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Abstract

Background: With ever-increasing amounts of data produced in biology research, scientists are in need of
efficient data analysis methods. Cluster analysis, combined with visualization of the results, is one such method
that can be used to make sense of large data volumes. At the same time, cluster analysis is known to be
imperfect and depends on the choice of algorithms, parameters, and distance measures. Most clustering
algorithms don’t properly account for ambiguity in the source data, as records are often assigned to discrete
clusters, even if an assignment is unclear. While there are metrics and visualization techniques that allow
analysts to compare clusterings or to judge cluster quality, there is no comprehensive method that allows
analysts to evaluate, compare, and refine cluster assignments based on the source data, derived scores, and
contextual data.

Results: In this paper, we introduce a method that explicitly visualizes the quality of cluster assignments,
allows comparisons of clustering results and enables analysts to manually curate and refine cluster assignments.
Our methods are applicable to matrix data clustered with partitional, hierarchical, and fuzzy clustering
algorithms. Furthermore, we enable analysts to explore clustering results in context of other data, for example,
to observe whether a clustering of genomic data results in a meaningful differentiation in phenotypes.

Conclusions: Our methods are integrated into Caleydo StratomeX, a popular, web-based, disease subtype
analysis tool. We show in a usage scenario that our approach can reveal ambiguities in cluster assignments and
produce improved clusterings that better differentiate genotypes and phenotypes.
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Background
Rapid improvement of data acquisition technologies
and the fast growth of data collections in the biological
sciences increase the need for advanced analysis meth-
ods and tools to extract meaningful information from
the data. Cluster analysis is a method that can help
make sense of large data and has played an important
role in data mining for many years. Its purpose is to
divide large datasets into meaningful subsets (clusters)
of elements. The clusters then can be used for aggre-
gation, ordering, or, in biology, to describe samples in
terms of subtypes and to derive biomarkers. Clustering
is ubiquitous in biological data analysis and applied to
gene expression, copy number, and epigenetic data, as
well as biological networks or text documents, to name
just a few application areas.
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A cluster is a group of similar items, where similar-
ity is based on comparing data items using a measure
of similarity. Cluster analysis is part of the standard
toolbox for biology researchers, and there is a myriad
of different algorithms designed for various purposes
and with differing strengths and weaknesses. For ex-
ample, clustering can be used to identify functionally
related genes based on gene expression, or to categorize
samples into disease subtypes. Since Eisen et al. [1] in-
troduced cluster analysis for gene expression in 1998,
it has been widely used to classify both, genes and
samples in a variety of biological datasets [2, 3, 4, 5].

However, while clustering is useful, it is not always
simple to use. Scientists have to deal with several
challenges: the choice of an algorithm for a particu-
lar dataset, the parameters for these algorithms (e.g.,
the number of expected clusters), and the choice of a
suitable similarity metric. All of these choices depend
on the dataset and on the goals of the analysis. Also,
methods generally suitable for a dataset can be sensi-
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tive to noise and outliers in the data and produce poor
results for a high number of dimensions.

Several (semi)automated cluster validation, opti-
mization, and evaluation techniques have been intro-
duced to address the basic challenges of clustering and
to determine the amount of concordance among cer-
tain outcomes (e.g., [6, 7, 8]). These methods try to
examine the robustness of clustering results and guess
the actual number of clusters. This task is often ac-
companied by visualizations of these measures by his-
tograms or line graphs. Consensus clustering [9] ad-
dresses the task of detecting the number of clusters
and attaining confidence in cluster assignments. It ap-
plies clustering algorithms to multiple perturbed sub-
samples of datasets and computes a consensus and cor-
relation matrix from these results to measure concor-
dance among them, and explores the stability of dif-
ferent techniques. These matrices are plotted both as
histograms and two-dimensional graphs to assist sci-
entists in the examination process.

Although cluster validation is a useful method to ex-
amine clustering algorithms it does not guarantee to
reconstruct the actual or desired number of clusters
from each data type. In particular, cluster validation
is not able to compensate weaknesses of cluster algo-
rithms to create an appropriate solution if the cluster-
ing algorithm is not suitable for a given dataset.

While knowledge about clustering algorithms and
their strengths and weaknesses, as well as automated
validation methods are helpful in picking a good ini-
tial configuration, trying out various algorithms and
parametrizations is critical in the analysis process. For
that reason, scientists usually conduct multiple runs
of clustering algorithms with different parameters and
compare the varying results while examining the con-
cordance or discordance among them.

