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Fig. 1. MulteeSum is a visualization system that supports inspection and curation of data sets showing gene expression over time,
in conjunction with the spatial location of the cells where the genes are expressed. It is the first tool to support comparisons across
multiple such data sets. This screenshot includes data for four related species of Drosophila.

Abstract—Cells in an organism share the same genetic information in their DNA, but have very different forms and behavior because
of the selective expression of subsets of their genes. The widely used approach of measuring gene expression over time from
a tissue sample using techniques such as microarrays or sequencing do not provide information about the spatial position within
the tissue where these genes are expressed. In contrast, we are working with biologists who use techniques that measure gene
expression in every individual cell of entire fruitfly embryos over an hour of their development, and do so for multiple closely-related
subspecies of Drosophila. These scientists are faced with the challenge of integrating temporal gene expression data with the spatial
location of cells and, moreover, comparing this data across multiple related species. We have worked with these biologists over
the past two years to develop MulteeSum, a visualization system that supports inspection and curation of data sets showing gene
expression over time, in conjunction with the spatial location of the cells where the genes are expressed — it is the first tool to
support comparisons across multiple such data sets. MulteeSum is part of a general and flexible framework we developed with our
collaborators that is built around multiple summaries for each cell, allowing the biologists to explore the results of computations that
mix spatial information, gene expression measurements over time, and data from multiple related species or organisms. We justify
our design decisions based on specific descriptions of the analysis needs of our collaborators, and provide anecdotal evidence of the
efficacy of MulteeSum through a series of case studies.

Index Terms—Spatial data, temporal data, gene expression.
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1 INTRODUCTION

Even though most cells in the body share identical genetic informa-
tion in their DNA, the functions and morphologies of the cells vary
greatly both spatially, in different organs and tissues, and temporally
during development and in response to the environment. This diversity
is largely due to the selective expression of specific subsets of genes
in different cells over time. These dynamic spatial patterns of gene



expression ultimately determine the morphology and physiology of an
organism — understanding the genomic source of these patterns is a
grand challenge in biology [3].

To address this challenge, the Berkeley Drosophila Transcription
Network Project (BDTNP) [1] developed experimental and compu-
tational methods to extract gene expression information from every
cell of the fruitfly Drosophila melanogaster embryo during a critical
hour of development when highly dynamic patterns of gene expres-
sion determine the segmented body plan of the adult fly. These meth-
ods are being adapted to gather such data for multiple related fruitfly
species [5]. Now, the scientists are faced with the challenge of inte-
grating nonspatial gene expression measurement data with the spatial
location of cells in an organism and, moreover, comparing this data
across multiple related species. We collaborated with a group of these
scientists to develop a visualization tool that enables this analysis.

In this work we present the design and implementation of Mul-
teeSum, a multiple summary expression explorer, shown in Figure 1.
MulteeSum is a visualization system that supports inspection and cu-
ration of data sets showing gene expression over time, in conjunction
with the spatial location of the cells where the genes are expressed.
Very few previous tools successfully integrate the temporal and non-
spatial gene expression data with the spatial locations of cells. Fur-
thermore, MulteeSum is the first tool to support comparisons across
multiple such data sets. We do so with a general and flexible frame-
work built around multiple summaries for each cell, allowing the biol-
ogists to explore the results of computations that mix spatial informa-
tion, gene expression measurements over time, and data from multiple
related species or organisms. The tool enables two specific types of
functionality for their research: the ability to quickly view the entire
gene expression profile over time for a given cell or group of cells,
and to support the comparison of multiple related species. It is gener-
ally accepted in the biology community that comparative high spatial
resolution expression data, whether derived from imaging or sequenc-
ing technologies, will become more prevalent. We therefore anticipate
that our strategies to explore this type of data will be broadly useful.

In the rest of this paper we justify our design decisions with spe-
cific descriptions of the data and needs of our collaborators (Section
3), discuss our comparison support through the use of groups and sum-
maries (Section 4), describe the design and evolution of MulteeSum
(Sections 5 and 6), and provide anecdotal evidence of the efficacy of
the tool through a series of case studies (Section 7).

2 PREVIOUS WORK

Gene expression data is primarily derived from two experimental
sources: microarrays or sequencing where many genes can be mea-
sured, but the spatial component is lost, and imaging, where many
fewer genes are measured, but their spatial relationship is preserved.
In this work, the data sets are generated using imaging techniques.
The vast majority of gene expression information, however, is cur-
rently derived from microarrays, and the visualization convention is
a nearly-universally used heatmap [26, 9]. In this matrix view, sam-
ples are mapped to columns and genes are mapped to rows, with each
element in the matrix assigned a color based on the gene expression
value [7, 22, 23]. These views, however, do not explicitly encode tem-
poral relationships in the data.

An extension to the heatmap, called a curvemap, uses a time curve
as the base visual unit in a matrix display, supporting the compari-
son of temporal expression data. This view is implemented in Path-
line [17], a tool designed for comparative functional genomics data.
The curvemap represents time series gene expression data as filled
curves in a heatmap-style matrix layout, and includes overlay plots
of curves along the rows and columns to facilitate the discovery of
trends. We incorporate the curvemap display in MulteeSum for visu-
alizing the temporal gene expression data from individual cells in the
embryos.

