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Fig. 1. Juniper visualizing a co-author network starting at the TreePlus paper as a spanning tree. The graph is extended for Catherine
Plaisant to include all her papers and co-authors. The papers are shown in aggregate form and faceted by y CHI and ^ TVCG. Most
of the tree uses a conventional layout, but the descendants of Catherine Plaisant’s node are shown in level layout, which groups nodes
by distance to the branch root. Nodes in this branch are aggregated, with the exception of prolific authors, which are revealed using a
degree-of-interest function. Ben Shneiderman is highlighted; two hidden edges originate at his node. The edge-count table shows a
summary of the connectivity of each node. The adjacency matrix shows explicit connections to selected, highly connected nodes. The
attribute table shows attributes about the authors and papers for individual as well as aggregated rows.

Abstract— Analyzing large, multivariate graphs is an important problem in many domains, yet such graphs are challenging to visualize.
In this paper, we introduce a novel, scalable, tree+table multivariate graph visualization technique, which makes many tasks related to
multivariate graph analysis easier to achieve. The core principle we follow is to selectively query for nodes or subgraphs of interest and
visualize these subgraphs as a spanning tree of the graph. The tree is laid out in a linear layout, which enables us to juxtapose the
nodes with a table visualization where diverse attributes can be shown. We also use this table as an adjacency matrix, so that the
resulting technique is a hybrid node-link/adjacency matrix technique. We implement this concept in Juniper, and complement it with a
set of interaction techniques that enable analysts to dynamically grow, re-structure, and aggregate the tree, as well as change the
layout or show paths between nodes. We demonstrate the utility of our tool in usage scenarios for different multivariate networks: a
bipartite network of scholars, papers, and citation metrics, and a multitype network of story characters, places, books, etc.

Index Terms—Multivariate graphs, networks, tree-based graph visualization, adjacency matrix, spanning trees, visualization.

1 INTRODUCTION

Graph visualization is a challenging problem, especially when the size
of the graph exceeds a few hundred nodes. This lack of scalability is ex-
acerbated when rich attributes for the nodes and/or the links need to be
considered when analyzing a graph. Such multivariate graphs are com-
mon across domains: biologists, for example, need to explore canonical
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pathways in the context of experimental data, to judge whether a path-
way is valid for a given tissue or organism; social scientists may need
to study whether a tight group of friends are all in the same age group
and went to the same school. The difficulty of visualizing multivariate
networks arises from two conflicting goals that need to be reconciled:
visualizing topology and visualizing node and edge attributes. The
visualization community has a good understanding of how to visualize
either the topology of a network, or the multidimensional data that is
associated with the nodes and edges, yet addressing both topology-
based tasks and attribute based tasks at the same time is still an open
research problem. While there has been progress on visualizing aggre-
gate attributes for the larger structure of a graph [47], or on visualizing
attributes for special graph structures such as trees [38] or paths [39,40],
we are not aware of a scalable, multivariate graph visualization tech-



nique that allows analysts to focus on local tasks. Here, we introduce
such a technique.

We use the term local tasks to refer to tasks where the details of
individual nodes, edges, and their neighborhood matter, as opposed
to the global structure of the network. Local tasks commonly require
readable labels and a detailed understanding of a node’s attributes.
These tasks include identifying adjacent nodes (who are my friends?),
identifying nodes that are accessible from another node (where can I
fly to from this airport within at most one layover?), finding short paths
(what’s the best route to go from A to B?), etc. Examples for local
graph tasks on multivariate networks include investigating congestion
and latency in a computer network, or exploring how a mutated gene
influences activity levels of the genes in its neighborhood. It is worth
noting that these local graph tasks are equally important in large and in
small graphs.

Our primary contribution is Juniper, a new interactive technique that
is tailored to address local tasks when visualizing large, multivariate
networks. The core idea is to extract a spanning tree from a subgraph
that is the result of a query of a larger graph. The spanning tree is
grown from a node of interest and laid out in a linearized tree, where
every node can be unambiguously associated with a row in a table. This
table is used to visualize topological properties of the tree, such as the
degree of the nodes and their adjacency to selected other nodes, and to
show rich attributes.