In this paper we introduce methods to evaluate
and compare clustering results. We focus on revealing
specificity or ambiguity of cluster assignments and em-
bed our contributions in StratomeX [10, 11], a frame-
work for stratification and disease subtype analysis
that is also well suited to cluster comparison. Further-
more, we enable analysts to manually refine clusters
and the underlying cluster assignments to improve am-
biguous clusters. They can transfer entities to better
fit clusters, merge similar clusters, and exclude groups
of elements assumed to be outliers. An important as-
pect of this interactive process is that these operations
can be informed by considering data that was not used
to run the clustering: when considering cluster refine-
ments, we can immediately show the impact on, for
example, average patient survival.

In our tool, users are able to conduct multiple
runs of clustering algorithms with full control over

parametrization and examine both conspicuous pat-
terns in heatmaps and quantify the quality and confi-
dence of cluster assignments simultaneously. Our mea-
sures of cluster fit are independent from the underlying
stratification/clustering technique and allow investiga-
tors to set thresholds to classify parts of a cluster as
either reliable, uncertain, or a bad fit. We apply our
methods to matrices of genomic datasets, which covers
a large and important class of datasets and clustering
applications.

We evaluate our tool based on a usage scenario with
gene expression data from The Cancer Genome Atlas
and demonstrate how visual inspection and manual
refinement can be used to identify new clusters.

In the following we briefly introduce clustering algo-
rithms and their properties, as well as StratomeX, the
framework we used and extended for this this research,
and other, relevant related work.

Cluster Analysis
Clustering algorithms assign data to groups of simi-
lar elements. The two most common classes of algo-
rithms are partitional and hierarchical clustering al-
gorithms [12]; less frequently used are probabilistic or
fuzzy clustering algorithms.

Partitional algorithms decompose data into non-
overlapping partitions that optimize a distance func-
tion, for example by reducing the sum of squared error
metric with respect to Euclidean distance. Based on
that, they either attempt to iteratively create a user-
specified number of clusters, like in k-Means [13] or
they utilize advanced methods to guess the number of
clusters implicitly, such as Affinity Propagation [14].

In contrast to that, hierarchical clustering algo-
rithms generate a tree of similar records by either
merging smaller clusters into larger ones (agglomer-
ative approach) or splitting groups into smaller clus-
ters (divisive). In the resulting binary tree, commonly
represented with a dendrogram, each leaf node repre-
sents a record, each inner node represents a cluster as
the union of its children. Inner nodes commonly also
store a measure of similarity among their children. By
cutting the tree at a threshold, we are able to obtain
discrete clusters from the similarity tree.

These approaches use a deterministic cluster assign-
ment, i.e., elements are assigned exclusively to one
cluster and are not in other clusters. In contrast, fuzzy
clustering uses a probabilistic assignment approach
and allows entities to belong to multiple clusters. The
degree of membership is described by weights, with
values between 0 (no membership at all) and 1 (unique
membership to one cluster). These weights, which are
commonly called probabilities, capture the likelihood
of an element belonging to a certain partition. A
prominent example algorithm is Fuzzy c-Means [15].
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Figure 1 Screenshot of Caleydo StratomeX, which forms the basis of the technique introduced in this paper showing data from the
TCGA Kidney Renal Clear Cell Carcinoma dataset [4]. Each column represents a dataset, which can either be categorical, like in the
second column from the left which shows tumor staging, or based on the clustering of a high-dimensional dataset, like the two
columns on the right, showing mRNA-seq and RPPA data, respectively. The blocks in the columns represent groups of records,
where matrices are visualized as heat maps, categories with colors, and clinical data as Kaplan-Meier plots. The columns showing
Kaplan-Meier plots are “dependent columns”, i.e., they use the same stratification as a neighboring column. The Kaplan-Meier plots
show survival times from patients. The first column shows survival data stratified by tumor staging, where, as expected, higher tumor
stages correlate with worse outcomes.

Clustering algorithms make use of a measure of sim-
ilarity or dissimilarity between pairs of elements. They
aim to maximize pair-wise similarity or minimize pair-
wise dissimilarity by using either geometrical distances
or correlation measures. A popular way to define sim-
ilarity is a measure of geometric distance based on,
for example, squared Euclidean or Manhattan dis-
tance. These measures work well for “spherical” and
“isolated” groups in the data [16] but are less well
suited for other shapes and overlapping clusters. More
sophisticated methods measure the cross-correlation
or statistical relationship between two vectors. They
compute correlation coefficients that denote the type
of concordance and dependence among pairs of ele-
ments. The coefficients range from -1 (opposite or neg-
ative correlation) to 1 (perfect or positive correlation),
whereas zero values denote that there is no relationship
between two elements. The most commonly used coef-
ficient in that context is the Pearson product-moment
correlation coefficient that measures the linear rela-
tionship by means of the covariance of two variables.

Spearman’s rank correlation coefficient is another ap-
proach to estimate concordance similar to Pearson’s
but uses ranks or scores for data to compute covari-
ances.