Visualization strategies to integrate the spatial component of gene
expression data are just emerging as high-throughput imaging based
data becomes more prevalent. The few that exist take advantage of a
3D representation to plot the spatial expression pattern of a few genes

at a single time point, such as the Allen Brain Atlas viewer [15] and
PointCloudXplore [21, 25, 20]. The Allen Brain Atlas viewer maps
gene expression values onto a 3D representation of a mouse brain, en-
coding the expression value of a single gene at a single time using
color. PointCloudXplore was developed specifically to visualize the
BDNTP data and supports the visualization of data for a single average
model of a fruitfly embryo. In this tool, a single gene at a single time
point is assigned a color which is then used to colormap each cell in
a 3D embryo representation according to the expression value for that
cell. The tool also supports a 2D embryo representation, which is the
preferred view by our collaborators for analysis tasks because of the
lack of data obstruction. Several genes can be rendered at once, how-
ever the expression of multiple genes in a cell leads to color blending
which makes the expression values of individual genes indistinguish-
able. The tool thus includes a parallel coordinates view that plots, for
every cell in the embryo, the values of the selected genes, as well as
clustering capabilities to assign cells to groups with similar expression
patterns.

For the current needs of our collaborators, PointCloudXplore has
several drawbacks. First, in the tool, selecting multiple genes at the
same time point produces an equivalent view as selecting one gene at
multiple time points – for the analysis our collaborators are doing these
two classes are not equivalent, and they are specifically interested in
observing patterns in the genes over time. Second, the tool supports
looking at a few genes for many cells, while our collaborators want
to analyze the expression levels for the full set of genes in a just a
few cells at a time. And third, PointCloudXplore does not support the
comparison of multiple related species. We designed MulteeSum to
specifically address these limitations.

3 DATA AND TASKS

This section describes our collaborators’ data collection process and
the resulting virtual embryo data sets as well as their tasks for explor-
ing, understanding, and comparing these data sets.

3.1 Virtual Embryo

The fruitfly is an ideal model system to identify the genetic sources
of variation in the dynamic gene expression patterns for several rea-
sons. First, scientists have recently sequenced the complete genomes
of 12 related species of Drosophila [6]. Second, the interactions of
the set of genes that direct the segmentation of the adult body plan
in the D. melanogaster embryo is well-understood and characterized
in the blastoderm stage, which is the critical hour of development
when the fate of cells is determined [13]. And third, it is now pos-
sible to measure the expression levels of many genes at cellular res-
olution using 2-photon fluorescent microscopy and image processing
techniques [12, 8].

3.1.1 Data Collection

Using these imaging techniques, our collaborators measure the expres-
sion levels of a subset of genes in the blastoderm embryos of multiple
fruitfly species. Briefly, thousands of embryos from a specific species
are stained to show their nuclei and two genes, one gene of interest and
one to serve as a registration marker. Each stained embryo is imaged
using a 2-photon microscope, creating a stack of images at progres-
sive depths. A compilation of an example image stack from the micro-
scope is shown in Figure 2(a). The images in the stack are segmented
and processed to produce a computational representation where each
cell in the embryo has a unique id, a position, and quantitative mea-
surements representing the amount of expression for the two genes in
the nucleus. Finally, this computational representation is mapped to a
template representing the average embryo morphology for the species.
This process is repeated for all of the stained embryos, resulting in a
virtual embryo (VE), where the average expression over time for an
arbitrary number of genes is recorded per cell (this is referred to as a
virtual point cloud in previous work [21, 25]). Currently, our collabo-
rators have a complete VE for 1 species (D. melanogaster, or Dmel),
preliminary data for 3 species (D. pseudoobscura, or Dpse; D. virilis,
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Fig. 2. (a) A compilation of an image stack of a Dmel embryo stained
for two genes, eve (expressed as stripes, stained in red) and hb (ex-
pressed along the two ends, stained in blue) and nuclei (stained in
green). Before channel unmixing, which takes place during image pro-
cessing, there is substantial overlap in the green and red channels, re-
sulting in the yellow color in the mid-section of the embryo. (b) Thou-
sands of image stacks are processed and combined to build a 3D em-
bryo representation, shown here for Dmel and colormapped with a sin-
gle time step of eve shown in blue and hb shown in yellow. (c) The
unique geometry of the Drosophila blastoderm embryos allows for a
lossless parameterization to a 2D embryo map representation. The im-
ages in (b) and (c) were made using PointCloudXplore [21].

or Dvir; D. yakuba, or Dyak), and are in the process of collecting
data for another 8 species.

3.1.2 Spatial Layout of Cells
During the blastoderm stage there is no cell division occurring, and
all of the cells lie on the surface of the embryo. Thus, in the resulting
virtual embryo representation the number of cells does not change over
time, and the virtual embryo is hollow inside. This first characteristic
allows for a static 3D representation of the VE, shown in Figure 2(b).
The second characteristic allows for a lossless parameterization of the
cell positions in the VE using a cylindrical projection, shown in Figure
2(c). We call this 2D representation an embryo map.

Each VE has around five thousand cells, but that number can vary
up or down from species to species by approximately one thousand.
For example, the Dmel VE contains 6078 cells, the Dpse VE con-
tains 4970 cells, the Dvir VE contains 5476 cells, and the Dyak VE
contains 6162 cells. The templates for each VE used in the data acqui-
sition process are registered to a common 3D coordinate frame using
the two major axes of the embryos, which allows the biologists to com-
pare groups cells between species in roughly the same areas, such as
cells making up the head or tail. There is not a one-to-one mapping
of cells between the species, however, because of variations in the vir-
tual embryo shapes, the numbers of cells, and distribution of cellular

densities. These variations add a layer of complexity when comparing
VEs, which we discuss further in Section 4.1.

