
Show Me the Invisible: Visualizing Hidden Content
Thomas Geymayer

Graz University of Technology
geymayer@icg.tugraz.at

Markus Steinberger
Graz University of Technology

steinberger@icg.tugraz.at

Alexander Lex
Harvard University

alex@seas.harvard.edu
Marc Streit

Johannes Kepler
University Linz

marc.streit@jku.at

Dieter Schmalstieg
Graz University of Technology

schmalstieg@icg.tugraz.at

ABSTRACT
Content on computer screens is often inaccessible to users be-
cause it is hidden, e.g., occluded by other windows, outside the
viewport, or overlooked. In search tasks, the efficient retrieval
of sought content is important. Current software, however,
only provides limited support to visualize hidden occurrences
and rarely supports search synchronization crossing applica-
tion boundaries. To remedy this situation, we introduce two
novel visualization methods to guide users to hidden content.
Our first method generates awareness for occluded or out-of-
viewport content using see-through visualization. For content
that is either outside the screen’s viewport or for data sources
not opened at all, our second method shows off-screen indica-
tors and an on-demand smart preview. To reduce the chances
of overlooking content, we use visual links, i.e., visible edges,
to connect the visible content or the visible representations of
the hidden content. We show the validity of our methods in a
user study, which demonstrates that our technique enables a
faster localization of hidden content compared to traditional
search functionality and thereby assists users in information
retrieval tasks.

Author Keywords
Hidden Content; Off-Screen Content; Occluded Content;
Visual Linking.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: Graphical
User Interfaces

INTRODUCTION
When analyzing multiple data sources and documents simulta-
neously, not all information can be kept in plain sight. There
are several causes for information being hidden from a user.
First, many documents contain more content than can sensibly
be displayed at a time, making it necessary to show only a
small fraction of the information contained. We refer to the
visible section of a document as its viewport, which, in order to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

CHI’14, April 26–May 1, 2014, Toronto, ON, Canada.
ACM 978-1-4503-2473-1/14/04$15.00.
http://dx.doi.org/10.1145/2556288.2557032

read the whole document, must be changed through scrolling
and zooming. Second, it is common that many (partially) oc-
cluding application windows are open, potentially covering
relevant information. A third cause of content being hidden are
minimized windows. To manage limited screen-space, users
regularly minimize windows, which may contain important
information. Finally, relevant information may be contained
in unopened or not accessed documents.

Common strategies to identify relevant information include
searching and brushing. Users can search for specific key-
words and explore the context of individual occurrences.
While zooming and scrolling can be used to manually search
through content, most applications also provide a built-in
search function that highlights occurrences of a search term.
Often, users can advance the viewport of the application to
the next matching term. Brushing is similar to searching, but
instead of an explicit query, the query is implicitly given by
selecting an existing item. Further occurrences of the selected
item may be highlighted and/or linked. Brushing is common
in visualization tools and text-editors.

By going through all open application windows and search-
ing or brushing in each application in turn, users are able to
eventually access all relevant information. As search functions
are also available for searching through online documents and
files stored on disk, all types of initially hidden content could
possibly be explored. For certain tasks this kind of workflow
is sensible. It is, for example, sufficient for looking up words
in a dictionary, where each term has one entry.

There are, however, other tasks where seeing a global structure
between individual pieces of information is highly relevant.
Consider a user investigating the causes of a crisis in a com-
pany. The investigator needs to tie together information from
multiple sources. These may involve dozens of reports with
hundreds of pages each, multiple spreadsheets documenting
money flow, web exposes of other companies involved, travel
routes of employees, etc.

If the investigator finds an interesting fact, she will typically
want to cross-reference other occurrences of the fact. For
many documents this is inefficient using the sequential search
approach. In this paper, we introduce techniques that instead
let users see an overview of all occurrences, no matter in which
document they are contained or if they are visible or hidden,
and jump directly to the most interesting occurrence(s).

Directly accessing all content, both visible and hidden, poses a
number of challenges. To address these challenges, we elicited
six requirements that a technique for visualizing hidden con-
tent needs to address. This list evolved out of an initial set of
requirements which we based on our experience with design-
ing visualization interfaces for application domains such as
systems biology and our own needs when working on search
tasks. We then created multiple prototypes, which we infor-
mally evaluated with users, leading us to the following final
set of requirements:

R I: Mental map. Users should be aided in building a men-
tal map of the explored documents. Ideally, this overview
should make use of the investigator’s spatial memory by point-
ing out occurrences at their actual position on the desktop (if
occluded), or at least preserve relative arrangement of occur-
rences (if currently not on the desktop). For such a mapping,
it is necessary to communicate the information’s location or
at least the direction in which information can be found.
R II: Indicate occurrences & relevance. Sources or sec-
tions mentioning a search term multiple times tend to be more
relevant compared to documents or parts that only contain
a few mentions of a term. Thus, users may want to priori-
tize densely populated documents or sections in their search.
To support this requirement, visual cues should indicate the
amount of information available at a specific location or in a
certain direction.
R III: Fast previews. To enable users to quickly judge
whether looking at a specific region in a document in detail
could be interesting, getting fast previews of hidden content
should be possible.
R IV: Fast navigation. Fast navigation between all available
chunks of information is essential for an efficient exploration.
Once a user has chosen to closely investigate a piece of hidden
information, it should be possible to quickly navigate there
with minimal interaction.
R V: Heterogeneous sources. The integration of informa-
tion from different sources is essential to capture all types
of hidden content. The technique should connect information
from open application windows, minimized windows, and doc-
uments which are only present as a file on a disk or available
on the Internet. All sources should be handled in a unified
manner to allow for all types of hidden content.
R VI: Changing content. The technique must be able to ac-
commodate arbitrary changes to the content presented on the
desktop. In particular, the arrangement of windows on the
desktop can change at any time: Windows can be moved,
resized, minimized, or closed. Moreover, the content and
viewport of windows may change at any time, possibly remov-
ing existing information, adding new information, or changing
location and visibility of information.

