Thirteenth IEEE Workshop on Practical Issues in Building Sensor Network Applications 2018

EpiFi: An In-Home IoT Architecture
for Epidemiological Deployments

Philip Lundrigan, Kyeong T. Min, Neal Patwari, Sneha Kumar Kasera, Kerry Kelly, Jimmy Moore, Miriah Meyer,
Scott C. Collingwood, Flory Nkoy, Bryan Stone, and Katherine Sward
University of Utah, USA
{philipbl@cs., kyeong.min@, npatwari @ece., kasera@cs., kerry.kelly@, jimmy@cs., miriah@cs.,
scott.collingwood@hsc., flory.nkoy @hsc., bryan.stone@hsc., kathy.sward@nurs.} utah.edu

Abstract—We design and build EpiFi, a novel architecture
for in-home sensor networks which allows epidemiologists to
easily design and deploy exposure sensing systems in homes. We
work collaboratively with pediatric asthma researchers to design
multiple studies and deploy EpiFi in homes. Here, we report
on experiences from two years of deployments in 15 homes,
of two different types of studies, including many deployments
continuously monitored over the past year. Based on lessons
learned from these deployments and researchers, we develop a
new mechanism for sensors to bootstrap their connectivity to
a subject’s home WiFi router and implement data reliability
mechanisms to minimize loss in the network through a long-term
deployment.

Index Terms—Internet of Things, Network security, Wireless
networks

I. INTRODUCTION

The holy grail of epidemiological research is to have
continuous sensing of every person’s exposures and activities,
alongside data on their health outcomes. The conglomeration
of the environmental effects on a person over their lifetime is
called their exposome and, in interaction with their genome,
plays a large part in their health [23]. Detailed exposome data
from a segment of the population, including from sensors in
their homes, could provide researchers new insights about the
relationships between exposure and chronic diseases, such as
heart disease, cancer, diabetes, and asthma, and how we can
improve our health and reduce the incidence and costs of
these diseases [22]. Low-cost internet-of-things (IoT) devices,
including wireless and wearable sensors, are enabling the
“quantified self” for those who are technologically skilled and
interested in self-monitoring [21].

In contrast, for epidemiology researchers who wish to de-
ploy, maintain, and obtain reliable data from a large population
of volunteer subjects on a limited budget, several challenges
must be addressed. The individual user is driven by the cost
of devices; but researchers’ costs are primarily comprised of
the cost of study management, including a high personnel and
travel cost any time it is required to meet at the subject’s home.
Inconvenienced subjects expect more compensation and may
drop out of a study. Deployment at a subject’s home must
be fast and reliable, regardless of the particular configuration
or robustness of the subject’s home wireless network or the
number of wireless sensors to be deployed. A researcher must

analyze data from dozens or hundreds of subjects and large
data loss from one subject may force them to throw out that
subject entirely to preserve uniformity across subjects. Finally,
medical researchers must ensure that any deployed system
abides by laws regarding medical information privacy, such
as the Health Insurance Portability and Accountability Act
(HIPAA) in the US. In short, the costs and constraints for
human subject research studies are fundamentally different
from those of individuals who wish to monitor themselves.
Today’s networking tools are focused on the individual user,
rather than the researcher, and new tools are needed to enable
a new kind of epidemiology research.

In this paper, we present the design and development of
EpiFi, a system that gathers data from home monitoring de-
vices with a low implementation burden. We share experiences
and problems we faced with deploying EpiFi in different
homes and settings. EpiFi has been part of five different studies
and been deployed in 18 different locations, ranging from
homes to an Air Force hangar, and has collected over 210
million measurements. EpiFi includes novel tools to address
the challenges of human subject IoT deployments. The goal
of EpiFi is to allow epidemiologists to create comprehensive
experiments from start to finish. In the process of building,
deploying, and maintaining EpiFi, we encountered three key
problems: secure WiFi association bootstrapping, reliable data
transfer, and WiFi disruptions. We present solutions to the first
two problems and outline future work for the third problem.

