coordinated view
visualization framework which provides common visualization
techniques, like a heat map, parallel coordinates and a radial lay-
out, by directly implementing the Visual Links Manager interface.
While Caleydo originates from the biomedical domain it is able to

4http://www.mozilla.com/firefox/
5http://code.google.com/apis/maps/

handle arbitrary data. The framework supports linking and brushing
across all views as well as diverse filter operations in the views.

In addition, the framework uses an internal 3D view manage-
ment of 2D views and connects related items within the application
with visual links. However, these visual links are restricted to this
specialized compound 3D view – valuable meta-information from
other sources can not be integrated.

Whenever elements are selected, they are highlighted by the
framework itself, and the connection coordinates, together with the
selection ID, are sent to the Visual Links Manager.

Caleydo uses a sophisticated ID mapping system to resolve ID
relations within the biomedical domain. There is a wide range of
common gene identifiers, where n-to-m mappings are possible. We
utilize this ID management for incoming as well as for outgoing
IDs, so that Caleydo understands many different identifiers.

6 USAGE SCENARIOS

To illustrate the applicability of our visual links solution, we present
three usage scenarios.

6.1 Demographic and Economic Statistics Analysis
Comparative studies of demographic and economic statistics re-
quire analysis of multivariate data sets. The geographic locations of
the countries to be compared form the basic layer implicitly given
by the data. While a geospatial representation can only encode a
limited number of attributes (e.g., by color-coding), visualization
techniques for multi-dimensional data, such as parallel coordinates,
can lead to loss of geospatial context information.

Figure 5: Comparing economic statistics in parallel coordinates and
visualizing the geospatial context in the linked map application.

In this scenario, we registered the modified visualization frame-
work and our map application to the Visual Links Manager and
loaded the statistics data into the parallel coordinates view. By
hovering over the polylines in the parallel coordinates, the search
string for the line – the country’s name – is propagated to the Vi-
sual Links Manager and forwarded to the map application. Visual
links show the connection from the selected polyline in the paral-
lel coordinates to the location in the map. Figure 5 shows economic
data for Canada where the birth rate and death rate are low, the pop-
ulation is rather small, but GDP and exports are among the highest
of all countries. This way, the full amount (or a filtered sub-set)
of available data can be explored and conveniently compared with
a visualization system, while the geospatial context is provided by
the map application.

6.2 Biomedical Analysis
Information about the function and the dependencies of genes are
available in abundance in diverse online databases, like Entrez
Gene6 or KEGG7. When an expert explores a condition, he often
reads information contained in these databases.

6http://www.ncbi.nlm.nih.gov/gene/
7http://www.genome.jp/kegg/

Figure 6: Comparing gene expressions from an experiment in a par-
allel coordinates and a heat map view with two gene databases on
the web.

Measurements of the gene activity acquired with high through-
put methods enable life scientists to get snapshots of the activity on
a whole-genome scale at low cost. As a result, lots of data is gener-
ated, which is analyzed using statistics and visualization. Methods
such as parallel coordinates or heat maps are useful when filtering
or exploring concrete gene activity values.

By visually relating the information found in the literature to
concrete values in an information visualization system, as shown
in Figure 6, expert users can easily identify the activity levels of
relevant genes across all experiments and therefore save time and
effort trying to manually find matches between concrete datasets
and information in the literature.

6.3 Document Organization
In daily work and spare time people are often confronted with
search tasks, where information from multiple sources needs to be
related. Consider an online shopping scenario, as illustrated in Fig-
ure 7: a user reads hardware specifications in an online magazine
and browses online stores at the same time. The user can trigger
visual links from the magazine to look up if the online store sells
the item of interest. On the other hand, the user can browse the
online store for inexpensive items and quickly check the magazine
website for comments and test results.

Figure 7: Comparing hardware prices and specifications. Visual links
are faded to a low alpha value to reduce visual clutter.

A similar workflow is required in the following more complex
scenario concerning the guest editor of a journal. After the sub-
mission deadline, around 20 submissions will be sent to the guest
editor for which he needs to find at least three reviewers. Finding

suitable reviewers from the field without conflicts of interest, ne-
cessitates the guest editor to switch forth and back between a PDF
viewer showing the submitted article, an e-mail application to check
communication with the editor-in-chief of the journal, the journal’s
reviewing website, and a web browser to find out current contact de-
tails of potential reviewers. The data to be related is linked by the
submission number of the article or a potential reviewer’s name.
For example, one typical interaction is to look at the list of ref-
erences for a specific paper and identify cited authors who would
make good reviewers. With the help of visual links, the guest ed-
itor can quickly check whether the name has been discussed in an
e-mail with the editor-in-chief or is contained in the authors list of
the submitted paper on the journal’s reviewing website, simply by
selecting a potential reviewer name from the paper’s reference list.

