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Taggle: Scalable Visualization of Tabular Data
through Aggregation
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Abstract—Visualization of tabular data—for both presentation and exploration purposes—is a well-researched area. Although effective
visual presentations of complex tables are supported by various plotting libraries, creating such tables is a tedious process and requires
scripting skills. In contrast, interactive table visualizations that are designed for exploration purposes either operate at the level of
individual rows, where large parts of the table are accessible only via scrolling, or provide a high-level overview that often lacks
context-preserving drill-down capabilities. In this work we present Taggle, a novel visualization technique for exploring and presenting
large and complex tables that are composed of individual columns of categorical or numerical data and homogeneous matrices. The key
contribution of Taggle is the hierarchical aggregation of data subsets, for which the user can also choose suitable visual representations.
The aggregation strategy is complemented by the ability to sort hierarchically such that groups of items can be flexibly defined by
combining categorical stratifications and by rich data selection and filtering capabilities. We demonstrate the usefulness of Taggle for
interactive analysis and presentation of complex genomics data for the purpose of drug discovery.

Index Terms—Information visualization, visualization techniques and methodologies, tabular data, multi-dimensional data, aggregation,
hierarchical grouping and sorting.
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1 INTRODUCTION

V ISUALIZATION of tabular or multi-dimensional data is im-
portant in many application domains and is a mainstay

of visualization research. We distinguish three types of tabular
data visualization techniques: (1) overview techniques, which
position marks for each cell based on the cell’s value (for example,
parallel coordinates, scatterplot matrices, and generalizations such
as FLINA [1]); (2) projection techniques, which show a lower-
dimensional projection of a high-dimensional dataset (such as
scatterplots of the output of principle component analysis or
multidimensional scaling [2]); and (3) tabular techniques, which
retain a tabular layout and encode the data within the cells (such as
heatmaps and the Table Lens [3]). There are also hybrid approaches
and systems that use multiple coordinated views to combine the
strengths of individual techniques.

While there is a rich body of work on overview and projection
techniques, there is less work on tabular techniques, with some
notable exceptions, such as the Table Lens [3], Bertifier [4],
LineUp [5], and ComplexHeatmap [6]. In this paper, we revisit tabu-
lar visualization approaches by introducing various generalizations
and improvements that make them more flexible and scalable.

Our primary contribution is Taggle, a tabular visualization
method that allows explicit visualization of large tabular datasets
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by selectively aggregating subsets of a dataset. When used with
larger data sets, tabular data visualization typically requires a
trade-off between overview and detail: for showing an overview,
techniques such as the Table Lens down-scale rows to be as thin as
a single pixel, whereas multiple pixels per row are necessary when
labels are to be readable. However, even down-scaling rows has its
limits, as information loss occurs when a dataset has more items
than the screen has pixels.

The goal of Taggle is to provide a high-level overview of
large and heterogeneous tabular datasets while allowing users
to drill down to individual items. To this end, we use selective
aggregation of rows and columns. Aggregation is enabled by
various grouping strategies, which can be based on combinations
of categorical attributes, user-driven selections, or on setting
thresholds to numerical attributes. Both aggregates and individual
rows can be visualized using a multiform approach, where users
can choose the appropriate visualization techniques for the scale,
aggregation status, and type of individual columns. The grouping
and aggregation capabilities are complemented by sorting and
filtering techniques. The resulting technique is suitable for both
interactive exploration and presentation of complex tabular datasets.

We demonstrate Taggle’s utility by means of a case study
on analyzing a genomic cancer dataset for the purpose of drug
discovery. Further, we demonstrate Taggle using a public health
dataset: the spread of AIDS across the nations of the world.

2 TABULAR DATA

Throughout this paper, we use an AIDS dataset from UNAIDS
AIDSinfo1 as a guiding example. This dataset was enriched
with metadata about the countries, such as population, which
we retrieved from the United Nations Population Division2 and

1. http://aidsinfo.unaids.org/
2. http://www.un.org/en/development/desa/population/
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Fig. 1: The Taggle interface consisting of a table view (a) and a data selection panel (b) showing a dataset on AIDS in several countries
grouped by continent and level of human development index. The data selection panel consists of attribute filter views that allow users to
filter out records by interacting with the histograms. The selected rows indicate the relationship between new HIV infections and AIDS
related deaths in African countries over time. It can be seen that an outburst of new HIV infections in the 1990s in southern African
countries resulted in high AIDS-related death rates about a decade later in the 2000s (c). The rows of countries in North America have
been aggregated to histograms, box plots, and stacked bars (d).

the yearly Human Development Report of the United Nations
Development Programme3. The combined dataset consists of 17
numerical vectors (e.g., population, sex before the age of 15 in
percent), 4 categorical vectors (e.g., continent, human development
index), and 10 time-series matrices (e.g., AIDS related deaths or
new HIV infections over a period of 27 years) collected for 160
countries.

Tabular datasets are usually composed of items stored in rows,
which often correspond to independent variables (countries, in
our example), and values (i.e., observations about these variables)
stored in columns, which commonly correspond to dependent
variables (e.g., population, in our example). Lex et al. [7] dis-
cuss heterogeneity and sources of heterogeneity in tabular data:
semantics—the columns in the table have different meanings;
characteristics—the columns have different data types and value
ranges; and statistics—the columns have different behaviors or
distributions.

Homogeneous datasets lend themselves to compact and simple
visual representations, as all data items share the same meaning and
scales. Heatmaps [8], for example, are well suited to homogeneous
datasets, as they encode each cell with a color value, which makes
it possible to represent individual items at minimal scale.

Heterogeneous datasets have different semantics, characteris-
tics, and statistics. Consequently, they may need separate scales and
visual representations for each column. For instance, the population
is given in absolute numbers and sex before 15 is stated in percent.

Following this, we distinguish between these data types:
Vectors are columns where all associated records are of the same
type and semantics, such as the name, gender, and age columns
in a table of people. Attributes can be categorical, numerical, or

3. http://hdr.undp.org/

textual. Matrices are composed of vectors of the same semantics
and data type. An example is a country’s GDP over multiple years,
where each year is a vector in the matrix. While it is possible to
interpret matrices as a list of vectors, it is beneficial to treat them
as a matrix, because the homogeneity of the data is an opportunity
for aggregation. The columns in matrices can also be associated
with vectors that describe a common property of the column, such
as the decade associated with a year.