WiFi association bootstrapping is the process of connecting
WiFi sensors to a participants home network. From our
experience, current methodologies do not scale to multi-
sensor deployments. To solve this problem, we build a novel
protocol for an Ethernet connected device to securely share the
subject’s home WiFi network name and password to a group
of unassociated WiFi sensors. We use key insights about how
Ethernet frames are encapsulated, encrypted, and transmitted
by wireless routers to encoded the credentials in the Ethernet
source and destination address fields. The protocol protects
against common threat vectors such as packet manipulation
and replay attacks. It uses erasure coding to minimize the
effects of wireless packet loss.

We learn through our deployments that care must be given
to ensure that no data is lost even when using “reliable”
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protocols. To solve this problem, we create an approach for
data persistence and a reliable protocol for sensors to transmit
data. Our lightweight data persistence layer allows sensors to
store data locally when there is a network outage or weak
signal strength. This backlog of data protects against data loss
when a sensor is disconnected from power. We build a reliable
protocol for sensors to transmit data. This approach ensures
that all data measured by sensors is transmitted to the cloud
for storage without loss. Our reliable protocol performs as well
as MQTT under normal network conditions and much better
than MQTT when a sensor has a backlog of data. We reduce
data loss from up to 25% to 0%.

When a sensor stops sending data, it is impossible to
know remotely if it is from a WiFi disruption or something
more serious, such as loss of power or hardware malfunction.
Not knowing can lead to unnecessary data loss. We show
the impact WiFi disruptions have on our deployments. We
highlight the importance of support for lower data rates and
look to new WiFi specifications or systems to address this
problem.

The problems of secure WiFi bootstrapping, reliable data
transfer and WiFi disruptions have been studied to various
degrees in previous work, however, we are not aware of any
system that simultaneously addresses all of these problems.
These are practical problems that we faced while building and
deploying our system and receiving feedback from users of
our system. EpiFi is open source and built on open source
components. We highlight lessons learned from two of the
five studies that use EpiFi. We describe the key challenges that
should be considered in the deployment of sensor networks for
purposes of epidemiology research and how EpiFi addresses
these issues. We get input from pediatric asthma researchers on
the design of EpiFi and realizations of the system we deploy
in the homes of human subject study participants.

II. EPIF1 ARCHITECTURE

EpiFi consists of four components, as seen in Figure 1:
database, gateway, home access point, and sensors. The gate-
way, home access point, and sensors are co-located in the
home, and the database is in the cloud. The gateway acts as a
central hub with all sensors and devices communicating with
it. Having all the sensors communicate with the gateway, rather
than directly with the database, provides important benefits.
The gateway allows the sensors to be as simple as possible —
all logic, configuration, and storage for a deployment is on the
gateway. Also, the gateway provides local processing to add
privacy protections, actuation, and user feedback. The gateway
increases the variety of deployments that EpiFi supports,
in part by allowing connections to Z-Wave, ZigBee, and
Bluetooth devices.

To provide support for a wide variety of IoT devices,
we build upon an open source project called Home As-
sistant [18], which runs on the gateway. It includes user-
contributed components that allow it to interface with devices
and web services. As of this writing, Home Assistant supports
over 1,000 user-contributed components. It has a REST API
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sensor

(b) Plantower air quality sensor

Fig. 2: Sensors used in deployments and evaluations.

and it supports HTTP, MQTT, raw TCP sockets, and custom
components. Custom components allow users to add their own
functionality without changing the core of Home Assistant.
This makes it easy for new devices and sensors to integrate
with Home Assistant. We develop several custom components
for EpiFi.

For our remote database, we use InfluxDB [10], a database
designed specifically for the kinds of time-series data epidemi-
ologists want to collect. The database runs on a server in a
protected environment that is HIPAA compliant. All data that
is uploaded from the gateway to the server is encrypted using
SSL.

Although the gateway supports a broad range of wireless
protocols, for the remainder of this paper, we focus on WiFi
sensors because 1) WiFi hardware is readily available and
inexpensive, 2) WiFi is more widely deployed compared to
other wireless protocols [20], and 3) a WiFi sensor can inte-
grate with the rest of the home because it uses IP, making the
sensor easier to remotely debug and monitor. EpiFi supports
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studies that use commercial sensors, but we feel that the most
research-relevant studies will be done with custom sensors.
We built two WiFi sensors to measure air quality, shown in
Figure 2 and discussed in the next section.