In addition to content being hidden, visible content can also
be overlooked [4]. While traditional highlighting techniques
such as color work reasonably well on a uniform background,
a cluttered environment, e.g., due to many windows, or other
factors such as large display sizes can increase the chances of
relevant content being overlooked [14]. A remedy for over-

looking content are visual links [21], explicit edges connecting
individual pieces of information.

Our contribution are two novel visualization techniques for
hidden content and their combination with visual links into
one sophisticated information exploration system that inte-
grates multiple applications and data sources. First, we present
smart links, a see-through visualization to extend visual links
to occluded content. Second, for out-of-screen content, we
present a combination of visual links and smart previews,
aiding the user in quickly estimating the amount of relevant
information and allowing accelerated navigation to the infor-
mation. Additionally, we show how minimized windows and
information from files on disk can be integrated into the visu-
alization. Using these two techniques, we provide guidance to
all aforementioned types of hidden content. We conducted an
exploratory user study evaluating the performance of our hid-
den content visualization methods relative to standard search
functionality. The results of this study indicate that visualiza-
tion of hidden content is superior to traditional methods in
both quantitative and qualitative measures.

RELATED WORK
As mentioned previously, the two main reasons for available
content not being considered is that it is hidden, i.e., not visible
to the user, or that it is overlooked even though it is techni-
cally visible [4]. We first discuss techniques to show and
access hidden content, followed by techniques that help avoid
overlooking content.

Hidden Content
For hidden content, we distinguish between techniques that re-
veal occluded or out-of-viewport content that could be shown
within the given display space and techniques that visualize
off-screen content.

A common strategy to reveal occluded content are see-
through interfaces that cull away the foreground to reveal
the background. A prominent example are magic lenses [5],
which in their general form can not only remove foreground
but also alter the representation in arbitrary ways. Magic
lenses are typically invoked manually and locally (only the
elements within a ‘lens’ are changed), a characteristic that
is not suitable for search tasks. While completely transpar-
ent windows [11] and user interface elements [12] have been
evaluated in the past, in practice they are rarely used when
reading and interacting with content in window managers. An
approach that uses transparency for ‘unimportant’ window
regions is described by Ishak and Feiner [18], while Baud-
isch and Gutwin introduce ’multiblending’ [1], as a smarter
alternative to alpha blending that considers multiple image
features and makes the blending results more readable. A
more sophisticated approach is taken by Waldner et al. [29],
who superimpose ‘clip-outs’ of occluded content on top of oc-
cluding components. They use a measure of salience to reveal
salient occluded content in regions where the occluding ele-
ments are not salient. Steinberger et al. [20] additionally scale
unimportant content to reveal occluded content. None of these
approaches use a semantic measure of relevance, i.e., consider
what is currently relevant to a user. Search tasks, however,
inherently require revealing specific semantic elements.

Smart Preview for Off-Screen Content Indicators for Occluded Windows

Visualization for Out-of-Viewport Content

Indicators for Off-Screen Content

Figure 1: Visualization of occluded, out-of-viewport, and off-screen content. Multiple browser windows and files stored on the
computer contain occurrences of the search term “France”. Most occurrences are either outside one of the browser’s viewports,
which is indicated by arrows and links to the out-of-viewport locations, or are occluded by another window, which is indicated by
semi-transparent red window labels. The arrows pointing to applications in the taskbar indicate off-screen content in a minimized
window (Wikipedia) containing 12 occurrences of the search term and 16 files found by the desktop search engine. Hovering over
an arrow, reveals a smart preview showing the regions of the documents containing occurrences.

A common strategy to visualize off-screen content are marks
rendered within the visible area that point to off-screen content.
Baudisch and Rosenholz introduce halos [2], circles with the
center at the (off-screen) point of interest and a radius chosen
so that a segment of the circle intersects with the display. Sim-
ilar in spirit are wedges [10], a technique that uses triangle
instead of circles. Users can infer the location of the point from
the size and position of the circle or triangle segment. A prob-
lem of halos and, to a lesser extend of wedges, is scalability
and clutter if many targets should be indicated. To remedy this,
Waldner et al. [27] introduce arrows that aggregate multiple
proximate points of interest and indicate how many items are
aggregated with the size of the arrow. Highly abstracted docu-
ment previews are another technique to visualize off-screen
content. Eick and Ball use such abstract representations for
visualizing software [9]. Hearst combines them with a vi-
sualization of the search term density in specific regions of
text [13]. This technique has been extended by Dieberger and
Russel [8] to consider multiple search terms and enable fast
navigation and preview. The occurrences of search terms can
also be superimposed on the scroll bar [6], a technique that
is nowadays, for example, employed in web browsers and
in software development tools. However, all of these tools
and techniques use very abstract representations. We believe
that using a representation that preserves the appearance of
the document under inspection will provide additional benefit
to users. In our work we combine both, marks to indicate
the presence of off-screen context and on-demand smart pre-
views to minimize clutter and enable efficient discovery of and
navigation to off-screen content.