The choice of distance measure has an important
impact on the clustering results, as it drives an algo-
rithm’s determination of similarity between elements.
At the same time, we can also use distance measures to
identify the fit of an element to a cluster, by, for exam-
ple, measuring the distance of an element to the cluster
centroid. In doing so, we do not necessarily need to use
the same measure that was used for the clustering in
the first place. In our technique, we visualize this in-
formation for all elements in a cluster, to communicate
the quality of fit to a cluster.

StratomeX
StratomeX is a visual analysis tool for the analy-
sis of correlations of stratifications [10, 11]. This is
especially important when investigating disease sub-
types that are believed to have a genomic underpin-
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ning. Originally developed as a desktop software tool,
it has since been ported to a web-based client-server
system [17]. Figure 1 shows an example of the lat-
est version of StratomeX. By integrating our methods
into StratomeX, we can also consider the relationships
of clusters to other datasets, including clinical data,
mutations, and copy number alteration of individual
genes.

StratomeX visualizes stratifications of samples (pa-
tients) as rows (records) based on various attributes,
such as clinical variables like gender or tumor staging,
bins of numerical vectors, such as binned values of copy
number alterations, or clusters of matrices/heat maps.
Within these heat maps, the columns correspond to
e.g., differentially expressed genes. StratomeX com-
bines the visual metaphor used in parallel sets [18],
with visualizations of the underlying data [19]. Each
dataset is shown as a column. A header block at the
top shows the distribution of the whole dataset, while
groups of patients are shown as blocks in the columns.
Relationships between blocks are visualized by rib-
bons whose thickness represents the number of pa-
tients shared across two bricks. This method can be
used to visualize relationships between groupings and
clusterings of different data, but can equally be used
to compare multiple clusterings of the same dataset.

StratomeX also integrates the visualization of “de-
pendent data” by using the stratification of a neighbor-
ing column for a different dataset. This is commonly
used to visualize survival data in Kaplan-Meier plots
for a particular stratification, or to visualize expression
of a patient cluster in a particular biological pathway.

Related Work
There are several tools to analyze clustering results
and assess the quality of clustering algorithms. A com-
mon approach to evaluate clustering results is to visu-
alize the underlying data: heatmaps [1], for example,
enable users to judge how consistent a pattern is within
a cluster for high-dimensional data.

Seo at el. [20] introduced the hierarchical clustering
explorer (HCE) to visualize hierarchical clustering re-
sults. It combines several visualization techniques such
as scattergrams, histograms, heatmaps and dendro-
gram views. In addition to that, it supports dynamic
partitioning of clusters by cutting the dendrogram in-
teractively. HCE also enables the comparison of dif-
ferent clustering results while showing the relation-
ship among two clusters with connecting links. May-
day [21, 22] is a similar tool that, in contrast to HCE,
provides a wide variety of clustering options.

CComViz [23] is a cluster comparison application
that uses the parallel sets technique to compare clus-
tering results on the same data, and hence is related

to the original StratomeX. In contrast to our proposed
technique it does not allow for internal evaluation,
cluster refinement, or the visualization of cluster fits.

Lex et al. [24] introduced Matchmaker, a method
that enables both, comparisons of clustering algo-
rithms, and clustering and visualization of homoge-
neous subsets, with the intention of producing better
clustering results. Matchmaker uses a hybrid heatmap
and a parallel sets or parallel coordinates layout
to show relationships between columns, similar to
StratomeX. VisBricks [19] is an extension of this idea
and provides multiform visualization for the data rep-
resented by clusters: users can choose which visualiza-
tion technique to use for which cluster.

In contrast to these techniques, Domino [25] provides
a completely flexible arrangement of data subsets that
can be used to create a wide range of visual repre-
sentations, including the Matchmaker representation.
It is, however, less suitable for cluster evaluation and
comparison.

A tool that addresses the interactive exploration of
fuzzy clustering in combination with biclustering re-
sults is FURBY [26]. It uses a force-directed node-
link layout, representing clusters as nodes and the re-
lationship between them as links. The distance be-
tween nodes encodes the (approximate) similarity of
two nodes. FURBY also allows users to refine or im-
prove fuzzy clusterings by choosing a threshold that
transforms fuzzy clusters into discrete ones.

Tools such as ClustVis [27] and Clustrophile [28] take
a more traditional approach to cluster visualization
by using scatterplots based on dimensionality reduc-
tion (e.g., using PCA) and/or heat maps to visualize
clustering results. While these tools are well suited to
evaluate a particular clustering result, they are less
powerful with regards to comparison between cluster-
ings.

