
Mure.js: Toward Flexible Authoring and Reshaping of Networks
Alex Bigelow* Carolina Nobre† Alexander Lex‡ Miriah Meyer§

University of Utah

Assign

people acted in movies

Pivot Connect

Promote

CHI
VIS

VIS
Pipe

A

AB
B

A

B
Group Toggle direction

Convert

edge to node node to hyperedge

supernode, group, and class

Merge / Dissolve

edges to hyperedgesnodes to supernodes

Figure 1: Examples of operations that our framework is meant to support. These include using graph topology for pivoting selections,
connecting nodes, assigning classes to items, converting between constructs, grouping items, promoting values to nodes, piping
attributes to or along edges, merging and dissolving supernodes and hyperedges, and toggling edge direction.

Index Terms: Human-centered computing—Visualization—Visu-
alization systems and tools; Information systems—Data manage-
ment systems—Database design and models—Graph-based database
models

1 INTRODUCTION

When interpreting data as a graph for visualization, an analyst first
assigns semantic meaning to graph concepts. For example, they may
choose to represent actors and movies as nodes, and roles as edges.
Alternatively, they may wish to represent movies as edges, connect-
ing actor nodes when they collaborate. Data abstraction choices such
as these are critical, because different data abstractions can limit—or
inspire—different analysis questions, approaches, perspectives, and
visualizations [2, 5].

However, current network modeling frameworks, systems, and
databases narrowly define graph abstraction constructs—such as
nodes, edges, node / edge classes, supernodes, hyperedges, etc.—in
terms of how the data is stored in memory or on disk, rather than
semantic, human-driven abstractions. Consequently, the ability of
an analyst to iterate on a data abstraction becomes fundamentally
limited by the implementation details of data wrangling software.

We present work-in-progress toward a broader framework for
modeling network data that is less dependent on its underlying struc-
ture and storage. Our goal is to use semantic data abstraction con-
structs to inform how algorithms wrangle data, instead of allowing
algorithmic concerns to define and constrain the semantics.

We also present mure.js, a software library that represents an
initial implementation of this framework, allowing users to map
semantic graph constructs to arbitrary data structures as metadata,
that can, in turn, be used to select, navigate, and reshape the under-
lying data. Additionally, we discuss an early software prototype of a
visual graph wrangling system based on this library.

2 RELATED WORK

The framework for semantic network modeling that we are devel-
oping extends ideas from existing network modeling frameworks,
systems, and databases that stress the role of the user in deciding

*e-mail: abigelow@cs.utah.edu
†e-mail: cnobre@sci.utah.edu
‡e-mail: alex@sci.utah.edu
§e-mail: miriah@cs.utah.edu

what parts of the data are nodes, and what parts of the data inform
connections [4,6]. Like these existing efforts, we emphasize the fact
that a data abstraction is designed, rather than naturally occurring.

Existing network modeling tools tend to define constructs in terms
of specific data storage strategies, such as the shape of data objects
in memory [3], as specific interpretations of relational database
concepts [7], as specific interpretations of attribute values [6], or
some specific combination of these interpretations [4]. These ap-
proaches have clear implementation advantages, in that it is easy
and efficient to implement general-purpose algorithms [3], efficient
queries in graph databases [7], powerful strategies for establishing
connections [4, 6], or efficient visualizations of many nodes [1].
However, rigid, data-based construct definitions have two distinct
disadvantages: they result in limited abstractions, and they are brittle
to refactoring.

When constructs are defined by data structure, they are limited
by that structure. For example, NetworkX [3] requires that an entire
graph be defined a priori to conform to a specific set of constraints,
such as directed vs undirected. These constraints make sense from an
algorithmic perspective, but because edges must follow one of these
global patterns, there is no support for graphs that mix directed and
undirected edges, or for other constructs such as hyperedges. Still
other frameworks, such as Orion [4], define connections as simple
value-based links, rather than distinct items, making it impossible
for edges to have their own attributes. Data-defined constructs
commonly result in workarounds, such as creating intermediate
nodes as a place to store edge attributes, or as a proxy for hyperedges.