This example has not been realized in practice, because at the
time of writing not all described applications have been instru-
mented with visual links. However, both popular PDF reader and
e-mail programs have plug-in interfaces and are therefore easily ex-
tensible.

7 USER FEEDBACK

To evaluate user acceptance and usability of the visual links con-
cept, we conducted an informal user evaluation with seven partic-
ipants (aged 25 to 39). Participants were recruited from a local
university and a software development company.

7.1 Task
Users were asked to accomplish an information analysis task utiliz-
ing information from multiple sources. We arranged four applica-
tion windows on a 26” monitor with 1920x1200 pixels, as shown
in Figure 8. On the left, the map application was placed showing a
static view of the African continent. On the right, we placed the vi-
sualization framework showing demographic and economic statis-
tics of 190 countries in a parallel coordinates view. In between,
an HTML-page in a web browser listed all African countries ex-
porting oil, while a second web browser window below listed all
African countries. Prior to the actual task, users were trained on
parallel coordinates and how to invoke visual links from the respec-
tive applications.

Figure 8: Window arrangement for the user evaluation: the map ap-
plication fixed to Africa, two websites with a list of countries, and a
parallel coordinates view of demographic and economic statistics of
190 countries. Visual links visualize correspondences between the
individual windows.

The task was to find all African countries north of the equator,
which export oil and have a birth rate (i.e., number of childbirths
per 1000 people per year) higher than 30. The birth rate data was
plotted on the first axis in the parallel coordinates view. Countries

fulfilling these requirements had to be marked on the HTML-page
containing the list of all African countries. We chose the example
of Africa, as demographic and economic statistics were strongly di-
verse across the countries and we expected our users to be relatively
unfamiliar with the exact geographic locations of African countries.
We measured the task completion time, recorded observations, and
collected user comments in an interview.

7.2 Observations
All but two users could successfully complete the task with no er-
rors. They required 1:40 to 4:30 minutes to complete the task.

One user did not succeed as she missed the small country Equa-
torial Guinea, which is actually located north of the equator but hard
to identify on the map with the applied zoom level. Two other users
had to zoom the map to determine the exact location of the country.
One user mentioned that selection regions are not optimally placed
in the map application. As the Google Maps API only delivers the
geographical location of the center of the country and correspond-
ing screen coordinates, we do not have control over label placement
and do not have the possibilities to highlight the actual country out-
line. Instead, we use a small bounding rectangle of fixed size to
visualize the geographic location. As a consequence, the size of the
region does not indicate the size of the country. Additionally, con-
nection lines often cover the label of the country which is – despite
transparencies – hard to read.

One user quit the task after four minutes without finding any
country fulfilling the requirements. Contrary to all other users,
she mainly employed the parallel coordinates view to invoke vi-
sual links. However, as the parallel coordinates contained data from
190 countries, it was tedious to find the polylines for the required
African countries. All other participants used the browser window
with the list of oil-exporting African countries as source window for
visual links, as the information was already strongly filtered with
only 17 potential countries. From this window, they simply had to
follow the link to the parallel coordinates and check the birth rate
and the link to the map to see the geographical location. Finally,
they followed the link to the browser window containing the list
of all African countries to mark the result. The fastest participant
could correctly solve the task in one minute and 40 seconds using
this strategy.

We generally observed difficulties when users employed the par-
allel coordinates view as source window. Apart from the one user
not finishing the task, we noticed four other users moving the mouse
pointer to the parallel coordinates after selecting the country in
the browser window. As selection was triggered by mouse-over
in the parallel coordinates, their previous selection was lost when
the mouse pointer was accidentally moved across a different poly-
line and they had difficulties finding the polyline for the previously
selected country again.

7.3 Feedback and Discussion
User feedback was consistently positive, and was also helpful in
terms of identifying user interface problems. Users described work-
ing with visual links as “It just works and it is efficient” and “It is
fun”. All users agreed that having coordinated windows with visual
links is helpful for such a task. They stated that it was clear what vi-
sual links visualize and how items were related. Distraction caused
by the high amount of visible information was reduced as “it shows
only the most essential information”. One user noted that “other-
wise [without visual links], the task would take ten times longer”.
Except for the one user not being able to find any countries, all
users agreed that task completion was very efficient using visual
links. One user explained he was fast as he would simply trust the
visual links and would not check whether the correct items were
connected. Another user said he always double-checked the con-
nections. Surprisingly, this participant completed the task fastest.

However, some users doubted whether visual links are useful for
every-day work (for software engineers). Of course, visual links
are not necessarily suitable for every task and not indented for con-
stant usage. Instead, we envision visual links to be an on-demand
feature which can easily be switched on for information analysis
and comparison tasks. The integration of visual links rendering in
the window manager and the invocation through keyboard shortcuts
allows for such a temporary usage.