A tool that is more closely related to our work is
XCluSim [29]. It focuses on visual exploration and val-
idation of different clustering algorithms and the con-
cordance or disconcordance among them. It combines
several small sub-views to form a multiview layout for
cluster evaluation. It contains dendrogram and force-
directed graph views to show concordance among dif-
ferent clustering results and uses colors to represent
clusters, without showing the underlying data. It of-
fers a parallel sets view where each row represents one
clustering result and thick dark ribbons depict which
groups are stable, i.e., consistent throughout all clus-
tering results. In contrast to XCluSim, our method in-
tegrates cluster metrics with the data more closely and
can also bring in other, related data sources, to eval-
uate clusters. Also, XCluSim does not support cluster
refinement.
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Table 1 provides a comparison between these most
closely related tools and our technique.

Our methods are also related to silhouette plots,
which visualize the tightness and separation of the
elements in a cluster [30]. Silhouette plots, however,
work best for geometric distances and clearly sepa-
rated and spherical clusters, whereas our approach is
more flexible in terms of supporting a variety of dif-
ferent measures of cluster fit. Also, silhouette plots are
typically static, however, we could conceivably inte-
grate the metrics used for silhouette plots in our ap-
proach. iGPSe [31], for example, is a system similar to
StratomeX that integrates silhouette plots.

Implementation
Requirements
Based on our experience in designing multiple tools
for visualizing clustered biomolecular data [24, 19, 10,
11, 32, 25], conversations with bioinformaticians, and
a literature review, we elicited a list of requirements
that a tool for the analysis of clustered matrices from
the biomolecular domain should address.

R I: Provide representative algorithms with
control over parametrization. A good cluster
analysis tool should enable investigators to flexibly
run various clustering algorithms on the data. Users
should have control over all parameters and should be
able to choose from various similarity metrics.

R II: Work with discrete, hierarchical and prob-
abilistic cluster assignments. Visualization tools
that deal with the analysis of cluster assignments
should be able to work with all important types of clus-
tering, namely discrete/partitional, hierarchical, and
fuzzy clustering. The visualization of hierarchical and
fuzzy clusterings is usually more challenging: to deal
with hierarchical clusterings a tool needs to enable
dendrogram cuts, and to address the properties of
fuzzy clusterings, it must support the analysis of am-
biguous and/or redundant assignments.

R III: Enable comparison of cluster assign-
ments. Given the ability to run multiple clustering
algorithms, it is essential to enable the comparison
of the clustering results. This will allow analysts to
judge similarities and differences between algorithms,
parametrizations, and similarity measures. It will also
enable them to identify stable clusters, i.e., those that
are robust to changes in parameters and algorithms.

R IV: Visualize fit of records to their clus-
ter. For the assessment of confidence in cluster as-
signments, a tool should show the quality of cluster
assignments for its records and the overall quality for
the cluster. This enables analysts to judge whether a

record is a good fit to a cluster or whether it’s an out-
lier or a bad fit.

R V: Visualize fit of records to other clusters.
Clustering algorithms commonly don’t find the perfect
fit for a record. Hence, it is useful to enable analysts
to investigate if particular records are good fits for
other clusters, or whether they are very specific to their
assigned clusters. This allows users to consider whether
records should be moved to other clusters, whether a
group of records should be split off into a separate
cluster, and more generally, to evaluate whether the
number of clusters in a clustering result is correct.

R VI: Enable refinement of clusters. To enable
the improvement of clusters, users should be able to
interactively modify clusters. This includes shifting of
elements to better fitting clusters based on similarity,
merging clusters considered to be similar, and exclud-
ing non-fitting groups from individual groups or the
whole dataset.

R VII: Visualize context for clusters. It is im-
portant to explore evidence for clusters in other data
sources. In molecular biology applications in particu-
lar, datasets rarely stand alone but are connected to
a wealth of other (meta)data. Judging clusters based
on effects in other data sources can indicate practical
relevance of a clustering, or can reveal dependencies
between data sets and hence is important for valida-
tion and interpretation of the results.

Based on these requirements, our tool extends
StratomeX with new clustering features for cluster
evaluation and cluster improvement. Table 1 illustrates
how our tool differs from existing clustering tools by
comparing their set of features with our work.

Design

We designed our methods to address the aforemen-
tioned requirements while taking into account usabil-
ity and good visualization design practices. Our de-
sign was influenced by our decision to integrate the
methods into Caleydo StratomeX as StratomeX is a
well-established tool for subtype analysis. A prototype
of our methods is available at http://caleydo.org/

publications/2017_bmc_clustering/. Please also
refer to the supplementary video for an introduction
and to observe the interaction.