III. DEPLOYMENTS

EpiFi has been part of five different studies and been
deployed in 18 different locations. These locations include
many different homes and even an Air Force hangar. In
total, EpiFi has collected over 210 million measurements.
In this paper, we highlight two studies, each deployed in
multiple homes. We work with epidemiology researchers who
study the relationship of exposure to indoor air pollution
and the symptoms and treatment of children with asthma.
We also work with air pollution scientists who understand
the chemistry and appropriate sensors for indoor air quality
measurements. Together, with these domain experts, we design
and deploy the experiments. First, we describe the sensors we
used, and then, each deployment.

A. Sensors

To measure the air quality in homes, we use two air quality
sensors (Figure 2): a modified Dylos DC1100 [7] sensor and
the Plantower PMS3003 [15] sensor. Both of these sensors
measure the concentration of airborne particulate matter. To
integrate the Dylos into EpiFi, we modify its case to add
a BeagleBone Black (BBB) [3], temperature and humidity
sensor, and an LCD screen. For Plantower sensor, we use
a BeagleBone cape, which also contains a temperature and
humidity sensor.

Along with collecting air quality, temperature, and humidity,
we collect network data. This includes whether or not the
sensor is connected with a wireless network, wireless signal
strength and noise power at the device, wireless data rate,
wireless link quality, ping latency/loss to the gateway, and ping
latency/loss to a remote server. Having these software sensors
is an invaluable tool that provides insights into the challenges
we are facing with EpiFi.

B. Multi-Room Deployment

For the first type of deployment, the experimenters wanted
to study how air quality differs across space and time inside of
a house. Most studies involving indoor air quality deploy one
sensor per home. The goal of this experiment, for the domain
experts, is to learn in more detail how the air quality is a
function of a room, what caused the air pollution, and where
that pollution originated. For this deployment, we set up eight
Dylos sensors in various rooms in the house and one sensor
outside. We deployed this system in three different homes.

1) Lessons Learned: The multi-room deployment was the
first set of deployments of EpiFi. From these deployments, we
learned valuable lessons on how to improve the architecture.
We originally had the gateway set up as an access point that
all sensors connected to. We found that sensors deployed in
rooms far from the gateway could not connect to the gateway
due to weak signal strength. We also saw packet loss much
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Fig. 3: Time difference between received samples. The time
difference should be constant (1 minute).

higher than we were expecting. Figure 3 shows an example of
such a data collection. The graph shows the time difference
between the gateway’s received measurements. Data samples
should be every minute. You can see that there is a great deal
of variation, and there are times when no data is received for
more than 20 minutes.

From this experience, we learned two things. First, by
switching to the home’s wireless access point, the amount
of packet loss is significantly reduced. This is because the
gateway was not designed to be an access point and does not
have many of the features of commercial access points. This is
discussed in more detail in Section IV-A. Second, we learned
the importance of distinguishing between packet loss and data
loss. Packet loss can occur because of the nature of the wireless
medium that we are using. Data loss is when a measurement
collected by a sensor is lost completely. To eliminate data loss,
we implemented persistence (Section IV-B1) and reliability
(Section IV-B2). Before making these changes, we were seeing
an average of 25.57% data loss for each sensor. After making
these changes, we are seeing 0.0% data loss.

A more subtle problem we discovered in this deployment
was the importance of recording a timestamp when the mea-
surement was taken and sending it with the data. Even without
any data loss in the network, we found that the measurements
were not evenly spaced out as we expected. We originally
thought that network latency would not be bad and our time
stamps only needed to be accurate within a few seconds so we
were sending the data without a timestamp and when the data
got to the gateway, it would timestamp the data and upload it
to the database. This had the advantage of only dealing with
one clock, the gateway’s clock, which we could ensure was
accurate. However, we found that there is enough latency and
jitter in the wireless network that it had an effect on the data.
We also found that two measurements that were taken at the
same time, such as the Dylos sensor returning temperature
and humidity reading, would have different timestamps. This
was due to the way Home Assistant processes incoming data.
From a research point of view, this made it difficult to compare
corresponding measurements, because two measurements that
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happened physically at the same time, would have slightly
different timestamps. We fixed these problems by recording
the timestamps when the measurements are being made and
sending it with the measurement.