Overlooked Content
Search combined with highlighting is a common method to
minimize overlooking of content. The highlighting typically

employs adding a colored frame, but other methods such as
magnifying search terms [25] or interesting parts while shrink-
ing [16, 17] or even completely removing other content is
possible [3]. Such methods are also used for generally ‘inter-
esting’ content [16]. Stoffel et al. use a similar approach for
thumbnail previews, where they distort important terms, while
preserving the layout of the document [22].

A different approach is to employ connectedness [19], i.e.,
visual links [7], as a method to highlight occurrences of a
search term, which are beneficial especially in a cluttered
environment such as in an information visualization sys-
tem [7, 23, 24, 26, 27] or on large screens where not all content
is in a user’s field of view [14, 28]. Hoffman et al. [14] have
evaluated various techniques to help users locate windows on
large displays and found that links (trails) outperform conven-
tional highlighting (frames); similar results have been found
for conventional displays [21]. We believe that visual links are
the most powerful method to point to content distributed over
the screen, especially in a highly heterogeneous environment
spanning multiple windows and various types of documents,
and consequently have chosen to combine them with methods
to visualize hidden content in this paper.

VISUALIZING HIDDEN CONTENT
For visualizing hidden content we take two steps: indicating
that relevant content is hidden in the first place, and revealing
the hidden content on demand. We introduce novel techniques
to visualize occluded content, i.e., content that is occluded by
other windows, out-of-viewport content, i.e., content that is
outside of the application window but within the limits of the
display, and off-screen content, i.e., content that is outside
of the available display space or that is in closed, minimized,

(a) (b)

Figure 2: (a) Smart links pointing to out-of-viewport occur-
rences of a search term. (b) Hovering over a smart link reveals
a semi-transparent overlay showing the actual content.

or not accessed documents. All of these techniques are inte-
grated with visual links to create a strong visual connection
between all related pieces of information—hidden as well as
visible—resulting in an information exploration interface that
makes hidden content easily accessible and reduces the risk of
overlooking content (see Figure 1).

Visualizing Out-of-Viewport Content
Relevant content is often hidden due to the limited viewport
size. Large portions of content can be situated in virtual space
outside of a window’s viewport. We distinguish two cases
of out-of-viewport content: (1) The target region is outside
the current viewport, but would be visible on the screen if the
application’s viewport was extended, and (2) the target region
is outside the screen. We consider the latter case as off-screen
content, which is treated in a later section.

For the former case we use smart links: semi-transparent
outlines—one for each target region—that indicate the location
of invisible target regions (Figure 2(a)) and are connected to
other visible or hidden occurrences with visual links. Smart
links clearly indicate the occurrence and relevance of hidden
content (R II) and support a user’s mental map (R I). If the user
hovers over a target region outside the application’s viewport,
as shown in Figure 2(b), all of the application’s content that
fits on the desktop is rendered in order to provide context to
the otherwise ‘disembodied’ target region, thus providing fast
previews of the hidden content (R III). When the user selects
such a target region, the application’s viewport is automatically
centered around the region, allowing the user to immediately
continue working with the application at the chosen position,
thus facilitating fast navigation (R IV).

Visualizing Occluded Content
To direct the user’s attention to windows containing occluded
content, we use markers, connected to visual links, as shown
in Figure 3(a) that contain the title of the windows where rele-
vant content was found. We chose this approach over showing
direct links to occluded content (as we do for out-of-viewport
regions), since user-feedback indicated that direct links pro-
duce too much clutter. When hovering over such a marker,
we overlay the hidden window semi-transparently and high-
light and connect the relevant content (R III), as shown in
Figure 3(b). To avoid interference with the background win-
dow, the overlay can optionally be shown completely opaque.

(a) (b)

Figure 3: (a) A marker showing a part of the window title
indicates occluded content. (b) Hovering over the marker re-
veals a transparent preview of the occluded window, including
highlights for the occluded content.

To ensure fast navigation to the occluded region (R IV), a click
with the mouse on the overlay moves the respective window
to the top of the window stack, thus permanently revealing the
occluded information.

Visualizing Off-Screen Content
If a target region is located either outside the screen, within a
minimized windows, or in unopened files, it is not possible to
draw a link to a specific target region. Instead, we visualize
off-screen content by drawing an arrow pointing into the direc-
tion of the target, or at the icons representing the minimized
windows and unopened files. To avoid clutter in cases where
multiple target regions are off-screen, we only draw a single
arrow for each icon or window edge. For the latter case we
adjust the arrow to point towards the center of gravity of all
outside regions. Additionally, we draw a text label next to the
arrow to show the number of hidden target regions in the given
direction (see Figure 1). These encodings indicate occurrences
and relevance (R II).

To get an overview of the whole document (R I) and to en-
able fast navigation (R IV), we provide a smart preview of the
complete document, which appears when hovering over the
arrow. For search tasks, it is reasonable to assume that users
are only interested in those parts of the document that contain
relevant information. We use this consideration to present the
user with a more compact preview where regions containing
no relevant information are clipped, freeing up space for in-
creasing the size of interesting areas (see Figure 4). In this
way, all hidden regions of the document are presented at once.
To decide which areas should be removed, we first calculate
bounding boxes of all highlighted regions, then loop through
all bounding boxes and mark regions with a certain margin
above and below as important and finally hide all unmarked
and therefore unimportant regions (see Figure 4(c)).