We developed a model workflow for the analysis and
refinement of clustered data, illustrated in Figure 2.
This workflow is made up of four core components: (1)
running a clustering algorithm, (2) visual exploration
of the results, (3) manual refinement of the clustering
results, and (4) interpretation of the results.

http://caleydo.org/publications/2017_bmc_clustering/
http://caleydo.org/publications/2017_bmc_clustering/
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General Features This Work StratomeX [11, 10] CComViz [23] XCluSim [29] ClustVis [27]

Support of multiple genomic data types 3 3 3 3 3
Integration of contextual data 3 3 7 7 7
Import of custom datasets 3 3 3 3 3
Preprocessing of datasets 7 7 7 3 3
Interactive plots / Linking and brushing 3 3 7 3 7
Customizable plots 3 3 7 3 3
Automated removal of visual clutter 3 3 3 3 7

Clustering Features

Dynamic application of clustering 3 3 7 3 3
Interactive cluster refinement 3 7 7 7 7
Hard/partitional clustering 3 7 7 3 3
Hierarchical clustering 3 7 7 3 7
Fuzzy clustering 3 7 7 7 7
Density Based Clustering 7 7 7 3 7

Cluster Visualization

Visualize multiple stratifications 3 3 3 3 7
Detailed view of clusters / stratifications 3 3 7 3 7
Visualization of cluster fits 3 7 7 7 7
PCA plots 7 7 7 7 3
Cluster results comparison / evaluation 3 3 3 3 7
Stable cluster analysis 3 7 3 3 7

Software Properties

Web-based software / tool 3 7 7 7 3
Open Source 3 3 7 7 3
Actively Developed 3 7 7 3 3

Table 1 Comparison of our technique to the most important existing tools with respect to basic data-processing and visualization
features, clustering options, cluster visualization features, and software properties. The most important features for our technique are
highlighted in bold. Note that our technique does not support preprocessing, density based clustering, and PCA plots, but otherwise is
the most comprehensive tool.

Run 
Clustering
Algorithm

Visually
Explore

Interpret
Result

Manually
Re�ne

Figure 2 The workflow for evaluating and refining cluster
assignments: (1) running clustering algorithms, (2) visual
exploration of clustering results by investigating cluster quality
and comparing cluster results (3) manual refinement and
improvement of unreliable clusters and (4) final interpretation
of the improved results considering contextual data.

1. Cluster Creation. Investigators start by choos-

ing a dataset and either applying clustering algorithms

with desired parametrization or selecting existing, pre-

computed clustering results. The clustered dataset is

added to potentially already existing datasets and clus-

terings.

2. Visual Exploration. Once a dataset and clus-
tering are chosen, analysts explore the consistency of
clusters and/or compare the results to other clustering
outcomes to discover patterns, outliers or ambiguities.
If there are not confident about the quality of the re-
sult, or want to see an alternative clustering, they can
return to step 1 and create new clusters by adjusting
the parameters or selecting a different algorithm.

3. Manual Refinement. If analysts detect records
that are ambiguous, they can manually improve clus-
ters to create better stratifications in a process that it-
erates between refinement and exploration. The refine-
ment process includes splitting, merging and removing
of clusters.

4. Result Interpretation. Once clusters are found
to be of reasonable quality, the analysts can proceed
to interpret the results. In the case of disease subtype
analysis with StratomeX, they can assess the clinical
relevance of subtypes, or explore relationships to other
genomic datasets, confounding factors, etc. Of course,
supplemental data can also inform the exploration and
refinement steps.

We now introduce a set of techniques to address our
proposed requirements within this workflow.
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Figure 3 Example of the control window to apply clustering
algorithms on data. Different algorithms are accessible using
tabs. Within the tabs, the algorithm can be configured using
algorithm-specific parameters and general distance metrics.

Creating Clusters
Users are able to create clusters by selecting a dataset
from a data browser window and choosing an algo-
rithm and its configuration (see Figure 3). In our
prototype, we provide a selection of algorithms com-
monly in bioinformatics, including k-Means, (agglom-
erative) hierarchical clustering, Affinity Propagation,
and Fuzzy c-Means. Each tab represents one clustering
technique with corresponding parameters, such as the
number of clusters for k-Means, the linkage method
for hierarchical clustering, or the fuzziness factor for
Fuzzy c-Means, addressing R I. Each execution of a
clustering algorithm adds a new column to StratomeX,
so that multiple alternative results can be easily com-
pared.

Cluster Evaluation
In our application, there are two components that

enable analysts to evaluate cluster assignments: (1) the
display of the underlying data in heatmaps or other
visualizations and (2) the visualizations of cluster fit
alongside the heatmap, as illustrated in Figure 4. The
cluster fit data is either a measure of similarity of each
record to the cluster centroid, or, if fuzzy clustering is
used, the measure of probability that a record belongs
to a cluster. Combining heatmaps and distance data
allows users to relate patterns or conspicuous groups
in the heatmap to their measure of fit.