3 REQUIREMENTS

Based on discussions with experts from the biomedical domain
who regularly analyze and present large tabular datasets, literature
reviews, and our own experience, we elicited a set of requirements
that an effective scalable, interactive table visualization technique
should support. Gratzl et al. [5] and Perin et al. [4] also discuss
requirements for tabular data visualization. While some require-
ments overlap with ours, Taggle is broader in scope and therefore
necessitates a broader set of requirements.

R1 Encoding. The table visualization should be able to flexibly
encode the data subset contained in the cell, including special
encoding for missing data. The content of a cell can be either
a single data value (string or number) or multiple data values
in the case of matrix data. In addition, the visualization should
support various representations for cells that summarize the
values of multiple rows (see requirement R5). Examples of
such aggregate visualizations are histograms and box plots.

R2 Sorting. An effective table visualization should allow users to
sort items by categorical or numerical vectors or by weighted
combinations of thereof. It should be possible to form a
sorting hierarchy where ties in the first-level attribute are
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broken by the second-level attribute, and so on. Furthermore,
users should be able to sort the table based on groups, such as
their median, average, or minimum/maximum value (R5).

R3 Filtering. The table should provide a rich set of filtering
capabilities. Users should be able to filter out one or mul-
tiple categories from categorical vectors, set thresholds for
numerical vectors, and set textual filters.

R4 Grouping. Users should be able to stratify (group) both rows
and columns by categorical vectors. The categories can be
either predefined categorical attributes, categories that are
algorithmically derived (e.g., through binning or clustering)
or categories defined by the user through interaction.

R5 Aggregating. Aggregating data subsets (i.e., groups of items)
is key to makeing the table scalable to a large number of
rows and columns. Aggregation can be achieved by reducing
the dimensionality by one: a matrix can be transformed to a
vector, and a numerical vector can be reduced to a single value.
However, data aggregation introduces uncertainty, which
needs to be communicated to the user by choosing suitable
encodings (see requirement R1).

R6 Multiform. The requirements for data representation may
differ based on the user’s task, the level of detail, or the
character of the data. The table visualization should therefore
provide flexible means for interactively changing the visual
encoding of numerical, nominal, ordinal, textual, and matrix
data.

R7 Combining columns. Giving users the ability to visually
combine multiple columns is another key feature a table
visualization should support. The most common approach to
combining multiple numerical columns is to let users create
weighted combinations, which can be represented using, for
example, stacked bars. However, for other comparison tasks,
different visual encodings are needed. For instance, when
comparing two values from datasets collected at different
times, or when comparing the interdependency between a
categorical variable (e.g., continent) and a numerical variable
(e.g., population), showing two columns juxtaposed can give
users an overview of global patterns, but is not conducive
to comparing individual values. Being able to interleave or
superimpose values of multiple columns in a cell on-demand
enables users to make such a detailed comparison. In a cancer
dataset, for example, users want to relate the average gene
expression of normal tissue to that of cancerous tissue by
vertically stacking the corresponding bars that encode the two
conditions.

R8 Transforming data. Users should be able to transform
the data flexibly by setting minimum/maximum values, by
clipping the values to a defined range, or by setting the
scale. This requirement also affects encoding (R1) where
users want to map the input values to the visual channels
used for visualizing the columns (e.g., mapping categorical
or numerical attributes to colors, or numerical values to the
length of the bars).

R9 Bidirectional matrix operations. Adding a matrix to a table
visualization introduces a second key for the columns of the
matrix. It should be possible to sort, group, filter, and aggregate
columns of matrix data based on numerical, categorical, and
textual vectors.

R10 Interactive refinement and visual feedback. In interactive
visualization techniques, user actions should immediately
be reflected in the visualization. For example, if users
dynamically change a filter, items should be removed or
added as the filter is modified. This enables users to learn
about the data by interacting with it. Furthermore, animated
transitions [9] should help users to understand the operations
applied to the table.

R11 Showing an overview of items. In order to provide the user
with an overview, all items should fit into the available space
without aggregation—if possible. Conversely, this means that
the number of off-screen items, which are only accessible via
scrolling, should be minimized.

R12 Showing details of items. It should also be possible to show
detailed information about items—labels describing individual
table items and their precise values should be visible to provide
details about the content of the table. This partially contradicts
the previous requirement, as labels require more space and
therefore decrease the number of items that can be fit into the
table visualization. Finding the right balance between showing
overview and detail is therefore of great importance.

4 RELATED WORK

We discuss related work under three different considerations: (1) a
review of general tabular data visualization techniques, (2) a
discussion of benefits and drawbacks of single vs. multiple views
for tabular data visualization, and (3) approaches to aggregation.

4.1 Tabular Data Visualization

Since tabular data analysis plays an important role in many research
fields, a substantial body of work exists on visualizing such data.
We distinguish between three types of tabular data visualization
techniques:

1) overview techniques, which position marks for each cell
based on its value, such as parallel coordinates, star plots, and
scatterplot matrices,

2) projection techniques, which show a lower-dimensional
projection of a high-dimensional dataset, and

3) tabular techniques, which retain item positions across
columns and encode the data within the cells.

These types of techniques have different strengths and weak-
nesses: overview techniques show high-level trends and patterns in
the dataset across attributes, projection techniques show a general
similarity of items, and tabular techniques emphasize the values
of individual items. Tabular techniques can also convey global
trends when ordering the table either by sorting or by applying
matrix-reordering techniques.