The other disadvantage of data-defined constructs is that iterating
on a data abstraction is difficult or impossible in practice. Relatively
simple semantic changes, such as swapping what is interpreted as a
node, with what is interpreted as an edge, can be incredibly powerful
in practice [5], yet support for this kind of graph wrangling is under-
explored.

Our framework is distinct from existing work in that network
modeling takes place at a more semantic level. It maps semantic
constructs to data values and structures, rather than defining them
in terms of data values and structures. As such, refactoring the
mapping is far less complicated, and it enables a richer library of
constructs.

3 MAPPING CONSTRUCTS TO DATA

Graph data can be challenging to store, especially as edges often
introduce cyclical structures that do not map well to file system
or data structure hierarchies. Consequently, many strategies exist
for representing a graph in memory, including adjacency matrices,



node-link lists, and relational tables.
Our approach is to map semantic graph constructs to items in

data structures as they already exist, at an instance level, rather
than attempt to force all graph data into some canonical structure.
As such, items could be rows in a CSV file or relational table,
objects in a JSON file or NoSQL hierarchy, or elements in an XML
document. At the data level, the only requirement is that an item
must at least support attributes; it does not matter to our framework
whether they are nested, or where in a file they exist. Once items
are initially mapped to semantic constructs, they enable a set of
operations that allow conversion from one construct to another—this
process informs and drives the underlying data wrangling operations,
making it possible to convert between different storage strategies.

We have hinted at one clear limitation of this approach: in at-
tempting to avoid a single, canonical data structure, we can not
rely on the strengths of any of them, such as the compactness of
adjacency matrices for highly-connected graphs. This means that we
risk the ability to scale to larger datasets. We suspect that there may
be a fundamental trade-off in data wrangling tools—where greater
semantic flexibility may come at the cost of scalability.

3.1 Constructs
Our framework currently identifies nodes, edges, supernodes, hyper-
edges, classes, and groups. This is not necessarily the only set of
useful constructs that exist—we intend to refine this list, with feed-
back from the community. Meta-iteration on constructs themselves
is another advantage of our more lightweight, semantic approach.

The simplest construct mapping that can be made is to identify
an item as a node—an independent item in a graph. An edge is
a dependent item that links at least two nodes, even if both nodes
are the same (a self-edge). An edge may or may not be directed,
independent of any other edges in the graph.

A supernode is a node that represents a set of nodes; it allows the
user to summarize less-relevant network complexity. Supernodes
also provide a target for edges that are meant to link to a set of items
as a whole, rather than its individual members. A hyperedge is an
edge that links more than two nodes, and may be fully directional,
partially directional, or undirected.

Nodes and edges may be further identified with classes—a mecha-
nism whereby the user organizes items by their semantic, real-world
meaning, enabling item comparison across a common set of at-
tributes. Additionally, groups allow a user to specify informal or
ad-hoc item relatedness—distinct from the topological notion of
relatedness represented by edges, supernodes, or hyperedges, and
also distinct from the attribute-based relatedness implied by classes.

3.2 Operations
Once initial constructs are in place, they enable a rich set of op-
erations that the user can perform to reinterpret and reshape the
data. Similar to constructs themselves, available operations are also
open-ended in our framework; the operations listed here, also shown
in Figure 1, are meant to be illustrative, not comprehensive.

We describe each operation in terms of user selections—in our
prototype interface, these manifest as interface selections, whereas in
the mure.js library, they are more similar in spirit to D3 selections.
One selection can yield another by pivoting—either to, from, or
along edges; or from a set-like construct (supernode, group, or class)
to its contents or members.

Items can be grouped, saving the selection for later use or con-
version to a different construct; they can also be assigned to new or
existing classes. Nodes can be merged into a supernodes; supern-
odes can be dissolved back into regular nodes; nodes can connected
to each other, similar to (but not necessarily implemented as) a rela-
tional database join; or converted to hyperedges, merging the nodes’
existing edges into a single item. Similarly, selected edges and hyper-
edges can be merged and dissolved; or converted to nodes—splitting

an edge into separate entities, and creating an intermediate node.
Selected values or attributes can be promoted to distinct nodes,

optionally connecting their original source nodes with new edges.
Attributes can also be piped along edges, deriving new node or edge
attributes based on connected properties.

