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Abstract— This paper presents a framework for externalizing and analyzing expert knowledge about discrepancies in data through
the use of visualization. Grounded in an 18-month design study with global health experts, the framework formalizes the notion
of data discrepancies as implicit error, both in global health data and more broadly. We use the term implicit error to describe
measurement error that is inherent to and pervasive throughout a dataset, but that isn’t explicitly accounted for or defined. Instead,
implicit error exists in the minds of experts, is mainly qualitative, and is accounted for subjectively during expert interpretation of the
data. Externalizing knowledge surrounding implicit error can assist in synchronizing, validating, and enhancing interpretation, and
can inform error analysis and mitigation. The framework consists of a description of implicit error components that are important
for downstream analysis, along with a process model for externalizing and analyzing implicit error using visualization. As a second
contribution, we provide a rich, reflective, and verifiable description of our research process as an exemplar summary toward the
ongoing inquiry into ways of increasing the validity and transferability of design study research.

Index Terms—implicit error, knowledge externalization, design study

1 INTRODUCTION

The research we report on in this paper stems from a six-month field
study at the United States Agency for International Development (US-
AID) within the Bureau for Global Health. During this study we col-
laborated with global health experts working to combat the Zika virus
and associated health threats in Latin America and the Caribbean.
The collaboration displayed the characteristics of a classic design
study [61]: there were data, there were clear domain tasks, and our
collaborators were interested in exploring new approaches to visual-
ization. By the end of the field study we had developed an interactive
visualization tool for analyzing Zika data — positive feedback from
stakeholders attested to its usefulness.

Despite this success, however, we noticed a hesitation by our col-
laborators to embrace the new tool for their analysis. In probing their
reluctance, we confirmed that although the tool was a good reflection
of the Zika outbreak data, the data itself was not an accurate reflec-
tion of what the experts knew to be true about the outbreak in the
region. We pivoted to focus on this problem, and discovered that the
distributed, heterogeneous nature of generating and aggregating data
about the outbreak within and across multiple countries resulted in
inherently erroneous data. Even though the data itself did not reflect
these errors, the experts had a wealth of domain knowledge about their
existence, their impact, and their source.

We use the term implicit error to describe these data discrepan-
cies. Implicit error is a type of measurement error that is inherent to
a dataset but not explicitly recorded, yet is accounted for qualitatively
by experts during analysis, based on their implicit domain knowledge.
We developed a description of implicit error based on our analysis of
data discrepancies in Zika outbreak data — we speculate that our de-
scription is relevant to implicit error in a variety of domains — and we
explored annotation as a mechanism for externalizing and analyzing
implicit error using visualization. This work points to the potential of
externalized implicit error for supporting more effective data analysis,
for transferring insight between experts, for serving as a memory of
institutional knowledge, and for enabling modeling and abatement of
systematic error in data.

Grounded in our design study with global health experts, the first
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contribution of this work is a framework for reasoning about and ex-
ternalizing implicit error using visualization. The framework includes
a description of components of implicit error that are important for
downstream analysis, and a process model that details the role of visu-
alization in externalizing and analyzing implicit error. We demonstrate
the framework in practice through a visualization tool designed to sup-
port externalization of implicit error in Zika outbreak data.

The second contribution of this work is an extensive description of
our 18-month research process, supported by a practice of taking fre-
quent field notes, which we propose as a rich, reflective, and verifiable
exemplar summary of design study research. Through this process de-
scription we hope to contribute to the ongoing dialog within the visual-
ization community surrounding the recording and reporting of applied
research process and findings.

2 RELATED WORK

The specific designs of the tools developed throughout our research
draw from previous work focusing on the design and development of
decision-support and surveillance tools in the context of public health.
Our work primarily fills a gap between the broad span of literature that
acknowledges the prevalence of implicit error — as we have defined it
in this work — across a variety of domains, and existing visualization
work that models the externalization of domain knowledge.

2.1 Public Health Decision Support & Surveillance Tools
A considerable span of research focuses on developing visualization
and visual analytics systems to support decision-making and surveil-
lance for epidemics and other public health emergencies [11, 52]. Pub-
lic health decision-support tools typically avoid the issue of implicit
error by employing epidemic models to simulate the evolution of an
outbreak and the impact of various responses [1, 27, 41, 43, 67]. While
this approach is employed in some areas of global health, we found in
our field study that much of the analysis by global health experts op-
erates on raw, epidemiological surveillance data.

A number of public health surveillance tools facilitate exploration
and analysis of raw surveillance data for real and near-real time out-
break detection, particularly in the context of bio-surveillance [6, 26,
9, 21, 54, 24]. These tools emphasize the important role of situational
awareness — the perceptual understanding of the context in which a
situation takes place [20] — in appropriately interpreting surveillance
data, and provide support by incorporating contextual information,
such as relevant current events and unofficial outbreak data, to reflect
domain experts mental models of situational awareness. In addition,
these tools and a subset of public health decision support tools [27, 40]
explicitly rely on users to juxtapose the presented data with their own
domain knowledge during interpretation and decision-making. As we



found in our field study, implicit error is predominant in contextual ex-
pert knowledge, and thus supporting situational awareness inherently
supports incorporating this knowledge into analysis. In this work we
propose a more direct approach to incorporating and compiling this
subset of contextual expert knowledge.

2.2 Implicit Error and Knowledge Externalization
The existence of implicit error is well established within public health
surveillance [18, 38, 42, 60] and across domains in which humans and
societies play a central role in data acquisition, curation, and interpre-
tation [5]. Such domains range from emergency response and disas-
ter operations management [30, 49] to various forms of risk assess-
ment [53], healthcare, and medicine [10]. In public health, surveil-
lance data are often published along with disclaimers like the follow-
ing: “case numbers are generally a poor indication of the true burden
of disease. To interpret these numbers, one needs to consider both
epidemiological patterns and data collection efforts in specific coun-
tries [46].” Attempts to standardize data generation pipelines are a pri-
mary approach to minimizing these errors across systems [15]. These
efforts are strengthened by methods for evaluating data quality and
compliance [47]. There is a general acknowledgement, however, that
errors will persist despite these efforts [5, 63]. In this work, we for-
malize the notion of implicit error, and propose a framework to support
externalizing implicit error by domain experts through visualization.

There is also work that explicates the importance of context, his-
tory, background, and knowledge — described as “the stuff around
the edges” [8] — in accurately interpreting a piece of information.
This work warns that “attending too closely to information overlooks
the social context that helps people understand what that information
might mean and why it matters.” The work presented in this paper di-
rectly attempts to capture and explicate the stuff around the edges in
order to shed light on unaccounted for errors within data— extending
the known benefits of employing contextual knowledge to enhance re-
call and comprehension in visual analysis [32, 34, 35, 36].

Visualization is widely recognized as platform for facilitating the
projection of contextual domain knowledge onto data. This facilitation
is captured in visualization models as a key component for meaning-
making and insight generation [22, 68]. Knowledge-assisted visual-
ization models explicate the externalization of expert knowledge into
a computational representation that can be used to drive system spec-
ifications and simulated cognitive processes [12, 22, 72]. The work
presented in this paper builds on these models, articulating the role
of information and annotation in the externalization of domain knowl-
edge, as well as in transferring knowledge across experts.