To evaluate the fit of each record to its cluster
(R IV), we use a distance view shown right next
to the heatmap (orange in Figure 4). It displays a bar-
chart showing the distances of each record to the clus-
ter centroid. Each bar is aligned with the rows in the
heatmap and thus represents the distance or correla-
tion value of the corresponding record to the cluster
mean. The length of a bar encodes the distance, mean-
ing that short bars indicate well fitting records while
long bars indicate records that are a poor fit. In the
case of cross-correlation, long bars represent records

Data All Cluster DistancesDistance
Views

Group 2

Group 1

Group 0
Between-Cluster DistancesHeatmaps
Group 0 Group 1 Group 2

Within-Cluster
Distances

Figure 4 Illustration of heatmaps, within-cluster, and
between-cluster distance views. The heat maps (green, left)
show the raw data grouped by a clustering algorithm. The
within-cluster distance view shows the quality of fit of each
record to its cluster (orange, middle). The between-cluster
distance view shows the quality of fit of each record to each
other cluster (violet, right). This enables analysts to spot
whether a record would also fit to another cluster.

with high concordance whereas small bars indicate a
disconcordance among them. While the absolute val-
ues of distances are typically not relevant for judging
the fit of elements to the cluster, we show them on
mouse-over in a tool-tip. The heatmaps and distance
views are automatically sorted from best to worst fit
which makes identifying the overall quality of a cluster
easy. In addition to that, we globally scale the length of
each bar according to its distance measure, so that the
largest bar represents the maximal computed distance
measure across all distance views. Note that the dis-
tance measure used for the distance view does not have
to be the one that was used for clustering. Figure 5
shows a montage of different distance measures for the
same cluster in distance views. Notice that while some
trends are consistent across many measures, this is not
the case for all measures and all patterns, illustrating
the strong influence of the choice of a similarity mea-
sure.

Related to cluster fit is the question about the speci-
ficity of a record to a cluster (R V). It is conceivable
that a record is a fit for multiple clusters, or that it
would be a better fit to another cluster. To convey this,
we compute the distances of each record to all other
cluster centroids and visualize it in a matrix of dis-
tances to the right of the within-cluster distance view
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Figure 5 A montage of distance views showing different
distance metrics for the same cluster. From left to right:
Euclidean distance, Cranberry distance, Chebyshev distance,
and Pearson correlation. Note that long bars for Pearson
correlation indicate high similarity. This illustrates that
different distance metrics are likely to produce different
results.

(violet in Figure 4). In doing so, we keep the row as-
sociations intact. We do not display the within-cluster
distances in the matrix, which results in empty cells
along the diagonal. This view helps analysts to inves-
tigate ambiguous records and supports them in judg-
ing whether the number of clusters is correct: if a lot
of records have high distances to all clusters, maybe
they should belong to a separate cluster. On demand,
the heatmaps can also be sorted by any column in the
between-cluster distance matrix. As an alternative to
the bar charts, we also provide a grayscale heat map for
between-cluster distances (see Figure 6), which scales
better when the algorithm produced many clusters.

Visualizing Probabilities for Fuzzy Clustering Since
our tool also supports fuzzy clustering (R II) we pro-
vide a probability view, similar to the distance view,
to show the degree of membership of each record to all
clusters. In the probability view, the bars show the
probability of a record belonging to a current cluster,
which means that long bars always indicate a good fit.
As each record has a certain probability to belong to
each cluster, we use a threshold above which a record
is displayed as a member of a cluster. Records can con-
sequently occur in multiple clusters. Records that are
assigned to multiple clusters are highlighted in pur-
ple, as shown in Figure 7, whereas unique records are
shown in green. As for distance views, we also show
probabilities of each record belonging to each cluster
in a matrix, as shown in Figure 7 on the right.

Figure 6 Example of five clusters, shown in heat maps. Next
to the heat maps, small bar charts show the within-cluster
distances which enables an analyst to evaluate the fit of
individual elements to the cluster. The records are sorted by
fit, hence the worst fitting records are shown at the bottom of
each cluster. The grayscale heat map on the right shows the
distance of each record to each other cluster, i.e., the first
column shows the fit to the first cluster, the second column
shows the fit to the second cluster, etc. Columns that
correspond to the within-cluster distances are empty.

Cluster Refinement
Once scientists have explored the cluster assignments,
the next step is to improve the cluster assignments if
necessary (R VI).