We also contribute an implementation of this technique, which en-
riches this basic concept with user interactions to restructure the tree to
best answer the analyst’s question, expose additional topological infor-
mation such as edges not included in the tree, identify shortest paths
between nodes, explore interdependent attributes along paths in the
network, aggregate groups of nodes to save space, expand the network
on demand, filter nodes by type, or sort them based on attributes.

Juniper is tailored to address local tasks related to the details of a
large network. We argue that this class of tasks is important in many
practical applications, and complementary to overview tasks that are
better addressed with other techniques.

2 DATA AND TASKS

We consider graphs G = (N,E), with nodes n ∈ N and edges e ∈ E.
Nodes and edges can be of different types t ∈ T . Edges can be directed.
Nodes have attributes a∈ Anodes associated with them. Typically, nodes
of different types also have different attributes. Node attributes can
be numerical, ordinal, nominal, sets, or labels/identifiers. Although
our prototype does not currently support it, conceptually we could
also incorporate edge attributes. Juniper renders a subset of the graph
gsub ∈ G, where |gsub| � |G|. This subgraph is selected by an analyst
to satisfy a specific question and can change over the course of an
analysis. Subgraphs do not have to be connected.

Whereas many graph visualization techniques are designed to sup-
port overview tasks and to be scalable with respect to the absolute
number of nodes, edges, and attributes shown, only a few graph vi-
sualization tasks require getting a large-scale overview of a network.
Examples of such global tasks are to estimate the size of a network, to
identify clusters, or to find articulation points. An example for multi-
variate networks is to explore how migration patterns within the United
States differ by age. Although some analysts certainly need to answer
such questions, we argue that local tasks are more common. Local
tasks are concerned with specific nodes, their labels and attributes, their
connections in a larger graph, specific paths between nodes, etc.

To get a better sense of the importance of local tasks, we classified
Lee et al.’s task taxonomy for graph visualization [32] into whether
the tasks are predominantly local or predominantly global. Of nine
tasks, seven are local only or predominantly local (adjacency, acces-
sibility, common connection, node attributes, link attributes, follow
path, revisit), while one task — connectivity — can be broken up into
both global and local tasks. For example, finding the shortest path
between two nodes is a local connectivity task, but identifying clusters,
connected components, bridges, or articulation points are global vari-
ants of the connectivity task. Node and edge attributes are described
mostly in a local context by Lee et al., but can also be useful in a global

context (for example, estimating the average age of members of a social
network).

Juniper is designed with a focus on local tasks, and on visualizing
node attributes and topology-attribute interaction. We employ a bottom-
up graph visualization technique [48, 49] where analysts start with a
query and expand the network on demand. As such, it is well suited
to answer questions about specific subnetworks, but cannot give large-
scale overviews of the network.

With regard to topology-attribute interaction, we argue that two types
of tasks are particularly important: (1) to understand attributes in the
context of neighborhoods, e.g., to see whether friends have similar
educational attainment or whether health issues, such as obesity, spread
in a neighborhood of friends [5], and (2) to understand attributes
in the context of paths, for example, to judge delays over time in a
computer network, or to judge whether a genetic pathway works as it is
supposed to [40]. Juniper is designed to address these tasks.

3 RELATED WORK

Juniper is inspired by and contributes to multiple subfields of graph
visualization. Here we discuss how our work relates to multivariate
graph and tree visualization, to tree-based graph visualization, and to
query-based visualization of large graphs.