There are also hybrid approaches that combine overview and
tabular approaches or overview and projection approaches. In
hybrid overview-tabular approaches, the rows are preserved within
subsets of the data, but the relationships between subsets are
visualized using an overview technique. Examples of this class
include NodeTrix [10], VisBricks [7], StratomeX [11], Domino [12],
and Furby [13]. In hybrid overview-projection approaches, selected
attributes are plotted on top of a plot of projected data, as in the
technique developed by Stahnke et al. [14]. In the following, we
limit our discussion to tabular and hybrid techniques.
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Requirements
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

Microsoft Excel [15] ∼ X X X × × × X × × X X
Tableau [16] X X X X X X ∼ X ∼ ∼ X X
InfoZoom [17] X X X X × × × X × X X X
Complex Heatmap [6] X X ∼ ∼ × ∼ ∼ X X × X X
Domino [12] X X × X X X × × X X × ×
DataComb [18] X X X × × × × × × X X X
Table Lens [3] X X X × × ∼ × × × X X X
LineUp [5] X X X × × × ∼ X × X × X
Bertifier [4] X X × × × X × X × X × X
Taggle X X X X X X X X ∼ X X X

TABLE 1: Overview of which state-of-the-art techniques and tools fulfill the requirements defined in Section 3. R1 – Encoding, R2 –
Sorting, R3 – Filtering, R4 – Grouping, R5 – Aggregating, R6 – Multiform, R7 – Combining columns, R8 – Transforming data, R9 –
Bidirectional matrix operations, R10 – Interactive refinement and visual feedback, R11 – Showing an overview of items, R12 – Showing
details of items.

Existing tabular visualization techniques have different
strengths and weaknesses. While some techniques focus on the pre-
sentation of static tabular data, such as tailored tables summarizing
research findings, others support interactive exploration of the data.
Taggle aims to serve both presentation and exploration purposes.
Table 1 summarizes the relevant tabular visualization techniques
and tools with respect to the requirements defined in Section 3.

Interactive & Exploratory Techniques
Widely used spreadsheet tools, such as Microsoft Excel [15], Google
Sheets [19], and Apache OpenOffice Calc [20], typically support
tabular operations such as sorting, filtering, and grouping (R2,
R3, R4). However, while spreadsheet tools usually support rich
charting operations, they provide only limited support for direct
visual encoding of cells, using techniques such as conditional
formatting (R1, R6). Tableau [16] can be used to create tabular
visualizations that use a variety of visual encodings. However,
while Tableau can support most of our requirements, it requires the
manipulation of a complex interface that must be learned.

FOCUS [21] and its successor InfoZoom [17], [22] aim to
address the drawbacks of typical spreadsheet tools by introducing
visual encodings in cells (R1). In FOCUS, data is presented in a
table that fits all items into the available screen space (R11). For
large datasets, this results in unreadable labels for individual items.
To address this problem, users can select items which are then
displayed at a readable size. Alternatively, a full-size spreadsheet-
like mode ensures readability (R12). In addition to spreadsheet and
space-filling modes, InfoZoom also offers an overview mode that
shows the distribution of values for individual attributes. In this
mode, each attribute row is sorted individually, identical values are
grouped together, and cell size indicates the size of the group. Both
FOCUS and InfoZoom lack support for matrices and associated
operations (R9), and do not allow attributes to be combined (R7).
Furthermore, the visual encoding used in these tools is limited and
cannot be adjusted (R6).

The Table Lens [3] is probably most closely related to Taggle
and inspired its development. It uses visual encodings tailored
to different data types to represent values in cells (R1). Rich
sorting operations allow users to compare trends between separate
attributes (R2) and when applied to categorical variables, to group
items (R4). Scalability is achieved by down-scaling rows, and a
combination of appropriately chosen visual encodings and lens

techniques ensures readability of trends and individual items. The
most important differences to Taggle are that the Table Lens
does not support aggregation (R5) and is therefore limited in
terms of scalability; it also does not support advanced features,
such as bidirectional matrices (R9). DataComb [18] is a web-
based re-implementation of the Table Lens technique. A similar,
yet less sophisticated approach, is implemented in the Visual
Spreadsheet [23], which comes with the UCSC Xena Functional
Genomics Browser [24].

While the Table Lens and many other table visualizations
allow users to rank a table by a single column, LineUp [5] and
ValueCharts [25] visualize multi-attribute rankings where users can
create weighted combinations of attributes, and represent the result
as stacked bars (R2, R7).

Domino [12] is a hybrid tabular/overview technique. It is based
on the concept of placing subsets of a dataset on a canvas and
choosing a suitable representation for it (R6). Multiple subsets
can then be connected to show their relationships in various ways.
Matchmaker [26], VisBricks [7] and StratomeX [11], [27] are
related hybrid techniques, but are more restricted with respect to
the selection of subsets.

Both Matchmaker and VisBricks focus on numerical matrices
and facilitate the comparison of different groupings or clusterings.
Other techniques, such as the hierarchical cluster explorer [28],
GAP [29], PermutMatrix [30], and Clustergrammer [31], focus
on visualizing clustered matrices. Taggle, in contrast, supports
both numerical matrices and heterogeneous tables in a single
visualization.

Presentation-Focused Techniques

Several techniques focus on the presentation of tabular data, for
example, to be used in publications, as opposed to interactive
techniques designed for exploring large datasets.

Bertifier [4] is a table-visualization technique inspired by
Jacques Bertin’s matrix analysis methods. It uses various visual
encodings for cells (R1, R6) that can be interactively re-ordered
based on similarities between rows and columns. Other features,
such as styling options for the table grid, indicate that the technique
is intended mainly for presenting small or medium-sized tables.
Bertifier does not support aggregation (R5) or grouping (R4) and
is limited to numerical data.
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There are also several plotting tools and libraries, such as
ggplot2 [32] for R and matplotlib [33] for Python, that can be used
to create static tabular visualizations using scripting/programming.
ComplexHeatmap [6] is an R package that allows users to represent
a matrix as a heatmap, where the rows and columns can be stratified
(R4). Additional categorical and numerical vectors as well as
derived data can be attached to any of the four sides of the matrix
with flexible encoding possibilities (R1).

By leveraging the unmatched expressiveness of programming
languages, these tools and others like it can fulfill all of the require-
ments, with the notable exception of interactive refinement (R10).
However, the expressivity comes at a cost, as the creation of
effective representations can be time-consuming and requires
scripting skills, and the lack of interactivity hinders exploration.

4.2 Multiple-View Systems
Complementary to the three types of tabular data visualization
techniques introduced in the previous section, there is an option of
representing (groups of) attributes of a tabular dataset independently
of each other in a multiple coordinated view system. Representative
systems in this category include Improvise [34] and the recent
Keshif [35]. These systems allow users to choose representations
that are suitable for the subset of data represented by a single view,
and usually rely on linked highlighting to re-introduce connections.
Common configurations of Keshif, for example, use a tabular view
to identify specific items, but represent other attributes in other
views using, for instance, histograms or bar charts.