An entire subfield of visualization focuses on the visual representa-
tion of error and uncertainty [3, 25, 37, 50], and a large body of work
within this subfield focuses on visualizing error and uncertainty of ge-
ographic data and its associated data attributes [65]. This uncertainty
visualization work, however, focuses on quantifiable measures of er-
ror and uncertainty, with some attention to categorical measures [19].
Although implicit error stems from the same sources as quantifiable
measures of error, and has the same impact on reported values, its
qualitative nature requires a different set of considerations and visual-
ization approaches which we explore in this work.

Finally, work in data provenance focuses on capturing the nuances
of data generation and processing pipelines [13, 51, 74], for example
in areas like human terrain visual analytics [71]. Additionally, insight
provenance supports externalization of implicit knowledge about the
data, primarily through annotation. Our work could enhance these
fields by providing an explicit mechanism — the externalization of
implicit error — for capturing insights about potential sources of error.

3 PROBLEM DOMAIN BACKGROUND

In early 2016, the Zika virus and associated neurological disorders
such as microcephaly were declared a public health emergency of in-
ternational concern. Since then, global health experts have worked
to plan and implement effective response efforts. This involves un-
derstanding the risk and impact of Zika within and across countries

and regions around the globe, and distributing resources and inter-
ventions accordingly. Experts working to assess and suppress the
spread of diseases like Zika rely on two sources of information: out-
break data that track the spread of the virus across a region, coupled
with information about the demography and geography of the region;
and response data that describe international response efforts under-
way. Using these data, experts seek to understand how an outbreak is
spreading across regions, assess the risk and relative impact of the out-
break on underlying populations, and understand how these risk and
impact factors change over time. This involves identifying hotspots
— heavily impacted regions — and coldspots — lightly impacted or
unaffected regions — and predicting future locations of each. Once
these hotspots and coldspots are identified, outbreak data is compared
against response data to assess the appropriateness of response efforts.

A key component of outbreak data is epidemiological surveillance
data (epi-data), which tracks reported cases of a disease and associ-
ated health issues through a systematic process of collection, analy-
sis, and dissemination [62]. In the case of the Zika virus, epi-data,
which is reported weekly, includes counts of both suspected and con-
firmed cases of infection along with counts of other related issues like
microcephaly and Guillain-Barre Syndrome — the set of reported at-
tributes are referred to as disease indicators. Additionally, epi-data is
often augmented with proxy measures for a disease such as, in the case
of Zika, data on certain mosquito populations (entomological surveil-
lance data or ento-data), as well as epi-data of other related mosquito-
transmitted diseases like Dengue, which has been tracked for years.
Ento-data was not included in the present study because the focus at
the time of tool development was on publicly available case reports.
Epi-data is further augmented with geographic data such as rainfall
amounts and characterizations of low-lying regions, as well as with
demographic datasuch as population density distribution and poverty
levels. For global health experts, epi-data convey the impact of an out-
break, whereas geographic, demographic, and ento-data help to con-
vey its risk.

Due to the borderless nature of outbreaks, the collection, analysis,
and dissemination of epi-data are conducted by a hierarchy of organi-
zations. At the finest resolution, measurements of disease indicators
are collected by local clinics and governing subcountry health offices.
These data are reported to a country-level Ministry of Health office
that compiles and releases data reports regularly, usually as PDFs con-
taining numerical data tables along with related charts, choropleths,
and text. We note that while this is the established best practice, the
consistency and degree to which epi-data reports are published varies
from country to country. From here, the regional arm of the World
Health Organization (WHO), an agency of the United Nations special-
izing in international public health, works with ministries of health to
collect reports, which it then compiles into a weekly regional report,
made available as a raw table or as a table in a PDF.

In this work, we collaborated with global health experts working to
combat the Zika virus in Latin America and the Caribbean. Our collab-
orators have interdisciplinary backgrounds in public health combined
with epidemiology and a range of social and biological sciences. In
addition to this background, their expert domain knowledge includes
an in-depth understanding of the countries and regions that they in-
dividually serve: from the nature and strength of the epidemiologi-
cal surveillance systems, to the political, economic, cultural and geo-
graphic contexts. This regional domain knowledge plays a critical role
in assessing the impact and risk of a transnational outbreak, as well as
in developing and refining effective response efforts.

4 PROCESS, ARTIFACTS, AND REFLECTION

In this section we report on the core phases of our 18 month-long de-
sign study using a rich description of the methods we used and the
artifacts we created, combined with reflective syntheses of what we
learned along the way. During the first six months we conducted a
field study in Washington, D.C. at USAID’s Bureau for Global Health.
The field study began with a preconditioning phase [61] during which
we interacted with a variety of teams, developed an understanding of
the data analysis needs and challenges across the Bureau, and estab-



lished relationships with a range of domain experts and other stake-
holders, who would later provide invaluable feedback on the broader
applicability of our research findings. Furthermore, through presen-
tations and visualization design work we established credibility with
various stakeholders, which helped us to obtain the necessary buy-in
to pursue design study research without the guarantee of deliverables.
We winnowed our efforts to a collaboration with global health experts
working to combat Zika, and focused the remainder of the design study
on their analysis needs. The field study was proceeded by 12 months
of research conducted from the University of Utah. To protect privacy,
a number of low-level details about participants and the organization
have been omitted from this section.

We used this project as an opportunity to investigate new ways
of approaching, recording, and reporting design study research. We
viewed each design and development phase as an opportunity to not
only build a deployable tool, but to use the tool itself to probe the
problem space and learn more about the challenges faced by our col-
laborators. In support of this learning, we decided early on to capture
notes and insights as frequently as possible both for our own reflective
analysis and for auditing by others for validation. We adopted a prac-
tice of taking field notes following meaningful interactions, providing
a log through which we could trace the development of insights and
ideas. Although many of the details captured within these field notes
are confidential, we provide an interactive timeline of high-level field
note summaries in Supplemental Materials1. We report on the project
using a rich description of our process, with an eye toward articulat-
ing the moments and artifacts that we believe were central to building
and shaping the research results. We put forth the extensive process
description, along with our practice of taking and releasing field notes,
as an exemplar contribution toward the ongoing inquiry into ways of
increasing the validity and transferability of design study research.

4.1 Learning About Zika Outbreak Analysis
After two months of preconditioning, we began the process of deeper
collaboration and iterative design work with the domain experts. Our
goals during this phase were to establish an understanding of the do-
main problem, described in Section 3; develop an abstraction of the
underlying data and tasks; and design a visualization system to support
our collaborators’ analysis. This phase spanned the last four months
of the field study.

During this phase, we collaborated with nine domain experts. Our
two primary collaborators were global health experts who helped us
understand the domain problem and the associated data and tasks, as
well as how Zika experts interact with, and interpret, outbreak and re-
sponse data. We also collaborated with three fellow tool builders from
the USAID’s in-house resource for spatial analysis and GIS. Prior to
the start of the field study, our collaborators had reached out to mem-
bers of this resource for visualization support, working with them to
formulate high-level tasks and to begin the process of compiling and
visualizing the relevant data in ArcGIS— important preconditions for
design study. These fellow tool builders agreed to let us take the lead
on the project, helped us establish our understanding of the challenges
surrounding the Zika data and tasks, and also provided a valuable re-
source for brainstorming, triangulating and validating ideas, and gath-
ering feedback on prototypes.