Splitting Clusters Not all elements assigned to a clus-
ter fit equally well. It is not uncommon that a group
of elements within a cluster is visibly different from
the rest, and the clusters would be of higher quality
if it were split off. To support splitting of clusters, we
extended StratomeX to enable analysts to define am-
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Figure 7 Example of three clusters produced by fuzzy
clustering, shown in heatmaps. The probabilities of each
patient belonging to their cluster are shown to their right.
Green bars represent elements unique to the cluster while
purple indicates elements belonging to more clusters. The
between-cluster probabilities are displayed on the right.

biguous regions in a cluster. The distance views con-
tain adjustable sliders that enable analysts to select
up to three regions to classify records into good, am-
biguous, and bad fit (the green, light-green, and bright
regions in Figure 8). By default, the sliders are set to
the second and third quartile of the within-cluster dis-
tance distribution. Based on these definitions, analysts
can split the cluster, which extracts the blocks into a
separate column in StratomeX, as illustrated in Fig-
ure 8). This new column is treated like a dataset in
its own right, such that the distance views show the
distances to the new centroids. However, these splits
are not static: it is possible to dynamically adjust both
sliders and hence the corresponding cluster subsets. In
the context of fuzzy clustering, clusters can also be
split based on probabilities.

Sliders

Good Fit

Uncertain Fit

Bad Fit

Figure 8 Example of a cluster being split into three different
subsets. The dark green region at the top corresponds to
record that fit reliably to the cluster, the light-green group in
the middle corresponds to records that are uncertain with
respect to cluster fit, the white group at the bottom
corresponds to records that do not fit well with the cluster.
The black sliders on top of the bar charts can be used to
manually adjust these regions. The split clusters are shown as
a separate column on the right.

Splitting only based on distances, however, does not
guarantee that the resulting groups are as homoge-
neous as they could be: all they have in common is a
certain distance range from the original centroid, yet
these distances could be in opposite “directions”. To
improve the homogeneity of split clusters, we can dy-
namically shift the elements between the clusters, so
that the elements are in the cluster that is closest to
them using an approach similar to the k-Means algo-
rithm. Shifting is based on the same similarity metric
that was used to produce the original stratification.

Merging and Exclusion Our application also has the
option to merge clusters. Especially when several clus-
ters are split first, it is likely that some of the new
clusters exhibit a similar pattern, and that their dis-
tances also indicate that they could belong together.
This problem of too many clusters for the data can be
addressed using a merge operation. We also support
cluster exclusion since there might be groups or indi-
vidual records that are outliers and shouldn’t belong
to any cluster.

Integration with StratomeX

The original StratomeX technique already enables
cluster comparison R III through the columns and
ribbons approach. It also is instrumental in bringing
in contextual information for clusters R VII, as men-
tioned before. This can, for example, be used to asses
the impact of refined clusterings on phenotypes. Fig-
ure 9 shows the impact of a cluster split on survival
data, for example.
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Figure 9 Overview of the improved StratomeX. (a) The first column is stratified into three groups using affinity propagation.
(b) Distances between all clusters are shown. (c) The second column shows the same data but is clustered differently using a
hierarchical algorithm. (d) Notice that Group 2 in the second column is a combination of parts of Group 1 and Group 2 of the first
column. (e) Manual cluster refinement: The second block (Group 1) of the second column is split, and we see clearly that the
patterns in the block at the bottom is quite different from the others. (f) This block also exhibits a different phenotype: the
Kaplan-Meier plot shows worse outcomes for this block. (g) The rightmost column shows the same dataset clustered with a fuzzy
algorithm. (h) Notice that the second cluster contains mostly unique records (most bars are green), while the other two clusters
share about a third of their records (violet).

Technical Realization
Our methods are fully integrated with the web-version
of Caleydo StratomeX. The software version is based
on Phovea [33], an open source visualization platform
targeting biomedical data. It is based on a client-server
architecture with a server runtime in Python using the
Flask framework and a client runtime in JavaScript
and Typescript. Phovea supports the development of
client-side and server-side plugins to enhance web tools
in a modular manner. The clustering algorithms and
distance computation used in this work are imple-
mented as server-side Phovea plugins in Python using
the SciPy and NumPy libraries. The front end, includ-
ing the distance and matrix views, is implemented as a
client-side Phovea plugin and uses D3 [34] to dynami-
cally create the plots. The source code is released under
the BSD license and is available at http://caleydo.

org/publications/2017_bmc_clustering/.

Results
A common question in clustering is how to determine
the appropriate number of clusters in the data. While
there are algorithmic approaches, such as the cophe-
netic correlation coefficient [35], to estimate the num-
ber of clusters, visual inspection is often the initial step
in confirming that a clustering algorithm has separated
the elements appropriately. In this usage scenario we
use our approach to inspect and refine a clustering re-
sult provided by an external clustering algorithm and

to confirm our results with an integrated clustering
algorithm.