The shape variation is eliminated in the 2D VE representation as
the embryo maps share a common coordinate system across all the
species, which is important for some comparative analysis tasks. The
cell positions within each embryo map, however, are not the same.

3.1.3 Temporal Expression Profiles
When staining a batch of embryos to create a VE, each individual is
stained for one gene of interest from approximately 50 different genes.
The number of genes is fixed due to the size of the gene set involved
with determining the body plan of an adult fly. The full set of genes is
available for the Dmel VE, while the preliminary Dpse VE contains
12 genes, the preliminary Dvir VE contains 6 genes, and the prelim-
inary Dyak VE contains 10 genes. Each stained embryo is manually
classified as being at one of six time points in the blastoderm stage.
The number of time points is also fixed due to the number of visually
discernible substages. The process of registering the batch of stained
and classified embryos to a species’s template results in a matrix of
expression values, called an expression profile, for each cell in the VE.
This expression profile consists of a set of time series, one for each
gene. The individual expression values are normalized during the data
acquisition process and fall in the range of 0.0 to 1.0, where 0.0 indi-
cates no measured gene expression.

3.1.4 Data Sets
To summarize: our collaborators currently work with 4 VEs and are
actively acquiring data for 8 more. Each VE contains roughly be-
tween 4000 and 6000 cells. Each cell has a unique identifier, a 3D and
2D spatial position, and an expression profile matrix with dimensions
timepoints×genes, or 6×50.

3.2 Tasks
Our collaborators seek to use the VEs to find biologically meaningful
differences in the dynamic expression patterns between species. Some
of their initial questions include:

• Are there groups of cells in one species that have unique expres-
sion profiles compared to cells in the other species?

• Do groups of cells with similar expression patterns in different
species exist in the same location in the embryos?

• How do groups of cells with a known morphological function
relate to patterns in location and/or gene expression?

Addressing these questions requires the ability to explore, analyze,
and compare the VEs. However, any specific question requires com-
paring the expression patterns of only a subset of the 50 genes. The
typical working set size is 10 genes or fewer.

4 SUMMARIES AND GROUPS

The tasks described above all hinge on the idea of looking for the
membership of cells in meaningful groups. The membership criteria
can be based on spatial positions, expression profiles, some known
biology, or any sort of combination thereof. The problems of find-
ing a new group and judging the quality of an existing group can be
addressed by using a measure of similarity for the cells. We now de-
scribe a mechanism for supporting measures of cell similarity, called
summaries, and discuss how the workflow of our collaborators in-
volves generating and using summaries to create, curate, and under-
stand groups of cells.

4.1 Summaries
There are myriad ways to define the similarity of cells. One definition
could be based on the similarity of spatial locations, while another
could be based on the similarity of expression profiles. Quantifying the
spatial similarity of cells in VEs is a hard problem for several reasons.
First, some biologically meaningful neighborhoods of cells within a
VE are anisotropic with respect to their spatial locations because many



of the genes our collaborators are studying express in patterns that are
not radially symmetric, such as the characteristic stripes of the eve
gene shown in Figure 2. Second, there is no one-to-one mapping of
cells between the species due to the variations discussed in Section 3.1.
And third, the cells that form specific anatomical features in the adult
fly can occur in slightly different locations among the species, such as
the cells that form the boundaries of the head, thorax and abdomen.

Quantifying the expression profile similarity of cells is equally chal-
lenging because of the many biological interpretations of a meaningful
expression difference. For example, quantitative differences in some
genes could be more important than in others. Or, a time shift in a
gene’s time series may, or may not, constitute an interesting difference.
Also, a large difference in just a single gene may be more relevant than
small differences in many genes.

Meaningful measures of similarity are most often a complex com-
bination of both spatial and expression profile similarity for the bi-
ological questions our collaborators are pursuing. Given the large
search space of similarity options and the thousands of cells in each
VE, manually classifying all interesting groups from just the raw data
is a daunting task. The biologists thus incorporate computations into
their workflow to transform the VE data into quantitative measures
of similarity — we call these summaries. More specifically, a sum-
mary is a single quantitative value for each cell in a VE that expresses
a measure of similarity, summarizing some potentially complicated
similarity definition.

4.1.1 Computing Summaries
The types of computations our collaborators use to create summaries
range from the simple to the complex. At one end of this spectrum
there are computations that consist of a simple select operation that
chooses the expression value of a single gene at a single time point for
each cell. On the other end of the spectrum there are complex machine
learning algorithms that use a multistage mix of spatial and expression
similarities across multiple VEs. Creating summaries that compare be-
tween VEs requires more complex computations than those that only
use spatial and expression data from within a single VE.

The comparative computations the biologists are currently using
have a general structure of computing the similarity value of cell
through a comparison with a subset of cells in another VE. This struc-
ture includes three key components: a metric, which quantifies the
similarity of a pair of cells; an aggregation, which generates a single
value from a set; and an aggregation group, which is a set of cells from
which a single similarity value is aggregated, either from a single VE
or from multiple VEs.