3.1 Multivariate Graph and Tree Visualization
A multivariate graph is a graph where the nodes and/or edges are asso-
ciated with attributes [25]. Although most graphs have some attributes,
such as a node type, multivariate graph visualization techniques are
concerned with graphs with several or even hundreds of associated at-
tributes. A common goal of multivariate graph visualization techniques
is to allow analysts to jointly analyze topology and attributes and reason
about their relationship. Partl et al. [40] discuss four different types of
multivariate graph visualization techniques, based on node-link layouts,
which we use to structure this section. We also discuss matrix-based
techniques as a fifth type.
(1) On-node encoding refers to modifying the visual appearance of
a node (size, color), or embedding marks in it (bar chats, line carts,
etc.) Color coding is a common choice to encode a single data value
or a node type; the latter is also often encoded using node shapes or
icons. Gehlenborg et al. [13] review techniques used in systems biology
for visualizing multivariate networks, many of which make use of on-
node encoding using embedded charts, such as line charts, box plots,
etc. On-node encoding is also widely supported by common graph
visualization tools such as Cytoscape [43] and Gephi [2]. Van den Elzen
and van Wijk [47] use embedded visualizations to show distributions
of values aggregated in a super-node. On-node encoding supports
the integration of topology and attribute-based tasks well; however, it
comes with scalability trade-offs. Even for a modest number of nodes
in a node-link layout, node size has to be limited; hence little space is
available to encode attributes. When details about nodes are shown,
as, for example, in MoireGraphs [22], the number of nodes that can be
displayed simultaneously is limited.
(2) Multiple coordinated view (MCV) approaches use separate, ded-
icated views for the attributes and the topology. Common examples
are combinations of force-directed node-link diagrams with multidi-
mensional data visualization techniques [34, 42], or providing a detail
view for individual nodes [17, 45]. Although this solution is flexible
and easy to implement, it requires interactive highlighting to identify
relationships between nodes and their attributes. MCV based attribute
visualization is supported by standard graph drawing tools [2, 43].
(3) Small multiples show multiple instances of the same graph layout.
Each instance encodes a different attribute dimension. Small multiples
preserve the topology well, as they embed individual attributes directly
in the graph [1, 35]. Disadvantages of small multiples include that it is
hard to compare attributes across the views, and that each individual
graph has to be rendered with little space, limiting the size of the graph
that can be visualized.
(4) Layout adaption works by adjusting the layout so that a direct asso-
ciation between the nodes/edges and their attributes can be established.
This is a broad category that includes placing the nodes in a scatterplot



defined by two attributes as in GraphDice [3], or aggregating nodes
into bar charts as in GraphTrail [6]. Another strategy is to linearize
(parts of) a node-link layout, so that it can be easily juxtaposed with a
table visualizing node or edge attributes. Examples for this approach
include Pathline [36], where a whole network including cycles and
branching is linearized and juxtaposed with an attribute visualization,
enRoute [40], which linearizes a user-chosen path, and Pathfinder [39],
which queries for paths in networks and juxtaposes those paths with
attribute visualizations. All these approaches make compromises be-
tween the readability of the topology of the graph and the association
of the attributes to the network.
(5) Adjacency Matrices have both favorable and unfavorable proper-
ties compared to node-link layouts when judging topology [14]. Various
attempts have been made to combine node-link layouts with matrices
to find a compromise between these trade-offs. Examples are Node-
Trix [19], which embeds adjacency matrices for subgraphs of a node-
link layout, and MatLink [18], which enhances matrices with links.
For attribute visualization, however, adjacency matrices are superior
to node-link diagrams. For example, adjacency matrices can naturally
encode edge attributes in matrix cells. Although this is mostly done
with a single color value, multivalue edge attributes can be visualized
as nested graphs [9]. Similar to the on-node encoding in node-link
diagrams, however, the small space available for a matrix cell limits
how much can be encoded. For node attributes, in contrast, it is easy to
juxtapose multiple attribute visualizations with the rows or columns of
the matrix. This has been done, for example in Graffinity [26] and in
MapTrix [50].

Juniper is a layout adaption technique. It uses a linearized spanning
tree to visualize a graph, and juxtaposes it with a tabular visualization
technique. We argue that this combination hits a sweet-spot in the
topology-attribute trade-off spectrum. The linear tree-layout of the
graph enables us to also juxtapose and align it with an adjacency matrix,
resulting in a hybrid node-link/matrix technique, and thereby leveraging
the advantages of both: the ease of identifying paths in a node-link
layout, and the ability to quickly identify neighbors in the matrix layout.

Multivariate Tree Visualization Although the data we consider
is of graph form, we present the graph as a tree. Hence it is useful to
also consider the literature for multivariate trees in our review. Since a
tree is only a special type of graph, we can visualize them using any of
these approaches.