C. Clinical Deployment

The clinical deployment study is designed by pediatric
asthma researchers. There is significant evidence that outdoor
air pollution levels can be used to predict asthma exacerbation
[16]. Further, incorporating outdoor levels into treatment,
including decisions about when to talk with a nurse and the
appropriate dosage of medication, can reduce the frequency of
emergency department visits [14]. However, such studies do
not have accurate measures of an individual asthma patient’s
exposure to pollution. These studies use only outdoor air
measurements, and further, they use the measurements from
outdoor monitoring stations, typically one sensor per city,
which may be located far from the air to which an individual
is exposed. The type of deployment study reported here
is motivated and designed by pediatric asthma researchers
interested in sensor data collected closer to the patient and
its ability to improve treatment of asthma.

This was the first study that involved deployers who were
not familiar with the EpiFi architecture. The participants of
this study are families that suffer from asthma. This study has
been going on for eleven months, has been deployed in ten
homes, and we have collected over 111 million measurements.

1) Lessons Learned: As part of these deployments, epi-
demiologists involved with the study deployed our system
in homes. This gave us valuable insights into how we can
make deployments easier and what was not working with early
versions of EpiFi.

After talking with these deployers, we learned the impor-
tance of speeding up the process of deployment. It is important
to make deployments as quick and efficient as possible so as
to not inconvenience a participant. Deployments were taking
hours and participants were feeling inconvenienced because of
the length of time. A large amount of the time deploying was
spent connecting the sensors to WiFi and setting them up. This
feedback led to a new problem of quick WiFi bootstrapping
which we address in Section IV-A.

Talking with deployers and others involved with the study
highlighted the importance of having a set of tools that allows
deployers and researcher coordinators to check on the status of
the sensors easily. To solve this problem, we built a one page
status board that shows the current state of each sensor, as
well as the last time data was received. Lastly, we learned the
importance of remote debugging of the sensors. Being able to
check on the state of the sensor, debug a problem, and update
code if necessary became an invaluable tool.

IV. CHALLENGES

We faced many challenges while building and deploy-
ing EpiFi in numerous homes. We highlight three of these
challenges. We think these challenges extend to all types
of deployments and are not just limited to epidemiological
research deployments.

A. Secure WiFi Association Bootstrapping with STRAP

In order for a WiFi device to connect to a home’s network,
it must have the network name (SSID) and password. Getting
this information to devices without keyboards and screens is
time-consuming, particularly when there are several devices to
be connected. We had a few deployments with 15 sensors that
needed to be connected to WiFi. The process of connecting
each sensor was monotonous. Typically deploying sensors in a
home involves more than just connecting up the sensors. It can
include things like interviewing participants or doing a home
dwelling survey. To minimize the time a deployer needs to be
in a home, we look at reducing the time it takes to connect
each sensor to WiFi.

One solution is to provide an access point to a deployment
with the sensors already preconfigured with the network name
and password. With early deployments, we made the gateway
an access point. However, our deployment experiences showed
many drawbacks. First, the commodity hardware available
is not designed to be used as an AP. Some drivers support
this option, but using it proved to be unreliable. Second, a
USB-connected WiFi dongle is unable to take advantage of
many of the features that come standard on today’s APs,
such as beamforming and MIMO. We also found that homes
we deployed in had WiFi networks customized to the needs
of the home. To ensure complete coverage of the deployed
sensors, we would have to essentially duplicate their network
by placing multiple gateways throughput the house. These
experiences, shared in more detail in Section III-B, led us
to design EpiFi to use the home’s WiFi.