For instance, to address the first task in Section 3.2, finding groups
of cells in one species that have unique expression profiles compared
to cells in the other species, our collaborators created a summary called
RMS 50 using a comparative computation. The computation first es-
tablishes, for each cell in a VE (ci), an aggregation group from the 50
spatially nearest cells in another VE. Then, for each cell in the aggre-
gation group, a root-mean-square metric (RMS) calculates the distance
between its expression profile and that of ci. Finally, from the list of
50 distance values, the aggregation operation min selects the smallest
value to be the similarity value of ci in the RMS 50 summary. The
values in this summary are thus the distance of each cell in expression
profile space to its best matching cell in another VE. Cells with a high
value can be interpreted as having unique expression profiles, and the
biologists would look for groups of cells with these high values.

The computation used to generate the RMS 50 summary is only
one choice from the vast number of possible computations that com-
bine spatial data, expression data, and multiple VEs. It is not clear,
however, which of these computations will produce summaries that
are biologically meaningful. Thus, we designed MulteeSum to allow
the biologists to explore and characterize summaries.

4.1.2 Visualizing Summaries
Prior to our involvement, the biologists were relying almost exclu-
sively on computational methods for extracting comparative informa-
tion from the VEs. It was immediately clear that they needed an in-

teractive visualization tool to explore and characterize their compu-
tational summaries by linking these results to the full VE data from
which they were created. The broad, and growing, set of scientific and
computational questions that they wanted to answer led us to think
about how to frame their initial specific questions in a more general
context, and how to flexibly combine their computational analysis with
visual exploration.

With these goals in mind, we designed MulteeSum to support a triad
of data types: spatial locations, temporal gene expression profiles, and
summaries. This triad is cell-centric, where each cell in a VE has
one position in an embryo map, one expression profile, and a set of
similarity values from multiple summaries. The task of the biologist
is to explore the triad of data for one or multiple VEs and to determine
what aspects of the summaries are biologically interesting.

The variability of the relationships between the elements of this
triad required us to use a more complex design pattern [11] than that
of most visualization systems. Many visualization systems are de-
signed to exploit hierarchical structure. In fact, the two-level struc-
ture of overview and detail is so pervasive that it is invoked as a
mantra [24]. Even three-level hierarchies, as for example in the
MizBee system [16], are not unusual. Another very common pattern
is “peer-to-peer” linked views, where neither view is a parent of the
other. The triad of spatial locations, temporal gene expression pro-
files, and summaries, however, cannot be encompassed by either of
these patterns because the summaries are multiple, different overviews
that reflect various possibly-interesting subsets of the spatial and the
expression data.

Summaries can also be thought of as the output of a data transfor-
mation step, for which the underlying VE data is the input. MulteeSum
was intended to fill a gap within the existing analysis workflow of our
collaborators, rather than be a monolithic solution that would be used
for every step in their workflow. It sits downstream of both the data
collection and processing that creates the VEs, and also downstream of
the data transformation used to computationally create the summaries.
MulteeSum is agnostic to the type of computation or system used to
generate the summaries, making the complete workflow flexible and
generalizable.

MulteeSum was designed to support these specific tasks:

• Characterize the extent to which a summary is biologically
meaningful.

• Find an interesting threshold value for the summary.

• Use the summary to pick interesting cells.

• Understand the underlying data for the cells deemed interesting.

• Find which spatial neighbors of an interesting cell share its char-
acteristics.

These tasks are often a feedback loop as well as a source of informa-
tion to the biologists for generating new summaries. Finally, finding
biologically interesting summaries ultimately allows the biologists to
determine meaningful groups of cells.

4.2 Groups
As we discussed in the beginning of this section, when we consider the
biologists’ scientific questions from an abstract point of view, they can
be expressed as finding meaningful groups of cells. In MulteeSum, we
include summaries as a computational indicator of cell similarity, and
thus potential group membership. Furthermore, we explicitly include
support for the creation, curation, and understanding of groups in the
tool.

We define a group to be a set of similar cells that may come from
a single, or multiple, VEs. There are three specific types of groups
that we use in our tool: an aggregation group, as discussed in Section
4.1.1; a created group, which is a group of cells created on-the-fly dur-
ing an interactive visualization session; and an existing group, which
is predefined group of cells loaded into the tool at runtime. Existing
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Fig. 3. Snapshots of MulteeSum. The curvemap views in the two screenshots along the top show the AGGREGATION GROUP tab on the left and the
CREATED GROUP tab on the right. (a) The summary value of a cell is encoded with color in an embryo map. Filtered cells are rendered as circles
with the remaining cells rendered as filled disks. (b) The selected cell is rendered in red, while cells in the created group are rendered as squares.
(c) Rolling over cell labels in the curvemap highlights the cell’s associated curves in the overlay plots. (d) Existing groups loaded into the curvemap
are assigned a color, which is used when rendering the group’s label. (e) The existing group’s color is also used in the curvemap to indicate the
expression profiles of group members.

groups can be created outside the tool to reflect some biological con-
jecture or to indicate the results of a clustering algorithm, or they can
be created in a prior MulteeSum session.

5 MULTEESUM

MulteeSum is a visualization system composed of multiple linked
views [19], including a Summary View, an Embryo Map View, and
a Curvemap View. The tool is designed to support exploration of the
intertwined relationships in the spatial locations of cells, expression
profiles, and summaries.

The input to MulteeSum is a set of summaries and a set of VEs.
Each VE contains a list of cells, and each cell contains a location in
the embryo map and an expression profile. Optionally, a set of existing
groups can be loaded as well.