While MCV systems can leverage visualization techniques that
are ideal for certain attributes and that would potentially not fit
into the confines of a tabular layout, they also add complexity and
increase the cognitive load for the user [36]. Tabular layouts, in
contrast, make the association of all attributes to their item easy,
but make it harder to see correlations between attributes or trends
across the whole dataset.

As the Keshif example shows, tabular visualization techniques,
such as Taggle, are an ideal complement to MCV systems: while
selected attributes can be shown in dedicated views, for example,
on a map or in a node-link layout, other attributes can be shown as
part of the tabular visualization.

4.3 Aggregation Methods
Orthogonal to the design space discussed above are aggregation
methods for the items within a table: representing the underly-
ing distribution or statistical measures of a set of items is an
important approach to increasing the scalability of visualization
techniques. Aggregation can be applied to a whole dataset or to
multiple groups of items and/or attributes separately. Examples of
overview techniques are hierarchical parallel coordinates [37],
which visualize cluster centroids rather than individual items,
and VisBricks [7], which can visualize clusters using various
techniques, including aggregation methods. An example that
predominantly uses aggregations is Keshif [35], where a table of
items is supplemented with multiple views showing distributions for
interaction-driven exploration. To our knowledge, there is currently
no interactive general tabular visualization technique that allows
aggregation.

When working with large tabular data, not all data can be
shown in detail, as the number of rows quickly exceeds the
available display space. There are two potential remedies: scrolling
and aggregation. While scrolling is common when working with

tables, it does not preserve the context of off-screen data items.
Aggregation, in contrast, can be leveraged to preserve both details
about a set of items in focus and context about the rest.

Elmqvist and Fekete [38] proposed several design guidelines
for aggregation, including: Visual Summary—aggregates should
convey information about the underlying data; Discriminability—
aggregates can easily be distinguished from individual data items;
and Fidelity—measures are taken to counteract artifacts of the
aggregation process that misrepresent true effects. The aggregation
techniques in Taggle were designed with these guidelines in mind.

There are various specialized tabular visualization tools that
use aggregation in tabular layouts. iHAT [39] aggregates amino
acid sequences and associated metadata using the most frequent
category or the average to represent aggregated items, depending
on the data type. Holzhüter et al. [40] use the average for numerical
values for aggregates. Both techniques employ transparency to
communicate fidelity (the higher the variation in a cell, the
higher the transparency), but neither addresses fidelity well. The
Breakdown Visualization technique by Conklin and North [41]
aggregates rows or columns of a table based on a pre-existing
aggregation hierarchy. Users can traverse the hierarchy and pivot
through intersecting hierarchies.

Pivot tables are another way of dealing with the analysis of
large multidimensional data. They enable rotation, that is, pivoting
of various data dimensions, and with use of data aggregation, such
as sum, average, or count, they provide a quick data overview.
Pivot tables are widely available in spreadsheet tools such as Excel
and Google Sheets, and similar operations are available as part of
libraries and programming languages used to create static tabular
figures. Tableau [16] employs pivot table principles for constructing
nested matrices, where each matrix can then be represented visually
in different ways. While pivot tables are well suited to, for instance,
summing up the sales figures of multiple departments, they do not
commonly support more nuanced aggregations, such as histograms
and box plots.

Visual aggregation is often employed not only to minimize
screen space, but also to provide additional contextual information.
For example, tabular techniques such as LineUp [5] and Data-
Comb [18] show histograms of column data atop each column,
while WeightLifter [42] shows histograms of items that were filtered
out at the bottom of the table.

5 TAGGLE CONCEPT

Taggle is a novel visualization technique designed for exploration
and presentation of large and heterogeneous tables that are a
combination of categorical, numerical, and textual vectors as well
as homogeneous matrices. The ability to flexibly aggregate data
subsets in both row and column directions is a core capability of
a scalable table visualization technique. We start this section by
introducing the hierarchical grouping and aggregation mechanism
of Taggle, which provides the conceptual foundation for all further
operations, such as filtering, sorting, and flexible encoding of the
different subsets. On this basis, we then discuss the layout strategy
that enables focus+context also for large tabular datasets.

5.1 Hierarchical Grouping and Aggregation
Taggle enables users to group items by using hierarchical combi-
nations of attributes. The result of these nested grouping levels
is an ordered tree where all leaves are items. Groups can be
defined based on categorical attributes, numerical thresholds or
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user selection. These groups can then be aggregated into compact
summary representations, referred to as aggregated groups.

Non-leaf nodes at any level can be aggregated, which corre-
sponds to a cut through the hierarchy as shown in Figure 2 (f). Each
row of the resulting table then corresponds to either one item or
one group. By adjusting the level at which to aggregate, users can
dynamically control the level of detail of the rows when rendering
the table [38].

Sorting (R2), filtering (R3), grouping (R4), and aggregating
(R5) are topological operations that result in changes in the tree.
In contrast, encoding (R1) and multiform (R6) correspond to
property changes in the nodes. Figure 2 illustrates how the different
topological operations alter the tree. By default, all rows of the
table are added as nodes attached to a common root node. Filtering
items from the table removes the corresponding nodes from the
tree. Sorting of items or groups changes the order of nodes in the
tree. Grouping items adds a level to the hierarchy.

To determine which rows to render, we use a level traversal
strategy [38]. In an un-aggregated tree, this traversal strategy results
in a list of rows that correspond to the items of the table. When
a node is aggregated, the traversal stops at this point, and adds
only one row for this non-leaf node, as indicated by the stippled
horizontal line shown in Figure 2 (f).

Note that defining hierarchies and groups on the columns of a
matrix (R9) works in the same way as for rows.

5.2 Layout Strategy
The last two requirements (R11, R12) introduced in Section 3 are
conflicting. Therefore, our goal is to let the user control the layout
in order to optimize it for the high-level tasks of (1) obtaining an
overview and (2) seeing details for a subset of the items. In Taggle
the user can toggle between the two layout modes.