These smart previews can be zoomed and panned to explore
all target regions in detail (R III). To facilitate orientation
(R I), the current viewport of the application is highlighted
using a rectangle in the preview. Once a target region has
been identified by the user, clicking on the target region hides

(a)

Information

margin

margin

Information

margin

margin

Information

margin

margin

Document

Enlarged
Bounding
Box

Important
Region

(b) (c)

Figure 4: Smart preview. (a) A preview of a complete web
page with the relevant regions highlighted. The necessary
scaling makes it hard to recognize information. (b) All regions
containing relevant information are detected and embedded
within a bounding box, that makes sure some context is re-
tained. Overlapping bounding boxes are merged. (c) By clip-
ping the unimportant regions much more detail for the relevant
parts is revealed.

the preview and scrolls the document to the location of the
requested information (R IV).

When using the smart preview for minimized windows, we
draw an arrow next to the application’s icon in the task bar to
indicate that it contains target regions. Upon hovering over the
arrow, the smart preview is revealed (see Figure 1). When the
user selects a target region, the minimized window is restored
and the viewport is centered on the selected target.

Information may also only be available in unopened docu-
ments. To integrate unopened documents, we query a desktop
search engine to find occurrences of search terms. Similar
to our approach for minimized applications, we draw an ar-
row next to the desktop search engine’s icon in the task bar
and show the number of documents found within the icon,
as shown in Figure 5(a). When opening the search engine,
we highlight the search term in the search engine’s previews
and provide smart previews to reveal the details, as shown in
Figure 5(b).

IMPLEMENTATION
To fully integrate heterogeneous data sources (R V), we im-
plemented a central service written in C++, which runs in the
background as a standalone application and accepts connects
from other applications taking part in the visualization. These
other applications are integrated using a minimally invasive
approach through the use of a plug-in API or minor modifica-
tions of the application source code, if no API is provided [27].
The data exchange between the server and the clients is han-
dled using WebSockets. To add the described user interface
components on top of the existing screen content, we create a
transparent Qt window which we render using OpenGL.

(a) (b)

Figure 5: Links to unopened documents. (a) The icon of a
desktop search engine is marked with an arrow. The number
shown inside the icon indicates the number of documents
containing the current search term. (b) Within the desktop
search engine, occurrences are highlighted and smart previews
are provided.

After the server has received a user-triggered search string,
it forwards the request to every connected client application,
enabling each application to add its regions. Upon receiving
a request, each client searches its content for instances of
the requested identifier and reports back the bounding boxes
of all found occurrences. For simple selection types, like
individual words, bounding boxes already provide an accurate
approximation of the relevant region. To highlight and link
more complex shapes, such as objects in a map or graph, a
client is free to use arbitrary polygons for representing its
regions.

Visual links are drawn between all highlighted regions. The
naive approach that connects all highlighted regions to a com-
mon center results in a cluttered visualization. To remedy this,
we bundle links using force-directed edge bundling [15], an
algorithm based on an iteratively refined system of control
points, attracting each other. The system is initialized by cal-
culating the center of gravity of all occurrences. Then, the
highlight region closest to the center of gravity is determined,
and all other regions are connected to it. Moving the center
of gravity avoids an artificial branching point. Next, all links
are subdivided into segments of approximately equal length
and finally, force-directed edge bundling is applied. Due to
potentially large differences in the length of individual links,
the forces affecting a single link can change rapidly, leading
to sharp corners in the link routes. To address this issue, we
apply a geometric smoothing on the points forming the link
routes after executing the bundling algorithm.

All rendering output is directed to an off-screen buffer first.
This buffer is twice the size of the screen and copied into the
fullscreen window. Using hardware accelerated texture filter-
ing, the visualization is automatically smoothed while being
downscaled. The use of alpha-transparency allows blending
with the desktop content. Screen pixels that are not covered by
the visualization are masked, to allow mouse events passing

through. In this way, the user can interact with all content that
is not covered by our visualization.

For rendering see-through visualizations and smart previews,
the client application is required to send an image of its content
to the server. We use a hierarchical tile map, where each level
consists of a single or multiple tiles, which add up to a full
preview image of the client application’s content at a specific
zoom level. Using different resolution images for the individ-
ual zoom levels, we create tiles in a resolution that is sufficient
for a single level of zoom. As the user zooms into the pre-
view or moves the viewport, missing tiles are asynchronously
requested from the corresponding client application.

While working in a desktop environment, the arrangement
of opened windows can change at any time (R VI). As this
possibly affects the position and occlusion of regions, we need
to react to such changes. Current operating systems usually
do not allow receiving notifications for changes in windows
of other applications. As a workaround, we use a window
monitoring component, which periodically requests a list of
all opened windows, including their geometry and stacking
order, and compares this information with the previous state.
If any changes are detected, the server triggers the recreation
of the visualization for all active identifiers.

As a proof of concept, we have integrated several widely used
applications into our system. A browser add-on allows search-
ing for words or phrases matching a given search identifier.
The bounding boxes of all found occurrences, both within
and out of the current viewport, are sent back to the server
for further processing. As a non-textual example, we have
used the Google Maps JavaScript API1 to create a mash-up
which supports the search for geographic locations by name
and the retrieval of corresponding screen coordinates on the
map. Retrieving the name of a location on a map and querying
by this name is also supported. For connecting minimized
windows and the desktop search engine, the location of the
associated icons needs to be known. Therefore, we query the
list of windows in the task bar and calculate the exact location
of each icon using the known icon sizes. To retrieve the data
for the smart preview for unopened files, they are opened in
the background in their respective applications while visual
feedback is suppressed.