5.1 Summary View
In the Summary View, shown in the upper left corner of Figure 3, a
thumbnail image appears for each summary loaded into the tool. The
thumbnails are small embryo maps of the summary’s associated VE,
where the summary value at each cell’s location is encoded with color
— we are using sequential color maps from ColorBrewer [2]. The
thumbnails provide an overview of the spatial distribution of summary
values and allow for coarse comparisons between summaries. A sum-
mary, and the associated VE, is selected for viewing in the Embryo
Map View by clicking the thumbnail. The currently selected summary
is outlined in red.

5.2 Embryo Map View

Beneath the Summary View in Figure 3 is the Embryo Map View. This
view contains an embryo map of the VE associated with the selected
summary where the summary value of each cell in the embryo map
is encoded using color. The 2D embryo map is the preferred view of
our collaborators for analysis tasks as there is no obstruction of data
and the common coordinate frame enables easier interspecies compar-
isons. A slider to the right of the embryo map is used to threshold
cells based on their summary value. Filtered cells are rendered as cir-
cles with the remaining, potentially interesting cells rendered as filled
disks, shown in Figure 3(a). We scent the slider [27] with a histogram
showing the distribution of cells over the range of summary values —
the biologists expect to see a normal distribution in the histogram for
well-defined computations.

To determine a good threshold for the selected summary, as well as
to characterize the effectiveness of the summary, the expression pro-
files of potentially interesting cells can be analyzed in the Curvemap
View by selecting individual cells in the embryo map. The selected
cell is rendered in red in the embryo map and its associated expression
profile is shown in the top row of the curvemap, thus linking the cell’s
spatial and summary information with its expression profile. Finally,
brushing with the right mouse button is used in the embryo map to
select a meaningful group of cells, which are added to the current cre-
ated group in the tool. Cells in the created group are rendered in the
embryo map as squares, shown in Figure 3(b).



When switching between summaries, the state of the Embryo Map
View is saved for the currently selected summary before switching to
a new one.

5.3 Curvemap View
The Curvemap View is shown to the right of the Embryo Map View in
Figure 3. This view is designed to compare and analyze the complete
temporal gene expression profiles of selected cells and groups of cells,
as well as to aid in curating and understanding meaningful groups of
cells. This tabbed view has two panes, one for comparing the expres-
sion profile of the selected cell with those of its aggregation group
(AGGREGATION GROUP tab), and one for analyzing the expression
profiles in the created and existing groups (CREATED GROUP tab) —
both of these panes are shown in Figure 3.

Each pane is divided into two components, with the bottom com-
ponent of both containing a curvemap display of the associated cells’
temporal expression profiles. A curvemap is a small-multiple matrix
of filled line charts that encodes time series data using position [17],
which is shown to be a better encoding than color for accurate judge-
ments about quantitative values and time series trends [4, 14]. The
curvemap display is designed specifically to enhance the detection of
temporal trends, an important characteristic for helping the biologists
make sense of the complex and dynamic relationships between the
genes and the cells.

In MulteeSum, the rows of the curvemap are the cells while the
columns are the genes. The current selected cell occupies the top row.
We augment the main curvemap matrix with overlay multiples where
all the curves for each column are superimposed in a single shared
frame. These plots support the detection of trends for each gene across
the set of cells. Rolling over any of the cells’ labels highlights its
associated curves in the overlay plots, an example of which is shown
in Figure 3(c). The y-axis of both the line charts and overlay plots have
the range of [0.0, 1.0]. Group cells can be removed from the curvemap
display by using the radio and remove buttons.

In the AGGREGATION GROUP Pane, the top component of the
pane displays the spatial distribution of the aggregation group in an
embryo map with each cell colored according to its metric value. The
component also includes a barchart of the metric values for more pre-
cise comparisons. Rolling over any of the cells’ labels in the curvemap
highlights the cell in both the aggregation group embryo map and the
barchart, and vice versa, linking the cell’s spatial location, expression
profiles, and metric value. The aggregation group embryo map and
barchart are both additionally used for adding aggregation group cells
to the curvemap display. By default, the first 10 cells in the group are
displayed.

The top component of the CREATED GROUP Pane, shown on the
far right in Figure 3, contains controls for saving the created group,
both within the tool and to a file, and loading existing groups. When an
existing group is loaded into the curvemap it is assigned a color from a
repeating 9-element colormap — we use a qualitative colormap from
ColorBrewer [2]. The existing group label is rendered in the assigned
color, as are the expression profiles for the existing group members in
the curvemap. Figures 3(d) and 3 (e) show examples. This color cod-
ing in the curvemap helps to make existing group membership visually
salient. If a cell has membership in multiple groups its expression pro-
file is repeated in the curvemap, color coded each time for the specific
existing group. Rolling over an existing group label highlights the
curves associated with all group members in the overlay plots.

5.4 Implementation
We implemented MulteeSum using the Processing programming lan-
guage [18]. Executables and source code are freely available at
http://multeesum.org.

6 ITERATIVE REFINEMENT

In this section we briefly discuss the details of our collaboration with
the biologists that led to the development of MulteeSum — one of
the biologists is a co-author on this paper. We began working with
the group two years ago and developed two earlier versions of the

tool with feedback from two members of the group. MulteeSum was
developed with feedback from an additional four group members. We
obtained feedback from the biologists through informal interviews and
observed their workflow by spending one day a week in their lab. The
development of each version of the tool took roughly 2-3 months, with
several months in between for collecting feedback and designing the
next prototype.