Another approach is to configure each sensor with the
home’s network name and password before connecting them.
Since participants were part of a human subjects research
study, they were asked to complete an online, paper, or phone
survey with information about themselves. Receiving network
information at this time was ideal because we could load
this information onto the devices before deploying them to
the participant’s home. However, we found that collecting
network information through the survey resulted in the fol-
lowing issues: 1) participants were uncomfortable entering
their password into a remote database; 2) participants often
do not know their network name and password when away
from their home; and 3) there are a high rate of errors when
communicating the network name and password via survey.
This may be due to default long and difficult passwords on
home wireless routers. These passwords may be challenging
to relay accurately over the phone or on a paper survey (e.g.,
mistaking a capital “O” for a zero). An incorrect network
name or password is only detected after trying to deploy the
sensors. In this case, the sensors have to be returned to the
research facility and loaded with the correct network name
and password. This experience highlights the importance of
providing participants with instant feedback when entering
network names and passwords.

The commercially accepted solution to this problem for IoT
devices is for a device to create its own temporary wireless
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network. This allows the person setting up the IoT device to
connect to the temporary wireless network via a smartphone,
select the network name they want the device to connect to,
and enter the password, which then provides the IoT device
the information it needs to connect to the WiFi network.
This process works well with one or two new devices, but
it becomes a nuisance when deploying multiple devices and
increasingly untenable as the number of devices increases.
Setting up each device one at a time is unacceptably long for
our deployers, for whom deploying sensors in a participant’s
home is only one of the tasks they must accomplish in a short
period of time. The more time researchers take in a person’s
home, the less happy they are to participate, and the more
they expect to be compensated. Moreover, the exchanging of
network name and password is a general problem for all IoT
system deployments that require a deployer to place multiple
sensors in a home, not just unique to our study.

To solve this problem, we created a novel approach for
securely sending the network name and password to the
devices from the gateway using the home WiFi, which we
call Secure TRansfer of Association Protocol (STRAP) [13].
STRAP allows a device to bootstrap its connection to the
home’s wireless network with the help of the gateway. This
is a challenge because there is no direct way to send secure
information to the device before it is connected to any network
and, as a result, cannot decrypt WiFi frames. To make this
task more difficult, the gateway is connected via Ethernet to
the home WiFi router, such that, any data it sends will be
encapsulated in an 802.11 frame and encrypted by the wireless
router. A WiFi device can be in monitor mode, allowing it to
see the frames that are being sent, but not decrypt them.

STRAP overcomes these obstacles using the gateway to
encode data into the source and destination address fields of
an Ethernet frame, setting the destination address such that the
frame is broadcast to all wireless devices. When an Ethernet
frame gets translated into an 802.11 frame by a wireless router,
the wireless router directly copies the source and destination
address of the Ethernet frame into the source and destination
address of the 802.11 frame. A wireless router does not
encrypt the 802.11 header, which includes the destination and
source addresses. If such a frame gets sent out wirelessly, a
device in monitor mode can receive the frame and decrypt the
data in the source and destination address fields. To ensure
that a frame gets broadcast on the wireless routers wireless
interface, a special destination address must be used. Such
addresses include broadcast (FF:FF:FF:FF:FF:FF), IPv4
multicast (01:00:5E:xx:xx:xx) [6], and IPv6 multicast
(33:33:xx:xx:xx:xx) [5], where the x’s of the addresses
can be replaced with a unique identifier for that multicast
group. STRAP uses the IPv6 multicast address because it
provides more unused bytes compared to the other addresses.
This allows STRAP to encode 10 bytes of data inside each
Ethernet frame.

The flow of data through STRAP is shown in Figure 4.
A deployer enters the network name and password into the
gateway. This information is encrypted using a shared key
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Fig. 4: The flow of data through STRAP.

between the gateway and sensors. A message authentication
code is created to ensure the data is not modified. The
encrypted data, message authentication code, IV, and a global
sequence number are combined together. Erasure coding is
added to the data so that if any part of the data is lost, it
can still be decoded. This is important for STRAP because
we are using broadcast to send the frames, so there are no
link layer acknowledgments. Last, the data is packetized and
a header is put on each packet. An unassociated sensor scans
through the WiFi channels looking for STRAP frames. Once
it has received enough STRAP frames, it decodes the data and
connects to the home’s network. Using STRAP, we are able
to greatly speed up the deployment of multiple sensors in a
home.