For a basic integration with our system (to show the num-
ber and location of elements) applications need to implement
a simple WebSockets protocol, which all modern browsers
support. For a full integration, applications need to provide
imagery of hidden areas for the preview, which is typically
supported in either the GUI library or the graphics API.

Our implementation is open source and can be downloaded
at http://hidden-content.caleydo.org. Due to
the use of cross-platform libraries, our implementation runs
on Linux, Microsoft Windows, and Apple OS X. Our tech-
nique can be used interactively on all operating systems and
is usually able to update all visualizations within half a sec-
ond. Getting imagery for showing a smart preview of a hidden

1https://developers.google.com/maps/
documentation/javascript/tutorial

document requires roughly the same time it takes to open an
additional tab in a browser. Due to the delay of an application
notifying our system of viewport changes like scrolling and
window resize operation a short delay until the graphics ele-
ments update is unavoidable. During our study no user raised
any concerns regarding the performance of our implementa-
tion.

EXPLORATORY USER STUDY
We conducted an exploratory user study to evaluate our hidden
content visualization technique for three desktop scenarios of
varying difficulty. The scenarios involved up to twelve web
browser windows. To gather meaningful feedback, a major
part of the study focused on an informal post test interview
about the used hidden content visualization techniques. We
recruited 18 participants from a local university (aged 20 to 37,
3 females) with a background in computer graphics and visu-
alization. 10 participants indicated that they have experience
with visual data analysis.

Techniques
As baseline condition we used the standard searching and
highlighting technique of the web browser (Firefox), synchro-
nized across all browser windows, to isolate the effect of our vi-
sualization. Participants could mark (brush) words in the web
browser and press a keyboard shortcut (CTRL+F) to search
the document for the marked word. The found terms use the
default colored box to highlight all occurrences. Pressing the
Enter button repeatedly advanced to the next occurrence of the
word within the same application. As an alternative method,
participants could also type the search term into a text field. To
search for the same term in a different application window, par-
ticipants only had to switch the window and continue with the
inspection of the highlighted occurrences. A new search term
replaced the previous one. Switching windows was possible
through standard operating system features.

We tested the baseline condition against our fully functional,
real-time hidden content visualization implementation, as
described before. The ability to interact with all types of links
was provided, which either brought covered windows to the
front or scrolled the regions outside the viewport into sight.
The procedure to trigger a search was identical to the one used
in the baseline condition.

Tasks and Apparatus
Participants were asked to perform three information analy-
sis tasks, with thirteen desktop windows opened concurrently.
The desktop was presented to the participants on a 22” monitor
with 1920 × 1080 pixels. Participants were seated approxi-
mately at the same distance from the monitor. No restrictions
where enforced during the test, i.e., users were allowed to
move or to rearrange windows. All tasks dealt with properties
of aircrafts and airports. To generate two setups with equiva-
lent complexity, we have altered two original data sets taken
from Wikipedia to include the exact same number of hidden
and visible regions for different properties.

The default window setup is shown in Figure 6. We placed a
master browser window on the left side of the screen which

http://hidden-content.caleydo.org
https://developers.google.com/maps/documentation/javascript/tutorial
https://developers.google.com/maps/documentation/javascript/tutorial

Figure 6: Window setup for the user study. Twelve browser
windows are randomly arranged. Another window on the left,
is used by the participants to start new trials and indicate their
answers.

was used to start a new trial and indicate answers. Twelve ad-
ditional windows were randomly distributed across the whole
screen, each approximately one third the size of the screen.
The synchronized highlighting and guidance functionality was
provided among all thirteen windows. Due to the large num-
ber of windows, participants were confronted with numerous
overlapping windows and covered regions. Also, the shown
documents were about six to ten times larger than the view-
ports they were displayed in.

We consciously avoided tabbed browsing, i.e., nested window
management, in the study, since it would have made the design
more complex and we were primarily interested in testing
the performance of our techniques with larger numbers of
(partially) overlapping windows.

We designed the following tasks with increasing complexity:

Task 1 was designed as a simple information retrieval task
testing the effectiveness of finding information. Participants
had to find a single keyword in a subset of the open windows.
They were additionally asked to take information from the
context area of the search results into account. Participants
should tell whether each of the six aircrafts described within
the documents is controlled using a yoke or a side-stick. For
two aircrafts the information was unavailable and no answer
was required.

Task 2 was designed as a more complex search task testing
the efficiency of locating documents containing relevant in-
formation. Participants were asked to tell the experimenter
which of two given keywords were contained within every of
the twelve browser windows. The windows contained none,
one, or both keywords.

Task 3 was designed as a research task testing the effectiveness
of finding information. It required long content interaction,
using three search terms, scanning through entire paragraphs,
and reasoning. Participants were asked to find all aircrafts
equipped with a certain number of engines. The number of
engines was indicated by a specific phrase. Participants had to
read the context surrounding the phrase, as some documents

contained the given phrase even though the aircraft had a dif-
ferent number of engines. Out of the six documents describing
an aircraft, three contained the requested number of engines.
For the remaining aircrafts, participants where asked which of
them have two more features installed, resulting first in two
and finally one matching aircraft.