When we first began working with our collaborators they were us-
ing static images created in Matlab to explore the results of their initial
computational comparisons. Their first goal was to find unique groups
of cells between the species. They created RMS 50 summaries, fil-
tered the cells based on their summary values, and then clustered the
remaining cells using their expression profiles. Finally, they plotted
the resulting groups on an embryo map to see the spatial distribution
of group members, and generated heatmaps for each group to analyze
the expression profiles. As these views lacked interactivity, there was
no easy way to visualize the expression profile for an individual cell at
a specific location.

Our first prototype took these summaries and visual encodings and
added interactivity, giving the biologists the ability, for the first time, to
select an individual cell at a specific spatial location, and to compare
the cell’s expression profile to that of its aggregation group. Using
this prototype the biologists discovered that their filtering method was
not producing meaningful groups of cells. They asked that the next
version of the tool include support for filtering cells interactively.

Our second prototype encoded the summary value for each cell in
an embryo map using color, and included a slider for thresholding the
summary values, giving the biologists the ability to filter cells dynam-
ically. Although we still encoded expression profiles using a heatmap,
we began experimenting by augmenting the heatmaps with overlay
plots for each gene to enhance the perception of temporal trends. Upon
completion of the second prototype, our discussions with the group fo-
cused on how to include more computational functionality in the tool
to support a broader range of questions. These discussions are what led
to the idea of a general and flexible workflow where summaries gener-
ated in an upstream data transformation step are used in a downstream
visualization tool to enable exploration of computational comparisons
in the context of the underlying VE data sets. The feedback loop in this
workflow is that observations made in MulteeSum can lead to the gen-
eration of new, more informative summaries at the data transformation
step.

7 CASE STUDIES

We present three case studies to provide anecdotal evidence for the
efficacy of MulteeSum. The first case study discusses the biologists’
discovery of significant noise in one of their data sets, while the sec-
ond case study presents a series of findings that indicate the need for
more sophisticated summary computations. The last case study uses a
simple summary to probe the biological subtleties of gene regulation.

7.1 Wrangling Data

While exploring an early version of the Dpse VE using our second
prototype system discussed in Section 6, the biologists discovered that
the data set was in fact plagued by significant low-level noise. Using
summaries that compared the Dmel and early Dpse data sets, they
noticed that the expression profiles of many cells with high summary
values, i.e., those cells with a large dissimilarity from their aggrega-
tion group cells, were actually quite similar to the expression profiles
of their aggregation group in terms of the most highly expressed genes.
By analyzing and comparing the expression profiles of many of these
high-value cells, they found that the summary values were being dom-
inated by contributions from low-level noise in the Dpse data for a
handful of genes. An example of this noisy data is shown for a Dpse
aggregation group in Figure 4(a). These high, but uninteresting, sum-
mary values were masking the types of expression profile differences
the biologists were hoping to find. They made the decision to generate
a new Dpse VE, the data for which is shown in 4(b) for the same set
of cells.



The discovery of noise in the early data was enabled by the inter-
active linking of summary values with expression profiles. Being able
to quickly explore the complete expression profiles of many different
cells was also important for noticing the global trends in the subset of
the genes.
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Fig. 4. Comparing a selected cell from Dmel with its 10 most similar
cells from two different Dpse VEs. (a) An early version of the Dpse data
set was found to be plagued with low-level noise in the expression levels
of a handful of genes. (b) A new, cleaner version of the Dpse data.

7.2 Refining Computation

Currently, the biologists are performing computational comparisons of
the VE data using pairwise comparison metrics like RMS and Pearson
correlation. They are interested in using more sophisticated algorithms
to pull out specific, biologically interesting characteristics in the data
sets. In this case study we present a series of examples that illustrate
the types of characteristics one of the biologists is interested in, which
she found using the RMS 50 summary for Dmel in MulteeSum.

Investigating the expression profile for the Dmel cell shown in Fig-
ure 4(b), this biologist noticed that the RMS metric did not match
the cell with the biologically most similar cell from the aggregation
group. In this case, the RMS best match, shown in the second row
of the curvemap, has significant differences in the expression levels of
both the hkb and gt genes compared to the selected cell shown in
the top row. This is in contrast to the other aggregation group cells,
which match the selected cell’s expression trends more closely for
these genes. This mismatch indicates that the RMS metric is sensitive
to small variations over the entire expression profiles, at times obscur-
ing the biologically significant differences in just a small set of genes.
For this example, a possible next computation would weight the con-
tributions for specific genes of interest more heavily than others, or
filter low-level noise.

Another biologically meaningful trend that the RMS 50 summary
obscures is shown in Figure 5, where the expression profile of the se-
lected cell significantly varies from those in its aggregation group in
just a single gene, prd. The summary value for this selected cell was
only moderately high, but the potential biological implications for this
variation are very important to this biologist. She noted that a signifi-
cant variation in a single gene could indicate a novel regulation mech-
anism, and this specific example provides an interesting direction for
follow-up experiments. Similar to the previous example, this observa-
tion indicates the need for computations that are sensitive to variations
in just a single, or a small set of, genes in the expression profiles.
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Fig. 5. Single gene variations in the expression profile of a cell to that of
its aggregation group are of particular interest to our collaborators, such
as the variation in the prd shown in this example.