B. Reliable Data Transfer

Early in our deployment experience, we realized the dif-
ficulty of obtaining reliable data transfers. Initially, we trans-
ferred data from the sensors to the gateway using TCP without
any form of application-level acknowledgments because TCP
typically results in reliable data transfers. We also assumed
that a sensor would reliably stay connected to WiFi. We
found that even when the sensor was connected to WiFi,
occasionally TCP could not transfer data because of packet
loss and eventually time out. Additionally, sensors would
disconnect from WiFi for long periods of time. During our
first deployment (Section III-B) we saw an average of 25.57%
data loss for each sensor.

This experience highlighted two important aspects of reli-
able data transfer: 1) data must be saved regularly once it has
been collected and 2) data must be confirmed as successfully
transferred before deleting it from the sensor. There might
be times where the sensor cannot reliably transfer data due
to a loss of connection with the wireless router, the link
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quality being poor or the gateway being down because it
was unintentionally unplugged. As said in [9], “homes are
hazardous environments” for sensors because random power
outages and Internet disconnections are very common. Our
experience agrees with this. The sensors that we deployed
disconnected from the Internet on average 37 times per month
per sensor with the disconnection lasting on average 9.9
minutes. To protect against any data loss, data from sensors
needs to be persistently stored. To solve these two problems
we build a lightweight persistence storage system to safely
store data on the sensor and a low overhead transport protocol
on top of CoAP [19] that transfers data reliably. Our reliable
transport protocol, which we call Reliable Pull over CoAP
(RePoC), has the same efficiency as MQTT [2] but performs
much better if a sensor has a backlog of data stored. With
these two building blocks, we are able to transfer all data that
is collected from a sensor without any loss.

1) Data Persistence: In our own deployments and through
the experiences of others [9], we learn power loss to sensors
is inevitable. Data loss can have a negative impact on a study
and the trust of a system. Under these circumstances, data
persistence is important to ensure that no data is lost when
a sensor is accidentally powered down. Using a database is
a possible solution because it provides the data integrity that
we need. However, using a database for an application like
this is heavy and cumbersome. Also, a database is not easily
implemented in an embedded system environment.

A more lightweight approach would be to use some kind
of queue that also persists the data. After investigating this
option, we could not find a persistent queue that supports
the workflow we were looking for. The required workflow is
to “peek” at the data on the queue (copy the data without
removing it from the persistent storage), transfer the data,
confirm that the data has been transferred properly, and delete
the data from the queue. All queue implementations that we
found only supported pop/push semantics, but did not support
peeking (reading data without deleting it from the queue) and
deleting (removing data from the queue without reading it).
We feel like this workflow is universal enough that we create
our own persistent queue [12]. We use our persistent queue
in the following manner. The sensor has two main processes:
recording data from the sensors into the persistent queue and
sending data to the gateway when requested. When a request
for data comes in from the gateway, the sensor reads data from
the persistent queue, sends it to the gateway, and deletes the
data once receipt of data has been acknowledged. By using a
persistent queue, we ensure that all data collected will be safe,
regardless of application failure or power loss.

2) Reliable Pull over CoAP (RePoC): Even with data
persistence, loss can occur when transferring between sensor
and gateway. To ensure that data has been properly transferred,
application level acknowledgments are needed. We design a
lightweight protocol on top of CoAP to pull data from sensors.
Without such a protocol, there is no way for the sensor to
know if the gateway received and handled the data properly.
We built RePoC to be optimized for a backlog of data, by
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adding the ability to request multiple samples at a time. We
find in our deployments that backlogged data is common. The
sensors that we have deployed have a backlog of data 6.11%
of the time, with some sensors having a backlog 40% of the
time. RePoC allows the gateway to request multiple samples
at once, improving the efficiency of our protocol.