Overview Mode
In overview mode, the goal is to show as many rows as possible
in order to give users a good sense of the overall patterns and
distributions (addressing requirement R11).

To achieve this, Taggle decreases the height of items until
the whole table fits on the screen. Aggregated groups are shown
using a fixed height. For items we define a minimum height of
a single pixel, as lower values would introduce uncertainty due
to interpolation artifacts [40]. Consequently, for tables that have
more rows than can fit within the window, the table representation
exceeds the available screen space and scroll bars are introduced.
If this happens, the user has two options to make the table fit on
the screen again: aggregating groups or filtering items.

When viewing the table in overview mode, users can still
increase the level of detail for one or multiple items by selecting
them. This is useful in cases where users spot items of interest that
they want to inspect in detail.

Detail Mode
The goal of the detail mode is to allow users to see all details for
the items that fit on the screen (R12), including labels, numerical
values, and category names. While this maximizes the readability
of items (see requirement R12), it comes at the cost of reducing
the number of visible items (R11). In detail mode, all items have a
uniform height. This, however, causes the table to rapidly outgrow
the window, making it necessary to scroll to access the non-visible
part of the table or to reduce the height of the table by aggregating
groups.

Fig. 2: Illustration of topological operations on a heterogeneous
table (a) consisting of numerical (#) and categorical ( ) attributes
and their results reflected in the aggregation hierarchy: sorting (b),
filtering (c), grouping by a single categorical attribute (d), grouping
by the Cartesian product of two categorical attributes (e), and
aggregating (f).

6 VISUALIZATION AND INTERACTION DESIGN

The Taggle interface consists of two parts, as shown in Figure 1: the
main table view (a) for visualizing the data and a data selection
panel (b) for selecting the vectors and matrices to be shown in table
view and for filtering. Below, we introduce the visual elements
and interactions in detail, together with justifications of our design
decisions.

The data selection panel provides access to all loaded numerical,
categorical, text, and matrix attributes. When a vector or a matrix
has been selected from a list of all loaded attributes, it is added as
the last column to the table view. The user can change the order of
columns via drag and drop. For each column that is present in the
table view, the data selection panel shows a visual summary of the
data in the form of a histogram for suitable datasets.

The column headers provide means for sorting, changing visual
encoding and, where applicable, grouping. Users can select one or
multiple items that will be highlighted by brushing over them while
holding down the mouse or by checking a selection box offered for
each item. In the overview, selected items will be increased to a
predefined fixed height that allows labels to be shown.
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6.1 Sorting

Sorting is a simple way of identifying minima and maxima in
columns and relationships between columns. Offering flexible
means for determining the sorting of rows in a table visualization
is one of the most essential requirements (see R2). In addition
to providing the standard feature of sorting items in ascending
or descending order by a single numerical, textual, or categorical
vector, Taggle enables users to sort items hierarchically, where a
top-level column determines the initial sorting, a second column
breaks ties from the initial sorting, and so on. This is particularly
useful when sorting by categorical columns. Users can also sort
matrix columns by specifying a statistical measure (minimum,
maximum, lower and upper quartile, median, mean) as sorting
criterion.

While other table visualizations such as the Visual Spread-
sheet [24] sort attributes hierarchically based on the order of the
columns, we decided to separate the sorting from the layout. If
no grouping is active, we use the order of attributes in the data
selection panel to define the hierarchical sorting. First, the rows
are sorted by the attribute shown at the top of the panel. If multiple
items have the same value or are in the same category, the second
attribute will be taken to resolve the tie. This strategy is applied
recursively, as illustrated in Figure 1, where the countries are
sorted first by two categorical attributes (continent and human
development index) and then by a numerical vector (number of
people knowing they have HIV).

Which columns are used for sorting is shown by highlighting
the sort button and by a number identifying the rank of the attribute
in the data selection panel.

6.2 Filtering and Transforming Data

In Taggle, filters can be defined by interacting with the histograms
in the data selection panel either by brushing a range in the case of
numerical data (Figure 1 (b), people knowing they have HIV) or by
selecting categories that are to be removed from the table (Figure 1
(b), continent). Textual data can be filtered by string matching or
by a regular expression. In addition, users can filter out items with
missing values.

Flexibly transforming how raw data is mapped to a visual
element (see R8) is important, for instance, to refine scale after
filtering. For this purpose, Taggle uses the visual mapping editor
introduced in LineUp [5], which offers a set of predefined data
mapping functions such as inverse and logarithmic mapping, and a
user interface for defining scales and mapping functions.

6.3 Grouping

Being able to stratify tables into meaningful groups is not only
an important feature for structuring tabular data (see requirement
R4), but also an essential prerequisite for aggregation operations in
Taggle.

As grouped elements appear in adjacent rows, grouping is
related to sorting, but Taggle separates these operations in order to
enable more fine-grained control of groups. We leverage categorical
vectors to group datasets, which allows us, for example, to group
countries by continent. Numerical vectors can be used to split the
dataset into groups based on bins. Users can also split datasets into
groups by selecting items. Combining multiple hierarchically sorted
grouping attributes creates fine-grained groups that correspond to
the Cartesian product of the constituting categories. In practice, we

Fig. 3: Taggle table showing countries grouped by bins of the
percentage of the population who had sex before the age of 15 (a).
Countries with over 15% are shown in detail mode. The fertility rate
values (b) are colored according to the human development index
(c), showing the correlation between the two attributes. Missing
values are encoded using dash (d).

found that two to three grouping levels are sufficient, as more lead
to fragmented groups.

A dedicated group column summarizes how the group is defined
and how many items are contained. In Figure 1, for instance, the
combination of the attributes continent and the human development
index constitute the grouping, which is indicated in the first column.
This column can be utilized to sort the groups by their name or by
their size (i.e., the number of items they contain).