Additionally, we worked with four tertiary collaborators who deal
first-hand with challenges around the collection, processing, and anal-
ysis of global health data. These tertiary collaborators were experts
both in data processing and evaluation, as well as in a range of global
health efforts. They provided another valuable resource for brain-
storming, triangulating ideas, and gathering feedback on prototypes,
and also provided insights on the broader applicability of our research
findings across global health.

Throughout this phase we conducted informal interviews with all
collaborators, meeting monthly to bi-weekly with our primary collab-
orators; bi-monthly with our fellow tool builders; weekly with one of
our tertiary collaborators; and occasionally with other tertiary collab-

1http://bit.ly/IEFramework

orators. We additionally conducted a think-aloud with a primary col-
laborator using the existing ArcGIS platform developed by our fellow
tool builders. In nearly all cases, these meetings were recorded and
reflectively transcribed, a process of reflection and note-taking while
listening to an audio recording, seeking to capture the gist of discus-
sions along with insights acquired during the transcription. We stored
these reflective transcriptions as field notes. We took additional field
notes both before meetings to outline goals and assumptions and after
meetings to capture initial reactions and insights.

After a set of initial interviews, during which we also worked with
our collaborators to gather relevant data, we began working on the de-
sign of a technology probe for data and tasks using a rapid prototyping
approach. The data and tasks technology probe allowed us to probe
the analysis needs of our collaborators and the nuances of the data and
helped us build our understanding of the problem space more gener-
ally [33]. The final design of the probe reflected our understanding of
the problem, including the data and task abstraction, at the conclusion
of this phase. Prototyping began with hand-drawn sketches, Adobe
Illustrator mockups, and low-fidelity D3 sketches, and then proceeded
to a high-fidelity visualization tool implemented in D3. The rounds of
prototyping were interspersed with feedback sessions with our primary
collaborators, which guided further refinements to the overall design.
The feedback gathered around the design and use of the data and tasks
probe triggered new insights and hypotheses for us surrounding vi-
sualization research opportunities and ways in which our work could
benefit both our collaborators and the larger global health community.

Further validation of the data and tasks probe — and thus, valida-
tion of our data and task abstraction for the problem — was obtained
through presentations of the probe to a broader set of stakeholders. We
presented the probe to a larger group of Zika experts over a teleconfer-
ence, as well as in person to other global health experts, and ultimately,
by invitation, to a larger group of stakeholders.

4.1.1 Artifact: Data and Task Abstraction
Two primary sources provide epi-data on the Zika virus to the inter-
national public health community: the Ministry of Health (MoH) of-
fices of individual participating countries and the World Health Orga-
nization (WHO). The MoH data include country- and subcountry-level
epi-data for each participating country. These data report on a set of
indicators that varies both from country to country and between the
two resolutions of the data. Differences in reported indicators are due
to variation in what individual countries deem important to measure
and report. The WHO data — compiled from both public and private
sources of MoH country-level data — include country- and regional-
level epi-data. The sets of indicators reported for these two resolutions
of the data are consistent across countries, but differ from the sets of in-
dicators reported in the MoH data. These differences reflect what the
WHO deems important for monitoring outbreaks across countries and
most useful to global health organizations. The consistency and reli-

ability of the WHO data make it a primary source of information for
global health experts. The aggregation of these data, however, makes
them particularly prone to discrepancies resulting from variations in
countries’ surveillance systems, an issue that global health experts are
highly aware of. Thus, the MOH data, with its finer resolution, pro-
motes understanding of low-level trends of a disease outbreak.

Both the MoH and the WHO data are reported on a weekly basis
during the height of an outbreak. The data are thus provisional — they
reflect a snapshot of known epi-data at a particular moment in time.
One consequence of the provisional nature of the data is that retro-
spective updates to these data are published downstream, leading to
temporal data discrepancies. Examples of this are falsely confirmed
cases or local cases later found to be imported from other countries.
Within the WHO dataset, these discrepancies are published as foot-
notes alongside the indicator values.

The epi-data are augmented with two types of metadata. De-
mographic and geographic metadata capture statistics surrounding
poverty, population density, and rainfall. These data are reported at
both the subcountry- and country-level by various publicly available
and established databases. Response metadata are reported at the



country-level, with some finer level data at the subcountry-level for
a subset of response programs. The response metadata include infor-
mation about the line of response effort, such as mosquito population
control or health services; the partnering organization; and the tar-
get geographic area and population. The metadata report on current
conditions and efforts. Whereas the epi-data are the core data used
to characterize the spread of the Zika virus, the metadata are used to
summarize response coverage and assess the risk and impact of the
disease on underlying populations. While beyond the scope of the
current work, future plans to further augment the analysis with ento-
data will help vector-borne disease specialists predict future cases and
the spread of the disease.

The primary tasks of our collaborators are threefold. First, they
need to identify and characterize how the Zika outbreak is evolving
based on indicators of the disease over time and space. Second, they
need to identify and characterize the outbreak’s impact on, and risk
to, underlying populations based on the geographic and demographic
metadata. Third, they must assess whether the response coverage is
appropriate with respect to the evolving outbreak and its impact on
and risk to underlying populations while also considering factors like
equity. To give an example, suppose a global health expert is looking
at an epi-data indicator that reports cumulative confirmed Zika cases
across a country. She identifies a part of the country with a relatively
high number of cases as a hotspot. Looking at the demographic meta-
data, she sees that the hotspot is in a densely populated area with high
poverty levels. This is not surprising, given her knowledge of the dis-
ease and associated risk factors. She reviews the response data in that
part of the country and finds a number of different partnering organiza-
tions working there, covering all lines of effort. She confirms that the
response is appropriate, as everything possible is being done to com-
bat the Zika virus in that area. She thus recommends no reallocation
of resources.
4.1.2 Artifact: Data and Tasks Technology Probe
The data and tasks probe developed during this phase, and shown at
the top of Figure 1, was designed to represent and support the data and
task abstraction that we developed based on our collaborators’ analy-
sis needs. Developed for the web using the D3 and Leaflet Javascript
libraries, the probe uses a standard linked-view approach to explore
geospatiotemporal data, with customizations to support specific re-
quirements of Zika experts. The probe supports exploration and com-
parison of outbreak and response data at two levels of resolution: the
regional-level, showing WHO data for the region and associated coun-
tries; and at the country-level, showing MoH data for a country and its
subcountry areas.

At each level, line charts displayed in a chart view allow users to
explore trends in different indicators over time and to compare these
trends against the associated geographic and demographic metadata.
The chart view is linked to a map view showing a temporal snapshot
of epi-data encoded as a choropleth. Response data is overlaid on the
choropleth, either as glyphs at the regional-level or as textured shape-
files at the country-level. At the country-level users can additionally
view epi-data over time as small multiples of choropleths.