Design and Procedure
The study was conducted as a within-subjects experiment over
the described two conditions and the three tasks for each con-
dition. For each task, we measured task completion time and
correctness. To start a trial, participants clicked on a button
located in the master window on screen. The same window
included check boxes for answering the questions and com-
pleting the trial. We automatically measured the time between
the initiation and competition of a trial. Prior to each task, par-
ticipants were given a warm-up period, which allowed them
to become familiar with the technique and the content of the
application windows. After each condition, participants were
required to assess their subjective satisfaction with the tech-
nique on a questionnaire containing six questions. After the
hidden content visualization condition, we presented them
with an additional questionnaire, comparing the individual
approaches we employ for the different kinds of hidden con-
tent. Upon completion of the experiment, the participants were
asked to take part in an unstructured interview.

Participants completed all three tasks twice, once with each
technique. To avoid learning effects due to knowledge of
the data, all tasks where available with two different sets of
keywords or features. To reduce the influence of learning
effects due to the repetition of tasks, the order of the conditions
and the assignment of the task sets was counterbalanced.

Hypothesis
The goal of the user study was to compare the effectiveness and
efficiency of our hidden content visualization techniques and
traditional search for finding hidden content. We formulated
the following three hypotheses for this experiment:

[H1] Using the hidden content visualization leads to a faster
retrieval of hidden data. Our techniques visualize all hidden
regions that are placed within the boundaries of the screen
and offers a preview for regions which are outside the screen.
By interacting with these links, every hidden region can be
accessed with one or two clicks. Thus, we expect our hid-
den content visualization to be faster than a sequential search
through all hidden regions.

[H2] With the hidden content visualization fewer errors are
made. Because we visualize every occurrence of a search
term, we expect users to miss fewer occurrences than by step-
ping through all windows and occurrences within windows
sequentially.

[H3] Visualizing hidden content has a positive impact on
understanding the spatial distribution of the data. Our hidden
content visualization either shows the exact location of hidden
regions or points towards the direction where they can be
found. Thus, we hypothesize that it is easier for users to orient
themselves within the data, if our visualization technique is

Task 1 Task 2 Task 3
0

50

100

150

200

Completion Time

Standard Search Hidden Content Visualization

T
im

e
(in

 s
)

Figure 7: Mean completion time with standard error. Our
hidden content visualization performs significantly better for
tasks with a lot of unrelated content (Task 2) or only simple
information retrieval (Task 1). For the research task (Task 3)
the differences are not significant.

search speed difficulty* demand* navigation
speed

confidence benefit
1
2
3
4
5
6
7

Questionaire Results

Standard Search Hidden Content Visualization

Li
ke

rt
 S

ca
le

Figure 8: Mean questionnaire results given on a seven point
Likert-scale. Higher results are better in all cases (* elements
have been inverted).

used. As a consequence, we also expect it to be easier for
users to locate data they have not yet explored.

Results
We measured the time participants needed to complete each
task, the correctness of the reported numbers, and subjective
assessments, which were given on a seven-point Likert scale.
As no category tested entirely positive for being normal dis-
tributed, all measures were evaluated using non-parametric
tests. Wilcoxon signed rank tests (α = .05) were used for com-
pletion time, error rate, and the subjective task evaluation. The
results comparing the individual approaches used by our hid-
den content visualization were analyzed using Kruskal-Wallis
tests (α = .05). Timing results are illustrated in Figure 7, and
questionnaire results are provided in Figure 8 and 9.

Our analysis revealed a difference in completion time between
the techniques for Task 1 (W = 141, p < .005) and Task 2
(W = 171, p < .001). We found no significant difference in
completion time between the techniques for Task 3 (W = 80,
p = .085).

The average number of errors was very low for all tasks and
techniques (traditional search: 0.05; hidden content visualiza-
tion: 0.04). There was no measurable difference to be found
for error.

We found a significant difference for the questionnaire items
subjective search speed (‘I could find the hidden content
quickly.’) (W = 129, p < .005), subjective difficulty (‘It was
very hard to find all hidden elements.’) (W = 106, p = .022),
and subjective navigation speed (‘I could navigate to hidden
content very quickly.’) (W = 135, p = .003). The differences
in subjective demand (‘The task was very mentally demand-

ing.’) (W = 70, p = .07), subjective confidence (‘I am sure I
did not miss any highlighted elements.’) (W = 49, p = .08)
and subjective benefit (‘The technique would be beneficial for
my every day computer work.’) (W = 38, p = .29) were not
statistically significant.

Observations and Feedback
All participants quickly developed successful strategies using
our hidden content visualization. Once a new search process is
initiated, the viewport of each application is moved to contain
the first occurrence of the search term. This allowed the fastest
participants accessing the required information directly in the
see-through visualization or smart preview without moving the
viewport to the highlighted regions. This strategy could even
be completed with the lowest zoom-level. Most participants,
however, zoomed in one level, which eased the reading of the
preview.

For regions outside the viewport, participants developed differ-
ent strategies. If both regions outside the viewport and outside
the screen appeared at the same time, participants most often
used the smart preview only, because it also includes regions
outside the viewport. About half of the participants clicked
on the regions to scroll them into sight; the other half hovered
over the region and read the information directly from the
superimposed see-through preview. Many participants stated
that they did not recognize regions outside the viewport very
often and they would prefer the system treating these regions
like regions outside the screen. Some participants thought that
this visualization is only useful with a maximum of two or
three windows.