As grouping establishes a visual order in the table, attributes that
define a grouping are moved to the top of the data selection panel
and to the corresponding place in the sorting hierarchy. By default,
the order of attributes in the sorting hierarchy corresponds to the
grouping hierarchy and the visual order of attributes in the table.
An exception to this is the case in which items are grouped based
on a binned numerical attribute, but sorted according to a different
attribute. Figure 3 illustrates a case in which the countries were
first grouped based on percentage of women who had sex before
the age of 15 with a threshold set to 15 percent (Figure 3 (a)), but
sorted according to fertility rate (Figure 3 (b)). Interestingly, only
African and North American countries fell within the group with
high percentages of sex before 15. Sorting the table by fertility rates
shows a clear difference between the countries of the two continents,
with North American countries having much lower fertility rates
than the African countries in this group. This correlates to the level
of human development index.

6.4 Matrices
Adding a matrix to a table visualization introduces a second key
for the columns of the matrix. To support the requirement for
bidirectional matrix operations (R9), we allow grouping of matrix
columns based on this key. The individual groups of columns are
then treated as separate matrices—they can be manually reordered,
aggregated, and sorted, and the visual encoding of each group can
be adjusted individually. For example, the years in the new HIV
infections per 1,000 people matrix and the AIDS-related deaths per
1,000 people matrix in Figure 1 (c) introduce years as the second
key, which is then used to group these matrices by decades. Here,
the 2010s use a different visual encoding for the groups.

6.5 Aggregation
Groups can be leveraged to aggregate the data: instead of represent-
ing each row in the dataset by a row in the table, we aggregate the
grouped rows into a single row summarizing all items contained.
Aggregated groups are assigned a uniform height that is about twice
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that of a row shown in detail mode. Aggregating items into groups
commonly mandates changing the visual encoding. For example,
instead of bar plots for individual items, we show a histogram that
represents the whole group. The visual encoding of grouped cells
can also be altered to, for example, replace a histogram with a box
plot (see Figure 1d). The user can toggle the aggregation for each
group of rows across all columns.

6.6 Encoding and Multiform Visualizations

The table view encodes each selected vector or matrix using one
of multiple alternative visual encodings suitable for the data type.
This includes bars, dots, proportional symbols, or brightness for
numerical data, color or positional/matrix encoding for categorical
data, and heatmaps for matrices (addressing requirement R1).

The visual encoding for each column can be changed on de-
mand [7], supporting the multiform principle (R6). For example, the
default bar encoding a single numerical attribute can be interactively
changed to a proportional symbol, if desired. Dedicated visual
encodings are used for aggregates: box plots and histograms show
the distribution of numerical values; stacked bars and histograms
show relative frequencies of categories in an aggregate. A list of
text items is represented as a truncated list of examples. Figure 4
gives an overview of the visual encodings available for numerical,
categorical, and textual attributes with and without aggregation.
Figure 5 summarizes how a matrix can be aggregated in column
and row directions.

While our implementation is not comprehensive, we deliber-
ately limit the range of visual encodings to choices that either
offer superior perceptual properties or are very compact, thus
allowing users to choose between the perceptual accuracy and
space utilization. We deliberately do not offer visual encodings that
we consider to be problematic. For example, a bar representing an
average of a group does not communicate any variability and is
therefore not a suitable visualization for an aggregated vector [43].

Fig. 4: Vector visualization techniques for items and aggregated
groups by data type. Numerical items can be encoded with bars,
dot plots, proportional symbols, or brightness. For categorical
vectors, we offer color encoding and a matrix representation, where
each category is shown as present/absent in a binary column. All
items can also be displayed as strings. Numerical vectors can
be aggregated into box plots and histograms. Distributions of
categorical values can be shown as a histogram, a stacked bar,
or an aggregated matrix with brightness encoding frequency of
individual categories in the group. An aggregated textual vector
shows examples of the group members.

Fig. 5: Matrix visualization techniques and aggregation principles.
Matrix items can be encoded using brightness / as a heatmap,
as bar charts, and as sparklines. Matrices can be aggregated in
both column and row directions. When a matrix is aggregated
in the column direction, a group of matrix columns within one
row is merged into a single cell. The aggregated values can then
be visualized using box plots, histograms and dot plots. When a
matrix is aggregated in row direction, a group of rows is merged
into one row. Values of aggregated rows can be displayed using
a heatmap and superimposed sparklines. A matrix aggregated in
both directions is encoded using a box plot, histogram, or dot plot
of all matrix values.

Compact Encodings
When rows are down-scaled to fit into the available vertical screen
space, we take various measures to adapt the visualization to the
diminished space, as illustrated in Figure 6. We not only make
the visual representations smaller, but also reduce details and/or
adapt the visualization. In the compact representation of box plots,
for instance, we fill the available vertical space at the position of
the box and indicate the start and end of the whiskers by drawing
vertical tick marks. However, some visualizations, such as strings
and proportional symbols, do not have an adequate down-scaled
complement, in which case they are not rendered.

We chose a dash to encode missing values (Figure 3 (d)). We
also considered a dedicated color, but dashes have the advantage
that their visual saliency is lower (i.e., they do not draw as much
attention), and yet they are clearly visible at all levels of detail.

6.7 Combining Columns
Giving the users the possibility to flexibly combine columns (R7)
supports a wide range of tasks. The user can interactively create
combined columns either by dragging existing ones on an empty
container or by dragging one column onto another. The possible
combinations are specific to the data type of the column.

The most basic combined column is a nested column, shown
in Figure 7 (a) and (e). It encloses multiple individual columns by
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Fig. 6: Example of encodings at different scales. In the first column,
the items are displayed at full height with white space separating
the rows. If a textual label is part of the visualization, it is displayed
at a readable size. Compact representations (columns two and three)
remove white space and string labels. Some visualizations, such as
the box plot or the categorical matrix, are simplified to account for
the limited space.

adding a joint header above all columns contained. Nested multiple
columns are useful for creating semantic groups. It is the most
flexible column combiner that works for all types and can mix
columns of different types.

Taggle also enables users to create stacked columns [5], [25]
by combining two or multiple numerical columns to create a
weighted sum of the items and where the individual contributions
are represented as stacked bars (see Figure 7 (b)). Users can inter-
actively change the weights of individual columns by adapting their
widths. Stacked columns can be used to create a “score”, which, in
turn, can be used to create rankings. Aggregate representations for
stacked columns are shown as box plots, where the values feeding
the box plots are the weighted sums of the composing values.