4 IMPLEMENTATION

We are implementing an example of our framework, focusing on
the above constructs and operations as an open-source library called
mure.js1. Similar to other graph database approaches, it is a semantic
layer on top of an existing database—in this case, PouchDB—but,
unlike existing approaches, the layer is far more lightweight, and con-
structs do not rely specifically on the shape or structure of PouchDB
documents. Instead, constructs are mapped to items in documents—
or even the documents themselves—through a metadata layer.

In conjunction with the library, we are prototyping a visual tool
for semantic graph wrangling. The interface exposes the constructs
and operations made available by the library, in a way that non-
programmers will be able to take advantage of them. Additionally, it
will provide basic visualization capabilities to assist in inspecting the
data before it is exported for deeper visualization in other programs.

5 CONCLUSIONS AND FUTURE WORK

As mentioned above, we plan to continue refining the set of con-
structs and operations, and to continue developing and designing
mure.js and its corresponding visual interface. We also intend to
evaluate the expressiveness, usefulness, and/or the usability of the
resulting systems.

In presenting this poster, we hope to solicit feedback from the
community on our current directions. Perhaps most importantly,
we seek opportunities to discuss how to best evaluate this kind of
work. What kinds of usability tests are most appropriate? How—and
should—data wrangling tool expressiveness be validated beyond
case studies? How can we evaluate the usefulness of a wrangling
tool in a way that can provide insight with respect to the set of
constructs and operations that it supports?

REFERENCES

[1] M. Bastian, S. Heymann, and M. Jacomy. Gephi : An Open Source
Software for Explorating and Manipulating Networks. Proceedings of
the Third International ICWSM Conference, p. 2, 2009.

[2] A. Bigelow, S. Drucker, D. Fisher, and M. Meyer. Reflections on How
Designers Design with Data. In Proceedings of the 2014 International
Working Conference on Advanced Visual Interfaces, AVI ’14, pp. 17–24.
ACM, New York, NY, USA, 2014. doi: 10.1145/2598153.2598175

[3] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring Network
Structure, Dynamics, and Function using NetworkX. In G. Varoquaux,
T. Vaught, and J. Millman, eds., Proceedings of the 7th Python in Science
Conference, pp. 11 – 15. Pasadena, CA USA, 2008.

[4] J. Heer and A. Perer. Orion: A system for modeling, transforma-
tion and visualization of multidimensional heterogeneous networks.
Information Visualization, 13(2):111–133, Apr. 2014. doi: 10.1177/
1473871612462152

[5] C. B. Nielsen, S. D. Jackman, I. Birol, and S. J. M. Jones. ABySS-
Explorer: visualizing genome sequence assemblies. IEEE transactions
on visualization and computer graphics, 15(6):881–888, Dec. 2009. doi:
10.1109/TVCG.2009.116

[6] A. Srinivasan, H. Park, A. Endert, and R. C. Basole. Graphiti: Interactive
Specification of Attribute-Based Edges for Network Modeling and Visu-
alization. IEEE Transactions on Visualization and Computer Graphics,
24(1):226–235, Jan. 2018. doi: 10.1109/TVCG.2017.2744843

[7] J. Webber. A Programmatic Introduction to Neo4j. In Proceedings of
the 3rd Annual Conference on Systems, Programming, and Applications:
Software for Humanity, SPLASH ’12, pp. 217–218. ACM, New York,
NY, USA, 2012. doi: 10.1145/2384716.2384777

1The library, source code, and documentation are available at
https://github.com/mure-apps/mure-library

https://github.com/mure-apps/mure-library

	Introduction
	Related Work
	Mapping Constructs to Data
	Constructs
	Operations

	Implementation
	Conclusions and Future Work