As a final addition, the probe also supports light-weight annotation,
meant to probe the potential of the mechanism for capturing implicit
domain knowledge about the data. This technology probe informed
design recommendations for a Tableau-based tool, under development
by global health experts to support sustainability and continued devel-
opment of visualization for Zika outbreak analysis.
4.1.3 Reflection
Regular feedback and triangulation from our primary collaborators,
fellow tool builders, and tertiary collaborators provided incremental
validation of our understanding of the problem, and heavily shaped
the design of the data and tasks technology probe. In addition, the
positive feedback we received during presentations of the probe served
as informal validation that our results are more broadly relevant to
global health beyond Zika outbreak analysis.

More interesting, however, was feedback on the probe from the
larger group of Zika experts confirming our growing suspicion that

Fig. 1. Technology probes developed during the second (top) and third (bottom)
phases of the project. Both versions allow users to explore country and subcountry
data from countries’ MoH offices (top), and country level data from WHO (bottom).
The third phase probe integrates a fully implemented annotation platform.

although the probe was an effective reflection of the data, the data it-
self was not an accurate reflection of what the experts knew about the
current status of the Zika outbreak. As one of our collaborators put it,
testing the probe required “suspending disbelief” around the quality,
consistency, and availability of the data.

What also became increasingly clear during this phase, and was
subsequently confirmed by the larger group of Zika experts, was that
knowledge about discrepancies in the data exists largely within the
minds of Zika experts. The first indication of this implicit knowledge
emerged during a feedback session featuring the probes’s regional-
level choropleth displaying cumulative confirmed cases of Zika on a
per country basis. Brazil was displayed in dark red whereas Colom-
bia appeared as a lighter orange. One collaborator noted that whereas
Brazil reports all cases, Colombia runs a full investigation prior to
making any reports. The implication of this comment was that visu-
alization of the official data was indicating a relationship between the
countries that conflicted with our collaborators’ understanding of the
outbreak.

We witnessed similar data qualifications on a number of other occa-
sions. As we probed deeper, we came to understand that our collabo-
rators’ regional domain knowledge — their in-depth understanding of
regional context and response efforts — included an extensive mental
database of the idiosyncrasies that go unaccounted for in the data gen-
eration pipeline, and that lead to errors in the official data reported for
a region. Our collaborators learn to view data and data visualization
through the lens of this contextual knowledge and, furthermore, as-
sume the presence of errors when viewing data and visualization from
outside their own region of expertise. In the Brazil-Colombia example,
our collaborator was mentally adjusting the colors of the two countries
in order to better account for the discrepancy in the data. When we
asked another collaborator about this in a follow-up conversation, she
responded with “Yeah, you kind of have to.” Our suspicion that the
cognitive load required to make these mental adjustments decreased
the potential impact of visualization tools for our collaborators led us
to reconsider our goals for the project, and to pivot toward tackling the
upstream problem of discrepancies in the Zika epi-data.

4.2 Learning About Discrepancies
We pivoted to focus on understanding and characterizing discrepan-
cies in Zika epi-data, and on investigating the potential of annotation



as a mechanism for externalizing expert domain knowledge about data
discrepancies. To meet these goals, we extended the data and tasks
probe developed in the previous phase to include full annotation sup-
port. We evaluated the new annotation probe though a workshop with a
larger group of Zika experts. Other than the workshop, this phase was
conducted at the University of Utah and spanned approximately two
months. During this phase, we also began working with an additional
primary collaborator — an institutional contractor working full-time
on the Zika response. This collaborator was heavily involved in the
remainder of the study and is a co-author on this paper.

The workshop provided an opportunity to meet face-to-face with,
and gather feedback from, Zika experts based in countries across Latin
America and the Caribbean. The workshop was held in a computer lab
equipped with Windows desktops, and lasted 1 hour and 45 minutes.
One visualization researcher facilitated the workshop and 13 Zika ex-
perts participated. The workshop began with a brief presentation rein-
troducing the project and demoing the annotation probe. The presen-
tation was casual and interspersed with discussion. It was followed by
two hands-on activities bookended by group discussions.

In the first activity, participants were asked to explore the probe on
the lab computers and to submit annotations using two separate fea-
tures: an annotation feature for dropping and annotating pins on a map;
and a commenting feature for posting annotations to a message board.
We provided minimal guidance on the kinds of annotations that we
were looking for, however we emphasized that we were less interested
in notifications of missing or outdated data, and more interested in the
nuances surrounding response efforts, specific geographic areas, pop-
ulations, and recording and reporting mechanisms. Participants were
given roughly 15 minutes to make submissions. This was followed
by a group discussion guided by questions including: “What inspired
you to submit an annotation?”; and “How would you hope someone
else might use these annotations to help them interpret the data?” This
was followed by a second activity, in which participants were encour-
aged to explore the full set of annotations submitted in the first activity,
followed by a discussion guided by questions including: “Were some
annotations more useful or informative than others?”; and “How did
the annotations impact your interpretation of the data?” Based on the
activities and discussions we collected 54 sample annotations.

Participants were provided with surveys for assessing usability,
such as likes, dislikes, suggestions, etc. We concluded the workshop
with another survey containing identical questions to those posed in
the group discussions for the two core activities. This presented an op-
portunity for participants to reiterate thoughts and include new ideas
that didn’t make it into the group discussions. Lastly, we conducted
a short follow-up poll in an attempt to capture initial reactions about
the annotation platform and get a definitive sense of whether we were
heading in a valuable direction. Poll results were submitted for 10/13
participants, and are summarized in Table 1.

Question Response

q1: On a scale from 0 to 10, how useful do you think
the annotation (i.e. dropping pins) feature could be? 7.9 (avg.)

q2: Is this feature/concept worth pursuing? (Y/N) Y (100%)

q3: On a scale from 0 to 10, how useful do you think
the commenting feature could be? 7.7 (avg.)

q4: Is this feature/concept worth pursuing? (Y/N) Y (100%)

Table 1. Results from the workshop poll. The purpose of the poll was to capture
initial reactions by the participants about the annotation platform. While informal,
the results provided positive feedback on our proposed use of annotation as a
mechanism for externalizing knowledge of data discrepancies in the Zika epi-data.

4.2.1 Artifact: Annotation Technology Probe
The annotation technology probe, shown at the bottom of Figure 1,
retains the basic functionality of the previous probe, with the addi-
tion of a fully implemented annotation platform. This platform sup-
ports generating annotations at varying degrees of specificity — from

landmarks, to geographic areas, to general annotations — and at the
regional, country, and subcountry levels. The probe also includes a re-
fined set of visualizations based on feedback on the underlying design
received in the previous phase.

4.2.2 Reflection
The feedback and data collected from the workshop gave us confi-
dence that our focus on data discrepancies and on annotation as a
mechanism for externalization was well directed. For example, one
participant provided concise validation of this direction in her poll re-
sponse: “A comprehensive combination of the annotation and com-
ments features (at country and regional levels), especially with some
basic, high-level coding scheme (related to programming? data qual-
ity? other?) would be incredibly useful for the global health commu-
nity.” Additionally, the set of annotations collected during the work-
shop formed the basis for our understanding and characterization of
epi-data discrepancy in the proceeding phase of research.