To enable a more effective comparison of items across multiple
columns, an interleaved column (Figure 7 (c)) stacks the encoded
values from multiple numerical columns vertically. Depending on
whether the row is an item or group, the stacked representations
can be made up from bars or dots, or, in case an aggregate is
interleaved, of a box plot.

With imposition columns users can color the visual marks
(bar, proportional symbol, etc.) of a numerical vector by the color
coding of a categorical vector, as shown in Figure 7 (f).

Taggle also enables more complex combinations, based on a set
of predefined functions, such as minimum, maximum (Figure 7 (d)),
and mean, for combining multiple numerical vectors into a single
numerical column. In addition, users can add scripted columns
that allow them to define their own functions via a scripting
interface [5].

6.8 Animated Transitions

We support users in understanding changes in the visualization
by applying animated transitions [9], as demonstrated in the
accompanying video. The prototype implementation incorporates

(a) (b) (c) (d)

(e) (f)

Fig. 7: Possible column combinations: (a, e) nested column that
semantically groups columns of various types, (b) stacked column
that creates a stacked bar plot based on multiple weighted numerical
columns, (c) interleaved column that stacks the visualizations of
multiple numerical columns, (d) scripted column that, in this case,
visualizes only the maximum values of selected columns, and (f)
column imposition where the marks of a numerical column are
colored by the imposed categorical column.

smooth transitions for the switch between overview and detail mode
as well as for changes resulting from filter, sort, and aggregation
operations.

Instead of simply morphing item position, we apply staged
transitions, where animations are split into multiple phases [9]. In
the first phase of a filter animation, for instance, we fade out the
filtered rows and then move up the remaining rows of the table
to fill the white space. This is designed to help users understand
why rows outside the viewport become visible in the bottom of the
table. Similarly, when users aggregate a group, we first fade out
the aggregated rows, then gradually reduce the height of the empty
area to the fixed height of the aggregated group, and finally fill the
area by fading in the aggregated visualizations across all columns.

6.9 Sorting and Grouping of Column Subsets

While Taggle focuses primarily on tabular visualization, keeping
items in constant rows across all columns, it also supports splitting a
table into multiple segments and sorting and grouping each instance
independently. To encode the relationships between table segments,
we utilize slope graphs for connecting individual items of the
tables compared [44, p. 156] and bands for showing relationships
between aggregated groups [11], [12], de-facto enabling users to
create hybrid tabular/overview representations, and in the extreme,
even visualization techniques such as parallel sets [45].

7 IMPLEMENTATION

The Taggle feature set is fully integrated into the LineUp.js
library, which is written in TypeScript and available as open
source via Github4. A demo version can be accessed at https:
//taggle.caleydoapp.org/.

4. https://github.com/Caleydo/lineupjs/

https://taggle.caleydoapp.org/
https://taggle.caleydoapp.org/
https://github.com/Caleydo/lineupjs/
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Fig. 8: Comparison of two table segments. The segment on the left
shows countries grouped by continent. The segment on the right
visualizes countries grouped by human development index. Both
table segments are ranked by the number of people knowing they
have HIV. The steeper the angle of the lines connecting the two
instances, the greater is the change in the ranking. Bands show
relationships between aggregated groups.

Making Taggle available as an open-source library increases
potential adoption of the technique. The library can also be
embedded in Jupyter Notebook5 and used as an HTML widget
for R6, which allows integration into Shiny applications7 and R
Notebooks8.

In the demo application, users can switch between multiple
preloaded datasets and upload new datasets in CSV format. The
Taggle table can be saved and restored via the Github Gist service
or downloaded as a CSV file.

8 CASE STUDY: DRUG TARGET DISCOVERY

We evaluated Taggle by means of a case study, a method widely
used to validate visualization systems [46], [47]. The case study
summarizes an analysis session carried out by a collaborator
working in a drug discovery team in a pharmaceutical company.
For the case study, we integrated Taggle with the Ordino Target
Discovery Platform that provides access to the required cancer
genomics data9.

In order to identify potential drug targets in a set of tumor
types, the analyst performs experiments with cancer cell lines—
cultured cells that are derived from tumors and that can proliferate
indefinitely in the laboratory. These cell lines are characterized by
various properties, such as tumor type (lung cancer, prostate cancer,
etc.) and the set of genes that are mutated.

One very important gene in the context of cancer is TP53. It
encodes the p53 protein, whose presence is known to suppress the
uncontrolled division of cells. However, when TP53 is mutated—
which is the case for over 50% of cancer patients—it can lose its
suppressing function, which results in tumor growth. Due to its
important role, scientists want to know whether TP53 is mutated
in a set of cell lines. However, the mutation status of TP53 is not
always known. It has recently been shown that the mean expression
level (expression is a measure of the activity of genes) of 13 genes
that are biologically related to TP53 is correlated with its mutation

5. https://jupyter.org/
6. https://www.htmlwidgets.org/
7. http://shiny.rstudio.com/
8. http://rmarkdown.rstudio.com/r notebooks.html
9. https://ordino-taggle.caleydoapp.org/

Fig. 9: After sorting the cell lines by the TP53 predictor score
(blue), the analyst notices that cell lines with a low average score
are much more likely to be mutated (green). From this the analyst
concludes that predicting the mutation status based on the average
expression of the 13 genes that constitute the predictor score works
reasonably well.

status. The expression level of these genes can hence be used to
predict the mutation status of TP53 [48].

In this case study, the analyst first wants to find out how well
this predictor works for the set of cell lines contained in the
database. Based on this knowledge and other criteria, the analyst
then wants to select cell lines for a wet-lab experiment.

The analyst starts by loading a list of 1,009 cell lines from the
public CCLE dataset [49] into Taggle. By default, the table contains
a textual column representing cell lines’ name and a categorical
column indicating tumor type. Since only a subset of tumor types
is of interest, the analyst filters for astrocytoma/glioblastoma, bone
sarcoma, melanoma, and non-small-cell lung cancer (NSCLC),
after which 255 cell lines remain.