Several users commented on the interaction techniques provided
by the respective applications. As we could also observe during the
task, accurate selection in the parallel coordinates view was tedious
– in particular with this high amount of information available. In-
voking visual links by moving the mouse pointer across a densely
populated parallel coordinates view helps to get a quick impression
of the data but is not suitable when accurate selections are required.
We therefore now use visual links with a more explicit selection
mechanism (mouse click), to let the user more easily control the
selected items.

Two users also noted that selecting text in the browser window is
complicated, especially if multiple words need to be selected. We
therefore have to think of easier methods to select multiple words
and will integrate a keyboard shortcut as alternative to the button
for invoking visual links. One user suggested to employ an “auto-
invocation”, which automatically triggers visual links shortly after
a word has been selected.

Another user demanded multi-selections, so he could select mul-
tiple countries in the browser and see the respective connections to
the visualization software and the map application. With multi-
selection, users could have selected all oil-exporting African coun-
tries in the first browser window, where each of these selections
would have received their own visual links. This feature would
reduce the required user intervention, as invoking visual links is re-
quired only once. However, it is subject to further research whether
the additional line connections introduce so much visual clutter that
extracting related information becomes more tedious.

8 CONCLUSION AND FUTURE WORK

We created a software infrastructure to visually link related items
across applications. This software infrastructure can be utilized by
either directly supporting the provided interface or by extending ex-
isting applications through add-ons or mashups. We presented ap-
plication examples for all three categories and showed several usage
scenarios which can be accomplished with these applications. The
presented system provides an easy way to extend existing applica-
tions, such as visualization software, by additional, contextual in-
formation. Thereby, the applicability of the application is enlarged,
while the required modifications are minimally invasive.

Informal user observation and feedback encourages our ap-
proach of visual links across applications. Users could solve a
task of combining information from multiple sources very quickly,
they clearly understood the concept of visual links, and could easily
identify relations between multiple sources. We can therefore sum-
marize the benefits of visual links for information seeking tasks:

• Visual links guide the user’s attention to secondary, periph-
eral windows and specific items contained therein which are
relevant for the primary task.

• Visual links make relevant information in secondary windows
more distinct, making it easier for the user to neglect a large
amount of information and to concentrate on the primary task.

• Visual links prevent the user from having to search informa-
tion manually for each involved application, thereby limiting
the error probability induced by overseeing information and
the effort for the user.

Users also raised some ideas for improvements, such as the abil-
ity to make multiple selections, providing easier interaction tech-
niques for selecting words in the web browser, or making selections
in parallel coordinates more explicit, so selections are not lost when
moving the mouse pointer over the view. We will address these user
comments in future work.

The main focus of this work was to express the relationship of
visible information. However, when working with smaller displays
or more application windows, the issue of hidden content has to be
considered. Our visual links renderer does consider hidden con-
tent, but only if the selection region lies outside the visible window
rectangle. In the future, we additionally want to consider content
obscured by overlapping windows.

In addition, we aim to extend the presented technique to a
distributed system to construct projected tiled displays or multi-
display environments (like, for instance, [22]) operated by a PC
cluster. As all components communicate via remote interfaces, the
system can easily be extended for such scenarios. With a higher
number of pixels and multiple displays arranged arbitrarily in the
environment, the issue of seeking and relating information will be-
come even more challenging.

ACKNOWLEDGEMENTS

This work was supported by the Austrian Research Promotion
Agency FFG (BRIDGE 822716 and 385567) and the Austrian Sci-
ence Fond FWF (L427-N15).

REFERENCES

[1] P. Baudisch and R. Rosenholtz. Halo: a technique for visualizing off-
screen objects. In CHI ’03: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 481–488. ACM, 2003.

[2] R. A. Becker and W. S. Cleveland. Brushing scatterplots. Technomet-
rics, 29(2):127–142, 1987.

[3] X. Bi and R. Balakrishnan. Comparing usage of a large high-
resolution display to single or dual desktop displays for daily work.
In CHI ’09: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 1005–1014. ACM, 2009.

[4] C. Collins and S. Carpendale. Vislink: Revealing relationships
amongst visualizations. IEEE Transactions on Visualization and Com-
puter Graphics, 13(6):1192–1199, 2007.

[5] C. Collins, G. Penn, and S. Carpendale. Bubble sets: Revealing set
relations with isocontours over existing visualizations. IEEE Trans-
actions on Visualization and Computer Graphics, 15(6):1009–1016,
2009.

[6] G. Convertino, J. Chen, B. Yost, Y.-S. Ryu, and C. North. Exploring
context switching and cognition in dual-view coordinated visualiza-
tions. In CMV ’03: Proceedings of the conference on Coordinated and
Multiple Views In Exploratory Visualization, page 55. IEEE Computer
Society, 2003.

[7] H. Doleisch. Simvis: interactive visual analysis of large and time-
dependent 3d simulation data. In Winter Simulation Conference, pages
712–720, 2007.