RePoC fulfills three important aspects. First, the protocol
ensures that data is reliably transferred. It does this by putting
the burden on the gateway to tell the sensor how many data
points have been received and can be deleted by the sensor.
This allows the gateway to ensure that the data is safe before it
tells the sensor to delete the data. Second, the protocol requires
no configuration on the sensor. Instead, the configuration goes
into the gateway. The gateway is responsible for finding the
sensors, determining how much data to request from each
sensor, and how often to request data from the sensor. The
sensor acts as a CoAP server, waiting for requests from the
gateway. With other protocols, like MQTT, the sensor would
need to be configured with the information of a broker. Last,
RePoC is scalable because the gateway is pulling data from
the sensors, rather than having the sensors push data to the
gateway. This allows the gateway to act as a coordinator,
controlling all transmissions.

Our process for retrieving data from a sensor works in the
following manner. After the gateway has discovered a set of
sensors, it requests data from them in a round-robin approach.
The gateway will transmit a confirmable CoAP GET request to
a sensor for its data. The sensor will respond to the confirmable
GET request with an ACK that also contains the data the
gateway requested. The GET request has two important pieces
of information: the number of data points the gateway wants
from the sensor and the number of data points the gateway is
acknowledging from the previous request.

By having the gateway choose how many data points it
wants from a sensor, the gateway is able to balance getting
data quickly and in a scalable manner. The sensor sends, at
most, the number of data points requested. If it does not have
that many data points to give, it gives the maximum it has. If
the sensor responds with the same amount of data points as
the gateway requested, the gateway can infer there is a good
chance the sensor has more data to send and will poll it for
more data. If the sensor responds with fewer data points than
the gateway requested, the gateway knows the sensor has given
all of its data points and can move to the next sensor.

The second portion of the request is the number of data
points being acknowledged. The sensor has no way of knowing
if the gateway has received and processed the data properly.
We use CoAP confirmable messages, but this only tells the
sensor if the message was received properly and not if it
was processed. The number of data points acknowledged will
typically be the number of data points received in the previous
request, but if an error occurs on the gateway or a CoAP
transmission goes unacknowledged, the number gets set to
zero. This ensures that no data will be acknowledged and
deleted without the gateway processing it first. A trade-off
of this approach is that duplicate data can be received from
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Fig. 5: An example of packets exchanged between gateway
and sensor using RePoC.

a sensor. This is fine given duplicate data is detected by
the database, InfluxDB, and ignored [11]. When the sensor
receives the number of data points acknowledged, it is free to
delete those data points.

Figure 5 illustrates an example of RePoC in use. In this
example, the gateway starts by requesting two data points and
acknowledging zero data points. The sensor has three data
points stored, so it sends the first two data points to fulfill the
request. The gateway responds with a request for two more
data points and acknowledges that it received the previous
two data points. The response of the sensor is not received, so
the gateway retransmits its request and the sensor retransmits
its response. Eventually, CoAP will give up, in which case the
gateway will wait a period of time and try again, this time,
setting the number of data points acknowledged to zero. If the
gateway had kept its acknowledgment at two, data point three
would have been deleted without the gateway receiving it. By
using RePoC, even if the request or response are lost, data
will be reliably transferred and no data will accidentally be
deleted.

C. WiFi Disruptions

Occasionally, sensors stop sending data. This can happen
for many reasons, some more severe than others. These
reasons range from momentary WiFi disruptions to accidental
power outages or hardware malfunctions. For example, from
our deployments, sensors were either unplugged or power
was lost on average 1.99 times per month per sensor. As
mentioned before, homes can be a hazardous environment with
poor wireless connectivity, increased power interruptions, and
occupants (including children and animals) interacting with the
devices. A temporary WiFi disruption is the least problematic
because the sensor is still collecting data and all data will be
uploaded when the sensor comes back online. WiFi disruptions
can last from a few minutes to a few days. On the other hand,
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Fig. 6: Length of WiFi disruptions and the number of disrup-
tions of sensors seen in our deployments over eleven months.

a sensor being unplugged or a hardware malfunction leads to
lost data which would have negative impacts on a study.