As the analyst wants to investigate the TP53 gene, he loads
a categorical column with the mutation status (mutated vs. non-
mutated) and a textual column that provides further details about
the mutation (if present). According to the mutation histogram in
the data selection panel, the status is unknown for 59 cell lines.
To investigate the effectiveness of the 13 genes in predicting the
TP53 status, the analyst loads the average expression of these
genes together with a matrix column containing the individual
expression values. Furthermore, he hides cell lines with unknown
mutation status. After sorting the table by average expression in
descending order and switching to the overview (see Figure 9), the
analyst observes the overall good correlation between expression
and mutation status: there is a clear enrichment of TP53 mutants
among the cell lines with low score.

In order to test whether the correlation is present for all selected
tumor types, the analyst groups the table by tumor type. He
observes that the prediction seems to work particularly well for
the astrocytoma/glioblastoma cell lines (almost perfect separation
between mutated and non-mutated) and further investigates this
by also stratifying by mutation status and collapsing all groups
(see Figure 10). The expression box plots show good separation
for astrocytoma/glioblastoma and melanoma, but the expression
ranges are overlapping for NSCLC.

Having confirmed that the prediction of the TP53 mutation
status works reasonably well in several tumor types, the analyst

https://jupyter.org/
https://www.htmlwidgets.org/
http://shiny.rstudio.com/
http://rmarkdown.rstudio.com/r_notebooks.html
https://ordino-taggle.caleydoapp.org/
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Fig. 10: The analyst groups the cell lines first by the attribute tumor type and then by TP53 mutation status. For the tumor type
astrocytoma/glioblastoma the box plots representing the TP53 predictor score show a clear separation between the groups mutated
and non-mutated. For the other tumor types the whiskers of the box plots overlap, indicating that the predictor score does not work as
effectively.

Fig. 11: Continuing from the visualization state shown in Figure 10, the analyst removes the grouping on the TP53 mutation column and
unaggregates the melanoma group to inspect the cell lines in further detail. With the goal to find cell lines for a wet-lab experiments, the
analyst adds the copy number value of CDKN2A as an additional column (shown in purple). Finally, he selects cell lines that have a low
copy number value and are either non-mutated or have unknown mutation status and a TP53 predictor score above 110.

wants to select a set of cell lines for a wet-lab experiment. He
is interested in melanoma cell lines that have no TP53 mutation.
Furthermore, the activity of CDKN2A, another important tumor
suppressor gene, should be impaired due to a reduced number
of CDKN2A gene copies in the genome. The analyst removes
the mutation status grouping, includes cell lines for which it is
unclear whether TP53 is mutated, and unfolds the melanoma cell
lines group. Based on the ranking, he decides to consider all cell
lines with unknown TP53 mutation status and a TP53 predictor
score greater than 110 as non-mutated. He adds a column with
the CDKN2A relative copy number, sorts by it in ascending order,
and filters out missing data. Finally, he selects the top hits of the
resulting list (see Figure 11). All of these cell lines fulfill the
analyst’s requirements.

9 DISCUSSION AND LIMITATIONS

Revisiting our discussion of visualization techniques for tabular
data (overview, projection, and tabular techniques), we argue that

Taggle is primarily a tabular visualization technique, as it retains
a tabular layout and encodes data within a cell, but also has
some aspects of an overview technique due to its capabilities
to aggregate and its ability to sort and group subsets of columns
independently. Interactive definition of groups and their aggregation
in summary visualizations, such as box plots and histograms,
provides a meaningful overview even for large data sets and enables
an intuitive comparison of grouped data subsets (Figure 10). At the
same time, Taggle enables the exploration of items at a detailed
level to identify their precise properties (Figure 11).

This combination sets Taggle apart from existing tabular
techniques, which provide only a coarse overview of the items (e.g.,
using the lens technique, which is insufficient for representation
or comparison of large data sets) or lack interactivity, which is
essential to the exploration process.

Scalability
In detail mode, Taggle scales to more than 100,000 rows. We
achieve this performance by leveraging rendering optimizations,
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which ensure that only visible rows are rendered. However, in
overview mode, which tries to fit all items on the screen, this
performance optimization is no longer effective. Hence, for tables
with more than 1,000 rows and matrices with many columns, the
rendering performance decreases due to the large number of DOM
elements.

The problem can be alleviated by aggregating all groups in the
table by default. However, this approach is in opposition to the
idea of a space-filling overview. This technical limitation could be
mitigated by replacing the DOM-based rendering with an HTML5
Canvas implementation.

Stacking of Matrices and Vectors

Our current prototype supports grouping of matrix columns based
on a categorical attribute (see Figure 1 (c)), but provides no means
of sorting and filtering the matrix columns. Furthermore, it is not
possible to stack additional attributes on top of a matrix, as done,
for instance, in Figures 4 and 6 presented in [50]. Due to these
technical limitations, which we plan to address in future versions,
we consider R9 in Table 1 only as partly addressed.

Automatic Aggregation

In the design process, we investigated methods for automatically
aggregating rows and columns, with the goal of increasing
scalability. For instance, to make space for brushed rows that are
shown with increased height, we tried to automatically aggregate
groups that were not affected by the brush. We found, however, that
users had difficulties in understanding such changes in the visual
representation. This may be due to perceptional phenomena, such as
change blindness, or due to the fact that it can be hard to understand
changes that the user did not actively trigger. As part of future work,
we plan to implement and evaluate a recommendation approach that
suggests possible layout changes without automatically applying
them.

10 CONCLUSION AND FUTURE WORK

We have presented Taggle, a scalable tabular data visualization
technique for combining, filtering, and aggregating attributes of
a heterogeneous dataset. Taggle is unique among tabular data
visualization techniques due to its ability to dynamically aggregate
subsets of a table and due to its flexibility with respect to data
types and visual encoding. We argue that Taggle is useful for both
interactive exploration and presentation purposes.

Taggle is broadly applicable, as tabular/spreadsheet datasets
are widely used, and our implementation goes beyond a research
prototype, providing data import/export, creating persistent states,
etc.

Much of Taggle’s functionality could also be integrated with
traditional spreadsheet applications, combining the powerful logic
and math enabled by spreadsheets, and the ease of exploration and
discovering trends and outliers in Taggle.

As part of future work we plan to integrate data-driven guidance
capabilities into Taggle, as implemented in StratomeX [51].
Following the idea of guided visual exploration, we plan to assist
users in finding correlated attributes or similar groups based on
their input.
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