If multiple windows containing scrolled-away content had
large overlapping areas, some participants had problems to
recognize which window each visualization belongs to. In the
interview, they mentioned it would be useful to use different
colors for different windows or have the covered window
marker also for partially covered windows.

In the hidden content visualization condition, no participant
used the window manager to switch between open windows.
Most of them mentioned that the hidden content visualizations
enables them to locate target windows and regions faster than
before. Two participants stated that they would like to have the
indicators for found information inside the task-bar or window
list, as they think a one-dimensional search within a linear list
is faster than a two-dimensional search for highlights on the
whole screen.

With a small amount of interesting content, participants some-
times were slower at marking a search term, initiating a
new visualization process, opening the smart preview and
zoom/scroll to the location than simply scrolling there. Some
participants also mentioned that they think the hidden content
visualization is not useful for simple search tasks involving
little content, but gets increasingly useful with complex tasks
involving multiple windows.

Participants said that they would especially like to see the
visualization feature to support tabs within applications and
connect spreadsheet applications as well as code editors and
documentations. Additionally, integrating a call hierarchy or

smart preview see-through links covered links
1
2
3
4
5
6
7

Visualizing Hidden Content: Individual Approaches
Li

ke
rt

 S
ca

le

Figure 9: Mean questionnaire results for the different ap-
proaches combined our hidden content visualization given on
a seven point Likert-scale. No significant difference was found
in the data.

references to a variable inside a software development envi-
ronment was considered as a useful extension. Also enhancing
the smart preview by showing only headings of the previewed
document and expand or navigate to the sections content on
demand would increase the acceptance as an everyday tool.

One participant tried to use scrolling within a see-through
preview and stated in the interview the scrolling would be a
useful extension to the preview.

Discussion
Based on the significantly lower task time achieved with our
hidden content visualization for Task 1 and 2 and the higher
subjective search and navigation speed, we conclude that H1
is supported, and our hidden content visualization leads to a
faster retrieval of hidden content. The results also indicate
that the usefulness of our technique increases with the number
of windows containing no relevant content. For Task 2 only
half of the windows contained relevant content, which caused
participants using standard search to check twice as many
windows as required. Task 3 required far less navigation
to different windows and, additionally, involved a reduced
number of windows during each step. The largest part of the
task required retrieving and combining information from the
content. We believe that the major time-consuming activity
for Task 3 was understanding and interpreting content instead
of navigation and that this resulted in no significantly faster
results for our hidden content visualization. Due to the low
error rate, we can neither accept nor reject H2. Based on the
participant feedback that our visualization helps not to miss
elements, it might be possible to confirm this hypothesis in a
more extensive study. Because all participants stated that our
visualization helped them to get a better location awareness
inside documents, we conclude that H3 is also supported.

The overall positive user feedback, in particular for the smart
preview and the see-through visualization of the smart links
(see Figure 9), indicates that visualizing hidden content is a
useful tool especially for complex information retrieval tasks
possibly with a high amount of unrelated content.

CONCLUSIONS AND FUTURE WORK
In this paper we presented techniques for visualizing search
terms in areas of documents that are covered by other windows,
outside the window’s current viewport, outside the screen,
contained in a minimized window, or in unopened files. We
introduced smart previews that allow efficient exploration of

content outside visible areas by providing a content-sensitive,
space conserving, compressed preview of the whole docu-
ment’s virtual area, whereas smart links paired with a transpar-
ent overlay and click-to-show functionality allows for a fast
navigation to covered content.

Future work will aim to reduce the visual clutter that may
arise when a large number of regions are selected. We envi-
sion a combination of more sophisticated bundling algorithms,
context-preserving routing [21], and smart fading of the links
over time to further improve the situation.

Moreover, to improve temporal consistency and reduce lag, we
plan to extend our system to track changes of relevant objects
over time and incorporate temporal coherence into the layout
planning. This would also allow us to avoid radical layout
changes resulting from small changes (such as scrolling by a
single line) in the underlying scene.

Finally, we want to pick up comments from study participants
and plan to integrate our hidden content visualization tech-
niques with an integrated development environment such as
Eclipse, where search tasks and visiting all references and
modifications of specific variables are crucial tasks in develop-
ing and debugging software.

ACKNOWLEDGMENTS
The authors wish to thank Manuela Waldner for her important
suggestions. This research was funded by the Austrian Sci-
ence Fund (FWF): P22902 and J 3437-N15, the government
of Styria (A3-22.M-5/2012-21), the Austrian Research Promo-
tion Agency (840232), and the Air Force Research Laboratory
and DARPA grant FA8750-12-C-0300.

REFERENCES
1. Baudisch, P., and Gutwin, C. Multiblending: displaying

overlapping windows simultaneously without the
drawbacks of alpha blending. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’04), ACM (2004), 367–374.

2. Baudisch, P., and Rosenholtz, R. Halo: a technique for
visualizing off-screen objects. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’03), ACM (2003), 481–488.

3. Baudisch, P., Xie, X., Wang, C., and Ma, W.-Y.
Collapse-to-zoom: Viewing web pages on small screen
devices by interactively removing irrelevant content. In
Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST ’04), ACM (2004),
91–94.

4. Bezerianos, A., Dragicevic, P., and Balakrishnan, R.
Mnemonic rendering: an image-based approach for
exposing hidden changes in dynamic displays. In
Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST ’06), ACM (2006),
159–168.