In a third example shown in Figure 6, two cells with roughly similar
summary values were selected by the biologist. One cell resides in the
anterior of the embryo, while the other in the posterior. Of interest is
the distribution of metric values for the aggregation groups — shown
in Figure 6(a) are the values for the anterior cell and in Figure 6(b)
are the values for the posterior cell. She noticed for the posterior cell
the distribution has a very long, flat tail of low values, indicating a
potentially large neighborhood of similar cells in the comparison em-
bryo, compared with the relatively few similar cells for the anterior
cell. This finding reiterated to the biologist that the RMS computation
can assign similar summary values to cells that have very different
comparison trends to their aggregation groups.
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Fig. 6. (a) A cell selected from the anterior of the Dmel VE using the
RMS 50 summary shows a relatively rapid increase for the RMS metric
values of its aggregation group. (b) A cell selected from the posterior of
the Dmel VE with a similar summary value shows a markedly different
trend.

The biologists are planning to incorporate more sophisticated com-
parison algorithms into their workflow, such as manifold learning
methods [10], to further enable their discovery of biologically mean-
ingful groups. Their initial explorations using summaries like RMS 50
are helping them determine the types of characteristics they are inter-
ested in. This determination is made possible through the linking of
the spatial data, expression profiles, and summaries in MulteeSum.

7.3 Understanding Gene Regulation
Another one of the members of the group is developing physically-
based statistical models that describe the genomic controls of dynamic



!MMMSSS___555000---DDDmmmeeelll

DDDyyyaaakkk___111

mmmaaatttccchhheeeddd---DDDmmmeeelll

DDDpppssseee___333ddd

mmmaaatttccchhheeeddd---DDDmmmeeelll

DDDpppssseee___333ddd

hhhbbb___444

DDDmmmeeelll

hhhbbb___444

DDDpppssseee___333ddd

!uummmmaarriieess

EEmmbbrryyoo    MMaapp

000...000 000...555 111...000

000...000

000...555

111...000
SSSEEELLLEEECCCTTTEEEDDD   CCCEEELLLLLL:::   555555222000

EEEMMMBBB!YYYOOO:::   DDDmmmeeelll

AAAGGGGGG!EEEGGGAAATTTIIIOOONNN:::   nnnooonnneee

MMMEEETTT!IIICCC:::   hhhbbb___444

000...000000

000...777777

000...777777

000...000000

CCuurrvveemmaappAAAGGGGGG!EEEGGGAAATTTIIIOOONNN   GGG!OOOUUUPPP CCC!EEEAAATTTEEEDDD   GGG!OOOUUUPPP

aaallllll

rrreeemmmooovvveee

gggttt hhhbbb hhhkkkbbb kkknnniii KKKrrr tttllllll

!mmmeeelll
555555222000

DDDmmmeeelll

555111777777

llleeefffttt

DDDmmmeeelll

555222555333

llleeefffttt

DDDmmmeeelll

555222999222

llleeefffttt

DDDmmmeeelll

555333666777

llleeefffttt

DDDmmmeeelll

555444000555

llleeefffttt

DDDmmmeeelll

555666333333

rrriiiggghhhttt

DDDmmmeeelll

555666777111

rrriiiggghhhttt

DDDmmmeeelll

555777000999

rrriiiggghhhttt

DDDmmmeeelll

555777111000

rrriiiggghhhttt

DDDmmmeeelll

555777444888

rrriiiggghhhttt

DDDmmmeeelll

555777888666

rrriiiggghhhttt

gggttt hhhbbb hhhkkkbbb kkknnniii KKKrrr tttllllll

111...000

000...000

SSSaaavvveee   CCCrrreeeaaattteeeddd   GGGrrrooouuuppp

eeennnttteeerrr   nnnaaammmeee

sssaaavvveee

LLLoooaaaddd   EEExxxiiissstttiiinnnggg   GGGrrrooouuuppp

llloooaaaddd

LLLoooaaadddeeeddd   GGGrrrooouuupppsss

llleeefffttt rrriiiggghhhttt

Fig. 7. A summary generated by selecting the expression value of the hb gene at time point 4 at each cell. One of the biologists is interested in
understanding the expression patterns in a handful of genes on either side of the region of high expression.

gene expression patterns. Her initial study involves correlating the
expression levels of the hb gene, the expression levels of genes that are
known to regulate hb (gt, hkb, kni, Kr, and tll), and the genomic
sequence that dictates how hb is regulated. In her statistical model,
she aggregates the expression data for these genes from an entire VE,
looking for trends in a global manner. She is using MulteeSum to
“spot-check” the results of her model to see if individual cells behave
the way her model predicates that they will.

She created a summary for Dmel from the expression level of the
hb gene at a single time point at each cell in the VE. This summary
is shown in Figure 7. Of particular interest is the band of high values
in the posterior of the embryo. On either side of this band two groups
of cells were created to analyze how the expression profiles change
moving inwards towards the band. These groups are the left group and
the right group, and both were generated by manually selecting cells
in MulteeSum.

The groups were loaded into the curvemap, with the left group as-
signed an orange color and the right group assigned a purple color. A
high-value cell from the middle of the band is selected for comparison.
The expression profile of the selected cell shows consistently low lev-
els of all regulator genes and high levels of hb. In the left group, the

repressor gene gt is high, while in the right group the repressor gene
tll is high — the biologist expected to see this from prior knowledge
about these genes. Several trends she was not aware of, however, were
immediately obvious to her. She noted that even though the expression
of the repressor tll in the right group is markedly going down over
time, the level of hb does not exhibit a comparable change. Also of
interest is that while all the final levels of tll in the right group are
the same, the final levels of hb in the same set of cells varies. This
latter observation is a possible hint that the final levels of tll do not
matter for the expression of hb. Both of these observations point to
potentially interesting features in how the hb gene is regulated, and
are trends she will look to confirm in her statistical model.