4.3 Formalization of Learning
The final phase focused on synthesizing and formalizing learning from
previous phases [44] surrounding the notion of data discrepancy. This
phase took place at the University of Utah and spanned five months.
During this time we employed two core methods. First, we performed
qualitative analysis on a collection of descriptions of data discrepan-
cies compiled from various sources throughout the project. Second,
we engaged in a critically reflective practice to synthesize our expe-
riences across the project. Our synthesis was informed by feedback
from our collaborators and grounded in the relevant literature.

The qualitative analysis of discrepancy descriptions involved two
rounds of affinity diagramming, conducted by two of the authors.
In the first round, the 54 annotations collected during the annotation
workshop were clustered into 3 groups and 4 subgroups. The 3 ma-
jor annotation groupings were about response data, outbreak data and
general questions and comments. Subgroupings of the response and
outbreak data included updates and corrections, flagging of discrepan-
cies in epi-data, suggestions for supplemental or higher quality data,
and contextual narrative. We ultimately culled annotations about re-
sponse data as well as those about questions and comments.

The culled subset of 27 annotations was then combined with 6 de-
scriptions of discrepancies captured from interviews and discussions
throughout the study, along with 240 footnotes published alongside re-
gional level WHO epi-data, as described in section 4.1.1. This larger
set of descriptions was then used in a second round of affinity diagram-
ming, conducted by two of the authors. Major groupings included dis-
crepancies due to inconsistencies, discrepancies due to missing data,
temporal discrepancies, and contextual narrative providing higher res-
olution information. An example of this last grouping is “department
x has a low incidence rate, since the department is mostly highland
and so mosquitoes aren’t endemic.” While compelling and potentially
valuable, we decided to cull narrative-style examples as they extended
beyond our evolving notion of discrepancy. The remaining groupings
formed the basis of our understanding and characterization of epi-data
discrepancies, and of data discrepancies more broadly.

To further develop, synthesize, and formalize our learning, we used
an approach of critically reflective practice, which brings together ex-
perience, reflection, and critical thinking in an iterative process of syn-
thesis and action in order to generate insights from experience [7, 64].
Using this approach, we reflected across the entire study, reexamin-
ing field notes, outcomes, and insights in light of the results of our
qualitative analysis and our current understanding of data discrepancy.
In addition, we studied existing literature across domains on relevant
topics including knowledge externalization [12, 22, 45, 70, 72] and
sociotechnical systems [66], and emergent concepts such as grey liter-
ature [48] and systemic bias [2].

This reflection, combined with multiple rounds of writing, diagram-
ming, and collaborative refinement of documents, resulted in the pro-
posed visualization framework for reasoning about and externalizing
data discrepancies — which we describe as implicit error — within
epi-data, and potentially for implicit error in other kinds of data as



well. We present the framework, the primary artifact of this final phase
of research, in Section 5, and describe an instantiation of the frame-
work as a visualization tool for Zika outbreak analysis in Section 6.
Our reflective synthesis of this phase is discussed in Section 7.

5 FRAMEWORK FOR EXTERNALIZING IMPLICIT ERROR

The primary contribution of this work is a visualization framework
for reasoning about and externalizing knowledge of data discrepan-
cies, which we refer to as implicit error. The framework consists of a
description of implicit error components that are important for down-
stream analysis, and a process model for externalizing and analyzing
implicit error using visualization. All aspects of the framework were
inspired by, and are grounded in, our collaboration with Zika experts.
Reflections from this collaboration are used throughout the section to
illustrate the framework concepts.

5.1 Describing Implicit Error
As we discovered over the course of our collaboration with Zika ex-
perts, differences in what the epi-data reported and what the domain
experts knew to be true prevented meaningful visual analysis of the
data. Measurement error in the data — the difference between the
number of reported cases and the actual number of cases as they exist
in the world — stems from the distributed, heterogeneous data genera-
tion pipeline. Differences in how cases are detected, recorded, col-
lected, processed, and reported exist both within countries and be-
tween them. This is due to the embedding of these pipelines within
countries’ political, economic, cultural, geographic, and demographic
contexts, all of which influence how various stages of the pipeline are
implemented [5]. These differences accumulate as data are repeat-
edly compiled and aggregated, leading to inherently erroneous data.
We speculate that other domains with distributed, heterogeneous data
generation pipelines feature similar errors as well.

Although a precise quantification of these errors is infeasible, global
health experts have extensive domain knowledge about their existence
and source. We thus use the term implicit error to describe measure-
ment error that is inherent to a given dataset, assumed to be present
and prevalent, but not explicitly defined or accounted for. Instead, im-
plicit error largely exists as tacit knowledge in the minds of experts, is
rarely quantifiable, and is accounted for qualitatively and subjectively
during an expert’s interpretation of the underlying data. Our defini-
tion of implicit error fits into the broader taxonomy of uncertainty by
Boukhelifa et al. [4], contributing additional details and considerations
surrounding their notion of data uncertainty.

Implicit error has two core components that are important for inter-
pretation and analysis. The first is a set of characterizing traits: the
source, type, magnitude, direction, confidence, and extent of the error.
These traits support downstream exploration and visual analysis, as
well as computational analysis and modeling of the error. The second
component is a contextualizing, semantically rich description of an ex-
pert’s knowledge of the error. The contextual information is important
for validation of the error as well as for sharing knowledge of the error
across experts. We describe each of these types of components in turn.

5.1.1 Characterizing Traits
During our analysis we identified three sources of implicit error. The
first source, inconsistency, describes idiosyncrasies of the data gen-
eration pipeline, or a characteristic of the pipeline that varies across
pipeline implementations. In the case of the Zika epi-data pipeline,
examples of inconsistencies are: the union in area X goes on strike
often and doesn’t report epi-data; country X reports all confirmed
and suspected cases as confirmed cases; and country X overhauled
its surveillance system leading to a sudden increase in detected cases.

The second source of implicit error, grey data, describes reputed
data that is omitted at some stage of the data generation pipeline, due
to things such as standardization methods. An example of grey epi-
data is: we knew that there were more cases of X in the region, how-
ever we didn’t have the infrastructure in place to include them in the
report. The notion of grey literature is well established and highly
valued within the medical community and refers broadly to findings

produced and published outside of traditional academic venues [48].
The analogous grey data is gaining traction within global health as
unofficial surveillance and reporting mechanisms, such as citizens re-
porting on cases via cell phones, are increasingly seen as effective,
rapid early alert and predicting systems [23, 58].

The third source of implicit error, retrospective adjustment, de-
scribes downstream updates to previously reported data, resulting in
temporal discrepancies. As described in Section 4.1, epi-data is pub-
lished weekly as static reports and thus, as a consequence, updates and
modifications can only be implemented downstream. The regional
level WHO data addresses this by publishing footnotes highlighting
these errors with different levels of contextualization. Examples in-
clude: after retrospective review, laboratory-confirmed cases were ad-
justed by X’s Ministry of Health as of 25 August 2016 and X number of
confirmed cases were reclassified as suspected. These footnotes help
explain questionable trends in the data, such as a sudden drop in cu-
mulative confirmed cases, but also qualify otherwise reasonable and
potentially important events, such as a spike in suspected cases.