Even though a researcher might find out the cause when
the sensor has come back online, they do not know the cause
of the disruption at the moment. When the disruption may
be causing data loss, the researcher may contact a participant
to have them check on the sensor, or a deployer goes out to
fix the sensor. For a researcher, when a sensor goes offline,
it becomes a balance of possibly losing data and burdening
a participant by sending someone to check on the sensor.
In our experience deploying EpiFi, there were times where
sensors would go offline and we assumed it was a temporary
WiFi disruption. It was only after a few days and having a
deployer check on the sensor, that we learned the hardware had
malfunctioned and data had not been collected. A researcher
must decide how much data they are potentially willing to lose
before they intervene with a participant and their sensor. To
make matters worse, from our experience, it can take days to
weeks to coordinate with a participant to find a time to meet
at their home to investigate a sensor. Also, each visit is an
inconvenience to a participant, making them more likely to
drop out of the deployment study. We had patients drop out
of the study during both studies. Each loss of a participant
was reported on and extensively discussed by the researchers
as a significant event. These factors make it that much more
important to gain insights into the state of the sensor remotely.

Figure 6 shows the length of time (in minutes) that each
sensor was disrupted from WiFi and the number of disruptions
that occurred for that sensor. Based on this data, we learn that
all sensors deal with this problem, however, some sensors have
a lot more disruptions compared to others. These times where
a sensor was disconnected from WiFi represent times when
the researcher did not know the state of the sensor.

We focus on WiFi disruptions because we think that it is a
solvable problem. These disruptions are caused by the wireless
signal to noise ratio falling below a threshold such that the
lowest data rate WiFi supports, 1 Mbps, cannot be achieved.
If a wireless device is unable to communicate at the lowest
data rate, then it becomes disconnected from the network. In
our context, we find the lack of lower data rates of WiFi to
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be a hindrance. Since most exposure sensors are producing at
relatively low data rates (e.g., a few bits per minute), we would
gladly trade a faster data rate for longer range communication.
However, with current WiFi, that is not possible.

Two WiFi standards already exist that support lower data
rates and longer ranges: Hal.ow (802.11ah) [1] and White-
Fi (802.11af) [8]. Both of these standards are designed for
applications that need longer ranges with a decrease in data
rate. Both are able to increase their range, in part, because
of the lower frequencies they run on. HaL.ow runs 902 to 928
MHz and White-Fi runs on the TV white space frequencies, 54
to 698 MHz. However, the new standards require a different
transceiver — they are incompatible with the standard WiFi
used in people’s homes. As a result, this is not a viable solution
for current deployments and will not be viable until these
protocols are built into consumer wireless routers. Until this
happens, the current 802.11 standard is updated to support
lower data rates, or another approach is taken, this problem
will continue to exist.

V. RELATED WORK

Work done by T. Hnat et al. [9] shares valuable insights
and lessons learned through their many experiences doing
home deployments. They discuss common problems when
dealing with sensors in homes, such as power loss and wireless
connectivity issues. Such insights point to the importance of
EpiFi and the numerous problems that it addresses.

There are commercial systems, like those sold by Qual-
comm Life [17], that provide similar benefits as EpiFi. This
system has the appeal of being backed by a company. The use
of cellular connectivity increases the cost compared to piggy-
backing onto a home’s internet connection, and researchers are
typically budget-limited. Further, support for devices is limited
to what a company will integrate into their system. We feel
that some of the best innovations will be from new sensors that
are developed and believe in the importance of open source
software that can be improved upon by the community.

Microsoft’s Lab of Things [4] provides a testbed for re-
searchers to conduct home field deployment. Though some
of its goals overlap with EpiFi, its focus is on allowing
researchers to test new home technologies in a shared home
testbed environment. Our focus is on enabling epidemiologists
to more easily build and deploy sensors for their studies.

VI. CONCLUSIONS

In this paper, we described EpiFi, an architecture for epi-
demiologists to use to build and deploy experiments. The
design of EpiFi is targeted to address issues that are unique to
epidemiologists. We use extensive long-term deployment ex-
periences and collected data to observe and find real problems
and improve our system. The components we build address
real and important problems when dealing with deployments
in study participants’ homes, such as WiFi association boot-
strapping, reliable data transfer, and WiFi disruption tolerance.
These components work together to create a robust system,
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allowing epidemiologists to focus on epidemiology, rather than
networking.
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