[8] J. Grudin. Partitioning digital worlds: focal and peripheral awareness
in multiple monitor use. In CHI ’01: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 458–465.
ACM, 2001.

[9] S. Gustafson, P. Baudisch, C. Gutwin, and P. Irani. Wedge: clutter-free
visualization of off-screen locations. In CHI ’08: Proceeding of the
SIGCHI conference on Human factors in computing systems, pages
787–796. ACM, 2008.

[10] J. Heer, S. K. Card, and J. A. Landay. prefuse: a toolkit for interactive
information visualization. In CHI ’05: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 421–430.
ACM, 2005.

[11] R. Hoffmann, P. Baudisch, and D. S. Weld. Evaluating visual cues for
window switching on large screens. In CHI ’08: Proceeding of the
SIGCHI conference on Human factors in computing systems, pages
929–938. ACM, 2008.

[12] D. Holten and J. J. van Wijk. Force-directed edge bundling for graph
visualization. In 11th Eurographics/IEEE-VGTC Symposium on Visu-
alization (Computer Graphics Forum; Proceedings of EuroVis 2009),
pages 983 – 990. IEEE Computer Society, 2009.

[13] D. R. Hutchings and J. Stasko. Revisiting display space management:
understanding current practice to inform next-generation design. In
GI ’04: Proceedings of Graphics Interface, pages 127–134. Canadian
Human-Computer Communications Society, 2004.

[14] A. S. Jacobson, A. L. Berkin, and M. N. Orton. Linkwinds: interactive
scientific data analysis and visualization. Commun. ACM, 37(4):42–
52, 1994.

[15] H. Jiang, D. Wigdor, C. Forlines, M. Borkin, J. Kauffmann, and
C. Shen. Livolay: interactive ad-hoc registration and overlapping of
applications for collaborative visual exploration. In CHI ’08: Pro-
ceeding of the SIGCHI conference on Human factors in computing
systems, pages 1357–1360. ACM, 2008.

[16] E. Kandogan and B. Shneiderman. Elastic windows: evaluation of
multi-window operations. In CHI ’97: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 250–257.
ACM, 1997.

[17] A. Khan, J. Matejka, G. Fitzmaurice, and G. Kurtenbach. Spotlight:
directing users’ attention on large displays. In CHI ’05: Proceedings
of the SIGCHI conference on Human factors in computing systems,
pages 791–798. ACM, 2005.

[18] J. D. Mackinlay, G. G. Robertson, and R. DeLine. Developing calen-
dar visualizers for the information visualizer. In UIST ’94: Proceed-
ings of the ACM symposium on User interface software and technol-
ogy, pages 109–118. ACM, 1994.

[19] C. North and B. Shneiderman. Snap-together visualization: a user
interface for coordinating visualizations via relational schemata. In
AVI ’00: Proceedings of the working conference on Advanced visual
interfaces, pages 128–135. ACM, 2000.

[20] H. Piringer, W. Berger, and H. Hauser. Quantifying and comparing
features in high-dimensional datasets. In IV, pages 240–245, 2008.

[21] M. D. Plumlee and C. Ware. Zooming versus multiple window inter-
faces: Cognitive costs of visual comparisons. ACM Trans. Comput.-
Hum. Interact., 13(2):179–209, 2006.

[22] J. Rekimoto and M. Saitoh. Augmented Surfaces: A Spatially Con-
tinuous Workspace for Hybrid Computing Environments. In CHI ’99:
Proceedings of the SIGCHI conference on Human factors in comput-
ing systems, pages 378–385. ACM, 1999.

[23] B. Shneiderman and A. Aris. Network visualization by semantic sub-
strates. IEEE Transactions on Visualization and Computer Graphics,
12(5):733–740, 2006.

[24] C. Stolte, D. Tang, and P. Hanrahan. Polaris: a system for query,
analysis, and visualization of multidimensional databases. Commun.
ACM, 51(11):75–84, 2008.

[25] M. Streit, A. Lex, M. Kalkusch, K. Zatloukal, and D. Schmalstieg.
Caleydo: connecting pathways and gene expression. Bioinformatics,
25(20):2760–2761, October 2009.

[26] D. S. Tan, B. Meyers, and M. Czerwinski. Wincuts: manipulating
arbitrary window regions for more effective use of screen space. In
CHI ’04: extended abstracts on Human factors in computing systems,
pages 1525–1528. ACM, 2004.

[27] M. Q. Wang Baldonado, A. Woodruff, and A. Kuchinsky. Guidelines
for using multiple views in information visualization. In AVI ’00:
Proceedings of the working conference on Advanced visual interfaces,
pages 110–119. ACM, 2000.

[28] C. Ware. Information visualization: perception for design. Morgan
Kaufmann, 2000.