Characterizing the source of an error is often critical to correctly
interpreting the error type — this type can be either systematic or ran-
dom. For example, unreported data due to a strike by union workers is
likely a random error, whereas reported confirmed cases are delayed
due to lab capacity is likely systematic. Identifying the type is impor-
tant as systematic errors can often be reduced in downstream modeling
or through adjustments to the data generation pipeline itself [39].

Implicit errors can also be characterized by their direction and
magnitude. Direction describes the sign of the difference between the
reported value and the value adjusted to account for the error, whereas
magnitude describes the size of this difference. While magnitude char-
acterizations can be quantitative, in the case of epi-data they are most
often qualitative. An example of this is reported confirmed cases re-
ally just shows the tip of the iceberg. Furthermore, the implicit error
may also have an associated measure of confidence, which describes
domain experts’ confidence in their knowledge of, or their degree of
understanding about, the error. In global health, this measure of confi-
dence is often qualitative, such as I have a hunch that this is happening,
but I don’t have all the details. The direction, magnitude, and confi-
dence of an implicit error supports downstream models for analysis,
regardless of whethersuch models are computational or mental.

Finally, the extent of an implicit error describes the data that are
impacted. An error can impact a single measurement, a set of asso-
ciated measurements, or all measurements. In the case of epi-data,
the extent relates to which indicators, over what geographic area, and
during what temporal window. An implicit error could, for example,
reflect on a single reported case measurement, all case measurements
associated with a specific indicator, or all case measurements reported
for a geographic area.

5.1.2 Contextualizing Descriptions
Although the traits of an implicit error are valuable for visual analysis
and modeling, they lack the rich contextual description that is impor-
tant both for validating the trustworthiness of the error and for trans-
ferring an expert’s domain knowledge to other analysts. For example,
the traits of an implicit error could be characterized as follows:

• source: inconsistency
• type: systematic
• direction: negative
• magnitude: unknown
• confidence: very certain
• indicator extent: number of cases of Zika in pregnant women
• geographic extent: country X
• temporal extent: all weekly reports

While useful for analysis and modeling, this characterization lacks im-
portant reasoning behind the existence and knowledge of the error.

More insightful is a description that includes expert knowledge that
contextualizes the specific error: Country X only reports cases of Zika
in pregnant women detected within the first trimester. This description
provides specific insight into the nature of the error and context for
reasoning about why the error exists and the impact that it has on the



Fig. 2. Process model for externalizing implicit error. The model operates in three stages: In the identify stage, insight about the existence of implicit error is generated
through the use of a visualization system; in the externalize stage, knowledge surrounding implicit error is externalized through an annotation interface; in the analyze
stage, externalized implicit errors are incorporated into the visualization system for further analysis. This model is derived from process models for visualization and
knowledge-assisted visual analytics [68, 12, 72, 22]

reported values. In cases where domain experts are misinformed or bi-
ased, or in cases of conflicting knowledge across experts, descriptions
such as this, along with stated measures of confidence as described in
section 5.1.1, will enable experts to evaluate reported errors against
their own contextual knowledge in order to assess credibility, reliabil-
ity, and impact [4].

5.2 Externalizing and Analyzing Implicit Error
Externalizing expert knowledge about implicit error and its surround-
ing context is an important first step toward understanding the nature
of implicit error within a given domain, differentiating between sys-
tematic and random errors, developing models that account for sys-
tematic errors, and designing appropriate mitigation strategies to the
data generation pipelines themselves. Whereas the externalization of
traits of implicit error can support interpretation by visualizing the
traits alongside the data, easing the cognitive load of an expert analyst,
the externalization of contextual descriptions assists in validating and
synchronizing expert interpretations.

For the purposes of this work, we define externalization as the cap-
ture, characterization, and contextualization of implicit error. We use
the term capture to describe the indication of an implicit error by a
domain expert. Once an implicit error has been captured, an expert
characterizes the error by specifying, to the highest precision pos-
sible, its traits: source, type, direction, magnitude, confidence, and
extent. The expert contextualizes the implicit error by explicating the
relevant, contextual information about the source and nature of the er-
ror, as well as how it should be interpreted alongside the data.

The footnotes included in the WHO regional- and country-level epi-
data exemplify initial efforts within global health to externalize im-
plicit error and report it alongside official data. Similar examples of
footnotes are found in other established global health datasets as well.
These footnotes largely capture the characterizing traits of the error
but usually do not include much, if any, contextualizing description.
An example of a published footnote is: As of 29 December 2016, the
number of suspected cases decreased based on the modification by the
Ministry of Health for Country X. These footnotes, which capture only
a small percentage of the known implicit errors in epi-data, served as
initial inspiration in the research reported in this paper as they both
acknowledged the presence of implicit error and inspired annotation
as an effective externalization and visual analysis mechanism.

Building on the footnote idea, we sought to develop a structured
process for enabling experts to externalize implicit error in a gen-
eral and descriptive way, which we could then codify in a tool. For
guidance, we turned to existing epistemological frameworks from in-
formation sciences and knowledge management [57, 45], as well as
adaptations and extensions of these models developed within the visu-
alization community [12, 72, 22].

The DIKW pyramid defines the relationship between data (D), in-
formation (I), knowledge (K), and wisdom (W) [17, 16, 70]. Data
consist of measurements that have no particular meaning in and of
themselves. Contextualized data form information that conveys mean-
ing. When combined with personal perceptions and previous expe-
riences, information is transformed into knowledge, which supports
evaluating and incorporating new experiences and information. The

transformation of knowledge into wisdom is marked by the ability to
identify and analyze patterns in one’s knowledge base in order to ex-
trapolate and make predictions. The DIKW pyramid can be also in-
verted: knowledge can be externalized and transferred between peo-
ple as information, and information can be captured and stored as data.
This inverted view of the DIKW pyramid maps to our goals of exter-
nalizing experts’ knowledge about implicit error into both contextual-
izing information and data traits.

While the DIKW pyramid provides insight into the formal relation-
ship between knowledge, information, and data, work within the visual
analytics community models how knowledge can be externalized and
analyzed using a visualization system — referred to as knowledge-
assisted visual analytics. These models argue for the effective role of
visualization to facilitate insight by illustrating how expert knowledge
interacts with data through a mediating visual representation [68, 22].
This interaction is key for externalizing knowledge of implicit error,
as well as for incorporating it into the visual analysis pipeline.