This biologist found the curvemap representation particularly use-
ful for observing these subtle differences in the expression profiles.
For her, encoding the temporal expression profiles as curves is key
because the coarse temporal resolution of these data sets leads her
to trust the overall trends more than any single time point. She felt
that her new observations would have been nearly impossible to see
in PointCloudXplore or in a heatmap display. This scenario also con-
firmed that the working set size supported by the curvemap display
was a good fit for her analysis needs.



8 CONCLUSIONS AND FUTURE WORK

In this paper we discuss our development process and design of Mul-
teeSum, a visualization system for inspecting and curating biological
data sets that contain temporal gene expression profiles for cells with
known spatial positions. It is the first tool to support the compari-
son of multiple such data sets. We describe the use of summaries for
performing computational comparisons of the data sets, and discuss
how MulteeSum incorporates summaries with the underlying data for
flexible and extendable support of a broad range of scientific ques-
tions. MulteeSum was designed to support tasks that require the abil-
ity to explore, analyze, and compare VEs, with three specific examples
listed in Section 3.2. It has been deployed to our collaborators, and we
present three case studies illustrating its successful use for the first of
the three example tasks. We plan to follow up with the biologists as
they continue to obtain and analyze new VE data, and hope to report
on their usage of the tool for addressing the remaining two tasks in
future work.

Although MulteeSum was developed for visualizing the genes in-
volved with the body segmentation of Drosophila embryos, we believe
that our design is broadly applicable to any data sets that incorporate
temporal gene expression data with the spatial location of cells. With
the advent of high-throughput imaging techniques, this type of data
is becoming more prevalent within the biology community. Our core
ideas for linking computational data in the form of summaries with
spatial and expression data are general and support a broad range of
analysis. The workflow supported by MulteeSum allows users to gen-
erate summaries using any combination of computational methods and
algorithms, including MATLAB, R, open-source software, and custom
tools.

Extending the MulteeSum approach to other model organisms and
domains would be very interesting future work. The two obvious is-
sues are scalability, and finding an appropriate spatial map. While the
current curvemap display is a good fit for our design goal of exploring
trends across tens of cells, tens of genes, and tens of time points at
once, it is unlikely to support analysis tasks that require the simultane-
ous inspection of hundreds or thousands of genes and cells, or higher
resolution time series with dozens or hundreds of time points. Ex-
tending MulteeSum to domains such as astronomy, where researchers
study large collections of light curves from stars, may require a higher-
level abstraction beyond curvemaps. User studies to better understand
the scalability and limitations of curvemap displays would address
many open questions.

Also, the current embryo map view is specific to Drosophila em-
bryos and takes advantage of a known lossless 2D parameterization
of the 3D embryo shape. At first glance, a 3D view may seem to be
required to explore structures like a mouse brain [15]. However, based
on our experience with the response of the Drosophila researchers to
2D versus 3D views, we argue that developing abstract 2D represen-
tations of 3D shapes is likely to offer many advantages to researchers
dealing with the combination of summaries, spatial locations, and tem-
poral gene expression. When comparing vastly unrelated species, such
as a fly to a mouse, a compact 2D representation may well be essential.

Finally, we are continuing our collaboration with the biologists to
develop additional tools that incorporate findings from MulteeSum
with sequence-based data. These future tools will focus on helping
them in their quest to uncover the genomic source of expression dif-
ferences between species.

ACKNOWLEDGMENTS

The authors wish to thank the members of the DePace Lab, as well as
Charless Fowlkes, for their input and support during the development
of this work. This work was supported in part by the National Science
Foundation under Grant 0937060 to the Computing Research Associ-
ation for the CIFellows Project, the Helen Hay Whitney postdoctoral
fellowship, the Armenise Foundation of Harvard Medical School, and
the Natural Sciences and Engineering Research Council of Canada.

REFERENCES

[1] Berkley Drosophila Transcription Network Project. http://bdtnp.
lbl.gov/, accessed March 15, 2010.

[2] C. Brewer. http://colorbrewer.org, accessed March 15, 2010.
[3] S. B. Carroll, J. K. Grenier, and S. D. Weatherbee. From DNA to Diver-

sity: Molecular Genetics and the Evolution of Animal Design. Blackwell
Science, 2001.

[4] W. S. Cleveland and R. McGill. Graphical perception: Theory, exper-
imentation, and application to the development of graphical methods.
Journal of the American Statistical Association, 79(387):531–554, 1984.

[5] A. DePace et al. Quantitative comparison of anterior posterior patterning
in closely related Drosophila. In progress.

[6] Drosophila 12 Genomes Consortium et al. Evolution of genes and
genomes on the Drosophila phylogeny. Nature, 450(7167):203–18, Nov
2007.

[7] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster anal-
ysis and display of genome-wide expression patterns. Proc. National
Academy of Sciences, 95(25):14863–14868, 1998.

[8] C. Fowlkes, C. Hendriks, S. Keränen, G. Weber, O. Rübel, M. Huang,
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