We obtained mRNA gene expression data from
the glioblastoma multiforme cohort of The Cancer
Genome Atlas study [2] as well as clustering re-
sults generated using a consensus non-negative ma-
trix factorization (CNMF) [36]. Verhaak et al. [2] re-
ported four expression-derived subtypes in glioblas-
toma, which motivated us to review the automatically
generated, uncurated, CNMF clustering results with
4 clusters. Visual inspection indicates that clusters
named Group 0 and Group 1 contain patients that
appear to have expression profiles that are very differ-
ent from the other patients (see Figure 10(c)). Using
the within-cluster distance visualization and sorting
the patients in those clusters according to the within-
cluster distance reveals that the expression patterns
are indeed very different and that the within-cluster
distances for those patients are also notably larger
than for the other patients. Resorting the clusters by
between-cluster distances to the other 3 clusters, re-
spectively, shows that these patients are also different
from the patients in the other clusters (see Figure 10).

Manual Cluster Refinement Using the sliders in the
within-cluster distance visualization and the cluster
splitting function we separated aforementioned pa-
tients from the clusters named Group 0 and Group 1.

http://caleydo.org/publications/2017_bmc_clustering/
http://caleydo.org/publications/2017_bmc_clustering/
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Because their profiles are very similar, we merged them
into a single cluster using the cluster merging func-
tion (see Figure 10(e)). The expression profiles in the
resulting new cluster look homogeneous and are visi-
bly different from the expression profiles in the other
four clusters. We examined patient survival times (Fig-
ure 10(f)) across the five clusters and did not observe
any notable differences in the new cluster. Since the
web-based prototype of StratomeX is currently still
lacking the guided exploration features of the original
standalone application [11], we were unable to identify
a meaningful correlation between the new cluster and
mutation and copy number calls or to identify signifi-
cantly overlapping clusters in other data types.

However, we also compared the five clusters derived
from the original four-cluster CNMF result with other
clustering results computed on the same gene expres-
sion matrix (Figure 10(g)) and found, for example,
that three-, four-, and five-cluster k-Means clustering
results using Euclidean distance and the k-means algo-
rithm include almost exactly the same cluster that we
identified in the CNMF clustering results using visual
inspection and manual refinement.

Discussion
Our methods are limited by the inherent limitations
of StratomeX: when working with a large number of
clusters, ribbons between the individual columns can
result in clutter. We observe that 10-15 clusters can
be used without too much clutter. Also, the num-
ber of columns is limited to about ten on typical dis-
plays. In terms of computational scalability, we found
that even the computationally complex clustering al-
gorithms such as affinity propagation execute almost
interactively for a dataset with about 500x1500 entries,
and complete within one to two minutes for a genomic
dataset with about 500x12000 entries on our t2.micro
Amazon EC2 instance with 1 CPU and 1 GB memory.
We find that the performance of our technique is in line
with or superior to related techniques (see Table 1).

Our implementation currently cannot appropriately
compare columns clustered with fuzzy algorithms, as
the ribbons connecting the columns assume that ev-
ery row exists only once. We plan on addressing this
limitation in the future, either by allowing overlapping
ribbons, or by using a separate visualization optimized
to visualize set overlaps, such as UpSet [37].

Conclusions
Clustering is an important yet inherently imperfect
process. In this paper we have introduced methods to
evaluate and refine clustering results for the applica-
tion to matrix data, as it is commonly used in molec-
ular biology. In contrast to previous approaches, we

combine visualization of the data directly with visual-
ization of cluster quality and enable the comparison of
multiple clustering results. We also allow interactive
refinement of clusters while associating the updated
clusters with contextual data, which allows analysts to
judge clusters not only by the data used for clustering,
but also based on effects observable in related datasets.
We argue that our tool is thus the most comprehen-
sive technique to refine, create, evaluate, compare, and
contextualize clustering results.

In the future, we plan on adding additional clustering
algorithms, as different algorithms have complemen-
tary strengths and weaknesses, and explore the pos-
sibility of using distributed clustering algorithms to
scale to even bigger datasets. Also, density based clus-
tering algorithms [38], which treat outliers separately
would be valuable to integrate and would mandate an
extension of our visualization method. We also plan on
addressing cases with large numbers of clusters, a cur-
rent limitation of our approach, which, however, will
likely require a different visualization approach.

We plan on enabling analysts to cluster individual
blocks, i.e., to run a clustering algorithm on the sub-
set of records that were previously assigned to a clus-
ter. This approach could be used to identify groups of
outliers in clusters, which could then be split off and
re-integrated with other clusters.

Finally, we will extend our work to datasets that are
not in matrix form. This will require novel visual repre-
sentations, as there is no equivalent to the well-defined
borders of cluster blocks when clustering graphs or tex-
tual data.

List of abbreviations used

GBM: glioblastoma multiforme, TCGA: The Cancer Genome Atlas.
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Figure 10 Results of manual cluster refinement and comparison with additional data types and clustering results. (a) The original
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three rightmost columns are k-Means clustering results computed with the software. Notice that the manually derived cluster (e)
consistently appears in the k-means clustering results.
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