These models define how concepts of data, information, and
knowledge in perceptual-cognitive space can be translated to, and rep-
resented in, computational space [12, 72]. The models describe a
process for externalizing knowledge [72, 22] that incorporates mech-
anisms for both direct externalization, such as through an annotation
interface, and indirect externalization, such as through interaction min-
ing [22]. These externalization process models, however, omit the con-
cept of information, which plays an important, contextualizing role in
the externalization and analysis of implicit error. Based on these mod-
els, we derive a process model for implicit error, which incorporates
information

The process model is presented in Figure 2. As in previous models,
circles denote processes, squares denote storage containers, and the
model is divided into computational and perceptual-cognitive spaces.
The model describes three stages: identify the existence of an implicit
error through the use of a visualization system; externalize the implicit
error through an annotation interface; and analyze the errors through
incorporation into the visualization system . More specifically, the
identify stage resembles the traditional interactive visualization pro-
cess: data D is visually encoded V given a set of specifications S
and transformed into images i, which an analyst interactively explores
and interprets through perceptual and cognitive processes P . These
processes are both informed by an analyst’s knowledge K → P and
yield new knowledge in the form of insights P → K . Here, visual-
ization provides a powerful mechanism for leveraging expert domain
knowledge to generate insight about the data [22, 68]. When these in-
sights indicate the presence of an implicit error, knowledge about the
error is captured, characterized, and contextualized in the externalize

stage via an annotation interface X . The contextual description about
the error is stored as information K → X → I , and the character-
izing data traits are stored as data K → X → D . Some of the data
traits, like the extent of the error, can be inferred indirectly from the
state of the visualization system, such as where a marker is placed:
K → E → S → D . Finally, in the analyze stage, the externalized
error is incorporated into the visualization system for exploration and
interpretation alongside the underlying data. This final stage supports
the validation, synchronization, and analysis of the error by analysts.



Using this process model, we designed a visualization tool for exter-
nalizing implicit error in Zika epi-data, discussed in the next section.

6 INSTANTIATING THE FRAMEWORK

As an example of how the framework can be used in practice, we
developed a prototypical system for global health response cover-
age assessment that supports externalizing implicit error in Zika epi-
data. The system, shown in Figure 3, was built using D3 and Leaflet
Javascript libraries and was designed to support the three stages of the
process model presented in section 5.2 : an underlying visualization
supports identifying errors; an annotation platform supports external-
izing errors; and an overlaid implicit error visualization supports an-
alyzing errors. We solicited feedback on the system from two Zika
experts, and reflect on our experience to provide guidance for others
seeking to instantiate the framework.

To support the identify stage, the core of the system is an interactive
visualization interface designed to support exploration of the epi-data
using a standard linked-view approach to visualizing geospatiotempo-
ral data. The system, which was informed by the technology probes,
supports exploration and comparison of outbreak and response data at
three levels: the regional view, displaying regionally aggregated WHO
data; the country view, displaying country-level WHO data; and the
subcountry view, displaying country and subcountry MoH data com-
bined with geographic and demographic metadata. As we found with
the technology probes, designing a visualization system assuming no
implicit error results in a powerful mechanism for triggering and dis-
tilling insight about implicit error in a dataset. Epi-data is encoded in a
choropleth and overlaid on an interactive basemap. The map is linked
to a chart-view (Fig. 3d) displaying trends in epi-data indicators over
time, as well as geographic and demographic metadata at the subcoun-
try level. Toggling between indicators controls the data encoded in the
choropleth. Sliders control the timestep shown in that map view and
allow users to scroll over time. Response data is overlaid on the map
either as glyphs in the regional and country view or as textured shape-
files in the subcountry view.

The system implements the externalize stage with an annotation
platform. Our use of annotation is grounded both in the results of the
annotation technology probe described in 4.2 and in a large body of
literature surrounding the effective use of annotation for narrative and
storytelling [55, 59], collaboration and communication [75, 31, 69],
externalization of insights [14, 28, 29], and assessments of data qual-
ity [4]. Annotations are submitted by dropping markers on regions,
countries, or subcountries, which brings up a semistructured annota-
tion template. The template, shown in Figure 3 (right), was designed
based on the description of implicit error presented in Section 5.1, but
using language that resonates with global health experts. Information
about contextual descriptions of implicit error is captured and stored
as unstructured text. Data about characterizing traits are selected us-
ing check boxes and radio buttons, with the exception of the region
and indicator fields, which are suggested based on the current system
settings. Submitted annotations are stored in an online database. To
support remote collaboration, new annotations are synchronized via a
timer.

Once annotations have been collected, the system supports the an-

alyze stage by visualizing the submitted annotations using established
encoding techniques. Here, visualization supports the identification of
patterns, outliers, and correlations within the externalized error and in
relation to the original dataset. More specifically, the information and
data stored in the annotations are presented via two different modes.
Information mode displays annotations in the form they are submitted
— as popup markers displaying data traits and contextual information
(Fig. 3a). Markers are filtered by view, such that regional level an-
notations, for example, appear only in the regional view. Contextual
information is additionally annotated along the line charts in the chart
view (Fig. 3e), a feature that proved helpful in the technology probes
for verifying potentially significant spikes and other trends in the data.
In data mode, annotations are instead encoded as circles, color encodes
categorical attribute corresponding to a single trait, and traits belong-
ing to multiple categories are encoded as bullseyes (Fig. 3b). Users

can toggle between traits through an interactive legend [56], scented
with the distribution of categories for each trait [73] (Fig. 3c).

The system is designed for long-term individual and collaborative
use by Zika experts. We received feedback from two experts who used
the tool collaboratively in a guided, think-aloud interview — one is a
co-author of this paper. The feedback indicated that in the short term,
the system provides a platform for discussing, reasoning about, and
formalizing an understanding of implicit error. For example, after sub-
mitting an annotation, one of the experts commented that interacting
with the visualization made her think about the data: in cases where
she initially questioned the data, it compelled her to reason about why
the data were in fact correct, or alternatively, what kind of error could
account for what she was seeing. The feedback also suggested that
longer term, the system would be valuable for developing a database
of externalized implicit errors — or, as one expert put it, an “institu-
tional memory” — which could provide a platform for modeling error
and informing mitigation strategies.

In reflecting on our experience of developing this system, we iden-
tified several recommendations for others looking to instantiate the
implicit error framework:

• Start by designing a visualization system for the existing data —
assuming no implicit error — and then incorporate annotation
mechanisms for externalization.

• Translate the framework constructs into a language that resonates
with the domain experts, and employ this language in the anno-
tation mechanism.

• Work with domain experts to generate an example set of annota-
tions for informing the design of annotation encodings.

• Once annotations accumulate, revisit the interface design to sup-
port emergent tasks and scalability issues.

We suggest that these recommendations be considered within an iter-
ative, user-centered design process.

7 DISCUSSION

The framework for externalizing implicit error proposed in this paper
was inspired by, and grounded in, a design study with global health ex-
perts studying Zika epidemiological surveillance data. Implicit error,
however, is prevalent in a broad range of fields — we cite discussions
surrounding implicit error from a number of different fields in Section
2. We further speculate that other domains that rely on distributed,
heterogeneous data generation pipelines also feature implicit error.

For example, bioinformatics increasingly relies on, and requires
that, independent teams of researchers publish datasets alongside aca-
demic papers so that others can replicate and build on the results.
Nuances of the data generation pipeline for individual datasets may
be critical for ensuring the reliability of results. Another example is
monitoring air quality conditions around the globe, where sensor net-
works deployed by individuals, grassroots organizations, academics,
and government agencies largely function independently. Improving
the scientific understanding of air quality, as well as impacting policy
changes, requires integration of these networks. And yet, differences
in the types of sensors and how they are deployed, reliability of the
data collection system, and local environmental and cultural condi-
tions make meaningful standardization of the data a challenge without
documented knowledge of these variations and their impacts. These
are just two examples of potentially many that could benefit from
thoughtful consideration of implicit error and deployment of mech-
anisms to support externalization.