5. Bier, E. A., Stone, M. C., Pier, K., Buxton, W., and
DeRose, T. D. Toolglass and magic lenses: the
see-through interface. In Proceedings of the Conference

on Computer Graphics and Interactive Techniques
(SIGGRAPH ’93), ACM (1993), 73–80.

6. Byrd, D. A scrollbar-based visualization for document
navigation. In Proceedings of the ACM Conference on
Digital Libraries (DL ’99), ACM (1999), 122–129.

7. Collins, C., and Carpendale, S. VisLink: revealing
relationships amongst visualizations. IEEE Transactions
on Visualization and Computer Graphics (InfoVis ’07) 13,
6 (2007), 1192–1199.

8. Dieberger, A., and Russell, D. Exploratory navigation in
large multimedia documents using context lenses. In
Proceedings of the Hawaii International Conference on
System Sciences (HICSS ’02) (2002), 911–917.

9. Eick, S., Steffen, J., and Sumner, E.E., J. Seesoft-a tool
for visualizing line oriented software statistics. IEEE
Transactions on Software Engineering 18, 11 (1992), 957
–968.

10. Gustafson, S., Baudisch, P., Gutwin, C., and Irani, P.
Wedge: Clutter-free visualization of off-screen locations.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’08), ACM (2008),
787–796.

11. Harrison, B. L., Ishii, H., Vicente, K. J., and Buxton, W.
A. S. Transparent layered user interfaces: An evaluation
of a display design to enhance focused and divided
attention. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’95), ACM
(1995), 317–324.

12. Harrison, B. L., Kurtenbach, G., and Vicente, K. J. An
experimental evaluation of transparent user interface
tools and information content. In Proceedings of the ACM
Symposium on User Interface and Software Technology
(UIST ’95), ACM (1995), 81–90.

13. Hearst, M. A. TileBars: visualization of term distribution
information in full text information access. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’95), ACM (1995),
59–66.

14. Hoffmann, R., Baudisch, P., and Weld, D. S. Evaluating
visual cues for window switching on large screens. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’08) (2008),
929–938.

15. Holten, D., and van Wijk, J. Force-directed edge bundling
for graph visualization. Computer Graphics Forum
(EuroVis ’09) 28, 3 (2009), 983–990.

16. Hornbaek, K., and Frøkjær, E. Reading of electronic
documents: The usability of linear, fisheye, and
Overview+Detail interfaces. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’01), ACM (2001), 293–300.

17. Hornbæk, K., and Frøkjær, E. Reading patterns and
usability in visualizations of electronic documents. ACM
Transactions on Computer-Human Interaction 10, 2
(2003), 119–149.

18. Ishak, E. W., and Feiner, S. K. Interacting with hidden
content using content-aware free-space transparency. In
Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST ’04), ACM (2004), 189.

19. Palmer, S., and Rock, I. Rethinking perceptual
organization: the role of uniform connectedness.
Psychonomic Bulletin and Review 1, 1 (1994), 29–55.

20. Steinberger, M., Waldner, M., and Schmalstieg, D.
Interactive self-organizing windows. Computer Graphics
Forum 31, 2pt3 (May 2012), 621–630.

21. Steinberger, M., Waldner, M., Streit, M., Lex, A., and
Schmalstieg, D. Context-preserving visual links. IEEE
Transactions on Visualization and Computer Graphics
(InfoVis ’11) 17, 12 (2011), 2249–2258.

22. Stoffel, A., Strobelt, H., Deussen, O., and Keim, D. A.
Document thumbnails with variable text scaling.
Computer Graphics Forum 31, 3pt3 (2012), 1165–1173.

23. Streit, M., Kalkusch, M., Kashofer, K., and Schmalstieg,
D. Navigation and exploration of interconnected
pathways. Computer Graphics Forum (EuroVis ’08) 27, 3
(2008), 951–958.

24. Streit, M., Lex, A., Kalkusch, M., Zatloukal, K., and
Schmalstieg, D. Caleydo: Connecting pathways and gene
expression. Bioinformatics 25, 20 (2009), 2760–2761.

25. Suh, B., Woodruff, A., Rosenholtz, R., and Glass, A.
Popout prism: Adding perceptual principles to
Overview+Detail document interfaces. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’02), ACM (2002), 251–258.

26. Viau, C., and McGuffin, M. J. ConnectedCharts: explicit
visualization of relationships between data graphics.
Computer Graphics Forum 31, 3pt4 (2012), 1285–1294.

27. Waldner, M., Puff, W., Lex, A., Streit, M., and
Schmalstieg, D. Visual links across applications. In
Proceedings of the Conference on Graphics Interface (GI
’10), Canadian Human-Computer Communications
Society (2010), 129–136.

28. Waldner, M., and Schmalstieg, D. Collaborative
information linking: Bridging knowledge gaps between
users by linking across applications. In Proceeding of the
IEEE Symposium on Pacific Visualization (PacificVis ’11),
IEEE (2011), 115–122.

29. Waldner, M., Steinberger, M., Grasset, R., and
Schmalstieg, D. Importance-driven compositing window
managment. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’11),
ACM (2011), 956–968.

	Introduction
	Related work
	Visualizing Hidden Content
	Visualizing Out-of-Viewport Content
	Visualizing Occluded Content
	Visualizing Off-Screen Content

	Implementation
	Exploratory User Study
	Techniques
	Tasks and Apparatus
	Design and Procedure
	Hypothesis
	Results
	Observations and Feedback
	Discussion

	Conclusions and Future Work
	Acknowledgments
	REFERENCES