We argue in this paper that externalization of implicit error could
lead to models of systematic error that augment data, as well as refine-
ments to the data generation pipelines themselves. Our work here is a
first step toward this goal: understanding the nature of implicit error in
a dataset is necessary before it can be accounted for in a robust way.
We anticipate that as descriptions of implicit error accumulate, we can
begin to model the error and then use the models to inform error mit-
igation, and perhaps even to guide institutional change in distributed
data generation pipelines. It is also possible that as our understanding
of implicit error evolves, we could model the cognitive-perceptual ad-
justments that domain experts make when incorporating knowledge of



Fig. 3. Prototypical instantiation of the framework for externalizing implicit error. (Right) expert knowledge surrounding implicit error is externalized via an annotation
template, shown here featuring an example annotation discussed in section 6. (Left) once submitted, annotations are displayed either (a) as popup markers in information

mode or (b) as bullseyes encoding categorical data trait attributes in data mode, which are linked (c) to a scented interactive legend displaying the distribution across
categories for each trait. In information mode, annotations can additionally be viewed (d) in the chart view (e) as footnotes annotated along line charts.

implicit error into their interpretations, and simulate these adjustments
through modifications to the data. Additionally, models of implicit er-
ror could improve the reliability of manual adjustments that experts
commonly make [4].

The process model for externalizing and analyzing implicit error
described in Section 5.2 modifies existing knowledge-assisted visual
analytics models [68, 22] in part by explicitly incorporating the con-
cept of information I . We view information as existing in between
computational and perceptual space, and playing an essential role in
the transfer of knowledge across experts. Our position is that not all
expert knowledge can be digitized completely, which is a possible lim-
itation of existing knowledge-assisted models that rely on computable
explicit knowledge. In the context of building institutional knowledge
and synchronizing interpretations across experts, information is likely
more valuable and powerful than a reduced computable data represen-
tation. Thus, we believe that the addition of information into these
models could be a useful perspective for designing future knowledge-
assisted visual analytics tools.

In reflecting on this work, we argue for the value of field studies in
uncovering new, and unexpected, visualization opportunities. Taking
full advantage of a field study, however, requires careful and thought-
ful navigation of interpersonal and inter-organizational relationships.
We offer several recommendations based on our experiences reported
in this paper. First, when conducting field studies in large, organi-
zational settings, we encourage researchers to take advantage of the
larger community and to interact with a range of stakeholders in order
to identify challenges that extend more broadly. Second, we recom-
mend presenting talks on applied visualization research early on, as
this will help shape a visualization researcher’s role and expectations
of the collaboration. And third, organizations may expect deliverables
that do not neatly align with the nature of design study — we found
that developing a visualization tool early-on that was valuable to the
organization helped to establish credibility and to obtain the buy-in
necessary to pursue design study research.

Finally, we used this project and this paper as an opportunity to in-
vestigate new ways of approaching, recording, and reporting design
study research. By approaching the development of visualization pro-
totypes as an opportunity to probe and learn, as well as committing to
extensively recording insights and artifacts throughout the project, we
found that design study offered us new ways to discover and reflect on
the visualization needs of domain experts. We felt it necessary to re-
port our process through a rich description in order to capture the value
that design study nuances have on the knowledge we acquired, but we
note that we were careful to cull our descriptions to just those details
we felt had an impact on our findings. We hope this work adds to

the conversation on the role of design study in developing and refining
visualization knowledge.

8 CONCLUSION AND FUTURE WORK

We report on an 18-month design study working with Zika experts to
investigate challenges surrounding data visualization within the global
health community. While we approached this project as a classic de-
sign study with the intention of developing a novel visualization sys-
tem, we instead learned that errors in the data limited the impact of
visualization for this community. Through an investigation into these
errors, we developed a formalized notion of implicit error and a frame-
work for reasoning about and externalizing implicit error using a vi-
sualization system. The framework is grounded in our design study
with global health experts, and illustrated through an application to
externalizing error in epidemiological surveillance data. This work re-
sponds to calls for tools that support capturing and encoding expert
knowledge of data quality and uncertainty [4]. We provide an exten-
sive description of our research process and findings, which we tenta-
tively offer as an example of a rich, reflective, and verifiable summary
of design study research.

We plan to continue working with our collaborators to further inte-
grate response data and to deploy the system to Zika experts. Addi-
tionally, because the Zika virus is spread primarily through mosquito
bites, epi-data can be further augmented with ento-data, tracking cer-
tain mosquito populations in order to assess underlying transmission
risk factors. In future work, we plan to incorporate ento-data and to
employ the framework to externalize and analyze implicit error sur-
rounding these data as well. We hope that longer term deployment
will enable us to begin to investigate the possibility of modeling char-
acteristics of implicit error as well as the possibility of simulating the
mental perceptual adjustments that the global health experts make to
incorporate implicit error into their interpretations of data visualiza-
tions. More broadly, we plan to explore applications of the framework
and of the notion of implicit error to domains outside of global health.
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izza, and A. Vespignani. The gleamviz computational tool, a publicly
available software to explore realistic epidemic spreading scenarios at the
global scale. BMC infectious diseases, 11(1):37, 2011.

[68] J. J. Van Wijk. The value of visualization. In Visualization, 2005. VIS 05.
IEEE, pages 79–86. IEEE, 2005.

[69] F. B. Viegas, M. Wattenberg, F. Van Ham, J. Kriss, and M. McKeon.
Manyeyes: a site for visualization at internet scale. IEEE transactions on
visualization and computer graphics, 13(6), 2007.

[70] K. G. Villholth, E. Lopez-Gunn, K. Conti, A. Garrido, and J. Van
Der Gun. Advances in Groundwater Governance. CRC Press, 2017.

[71] R. Walker, A. Slingsby, J. Dykes, K. Xu, J. Wood, P. H. Nguyen,
D. Stephens, B. W. Wong, and Y. Zheng. An extensible framework for
provenance in human terrain visual analytics. IEEE Transactions on Vi-
sualization and Computer Graphics, 19(12):2139–2148, 2013.

[72] X. Wang, D. H. Jeong, W. Dou, S.-w. Lee, W. Ribarsky, and R. Chang.

Defining and applying knowledge conversion processes to a visual ana-
lytics system. Computers & Graphics, 33(5):616–623, 2009.

[73] W. Willett, J. Heer, and M. Agrawala. Scented widgets: Improving navi-
gation cues with embedded visualizations. IEEE Transactions on Visual-
ization and Computer Graphics, 13(6):1129–1136, 2007.

[74] K. Xu, S. Attfield, T. Jankun-Kelly, A. Wheat, P. H. Nguyen, and N. Sel-
varaj. Analytic provenance for sensemaking: A research agenda. IEEE
computer graphics and applications, 35(3):56–64, 2015.

[75] J. Zhao, M. Glueck, S. Breslav, F. Chevalier, and A. Khan. Annotation
graphs: A graph-based visualization for meta-analysis of data based on
user-authored annotations. IEEE transactions on visualization and com-
puter graphics, 23(1):261–270, 2017.