In contrast to general graphs, trees can also be visualized using
implicit layouts, such as tree maps [23], sunburst plots [44], or icicle
plots [28]. Implicit techniques can use on-node encoding, such as color-
coding, on the node set, but cannot be used to visualize edge attributes,
as the edges are implicit.

A large number of techniques visualize attributes of the leaves of a
tree in a tabular layout (a layout adaption strategy). Common examples
are cases where the tree is a dendrogram that visualizes the hierarchi-
cal relationship of the items in a table [7]. Similar approaches have
been used for visualizing phylogenies and attributes about the species
they contain [27, 30], or for visualizing transactions associated with a
hierarchy [4]. There are surprisingly few techniques that also visualize
attributes for inner nodes in a tree. One example is a tree-table as it is
used, e.g., in file browsers, showing properties such as file types and
file/directory sizes. Another example is our Lineage tool [38], which is
designed to visualize clinical genealogies. The genealogies considered
in Lineage are trees and are juxtaposed with a table that visualizes the
properties of individuals. In some sense, Juniper is a generalization
of the multivariate tree visualization techniques introduced in Lineage
to general, highly connected graphs. Compared to Lineage, Juniper
focuses on techniques that enable the exploration of a multivariate
graph as a tree, which includes complete control over which edges to
include in the tree, visualizing selected edges in an adjacency matrix,
and dynamically growing the tree from a much larger graph. Section 8
contains a detailed discussion of the differences of Juniper and Lineage.

3.2 Tree-based Graph Visualization
The idea of tree-based graph drawing goes back at least two decades.
Munzner uses a spanning tree as the structure to lay out a graph in

hyperbolic space [37], and shows links that are not part of the tree on
demand. Hao et al. [16] take a similar approach, yet also introduce
duplicates to resolve some ambiguities. Similarly, Ontorama [8] uses a
hyperbolic layout for a spanning tree and supplements it with a second
view showing a linear tree that allows duplicate nodes.

Yee et al. [51] introduce a radial layout for graphs based on spanning
trees. A focus node is used as the root of a spanning tree and shown
at the center, immediate neighbors are shown circling the focus nodes,
neighbors once removed are shown on a second circle, etc. The edges
of the spanning tree and other, non-tree edges are shown in a different
color. Animated transitions are used to dynamically update the focus
node. MoireGraphs [22] follow the same principle, but combine the
radial layout with rich on-node attribute visualizations.

The works most closely related to ours are TreePlus by Lee et al. [31],
and the application-specific variant of TreePlus, GOTreePlus [29].
TreePlus introduces the “plant a seed and watch it grow” principle.
Based on an initial, user-chosen node, analysts can grow the spanning
tree by successively revealing subtrees. TreePlus shows hidden links
between the tree nodes on demand using a combination of highlighting,
a separate view of neighboring nodes, and explicit cross-links. Lee
et al. evaluated TreePlus by comparing it to a traditional node-link
diagram in a controlled study and found that TreePlus outperforms the
node-link layout for most tasks and is preferred by most participants.
For a detailed discussion of the differences of TreePlus and Juniper,
refer to Section 8. Most of these techniques, including Munzner’s
hyperbolic tree, the radial layouts, and TreePlus, also encode node
attributes, but limit attribute visualization to on-node encoding of one
or few attributes.

Another type of techniques visualizes compound graphs that have
both a tree and a secondary graph structure. Fekete et al. [10], for
example, visualize a tree structure in a compound graph as a tree map,
and render cross-links between the tree nodes on top of it. Holten [20]
uses a compound graph as an example for his hierarchical edge bundling
technique. Gou and Zhang [15] render a tree structure in a sunburst
layout and supplement edges connecting different levels of the layout.

Although Juniper builds on this rich body of prior work, it is unique
with regard to several aspects. Juniper leverages novel interactions
and the close integration of tree-based graph visualization with an
adjacency matrix to better support topology-based tasks in tree-based
layouts. However, the main distinction of Juniper is the integration
of an attribute table to support attribute-based tasks. The tree-based
graph visualization techniques discussed here are limited to one or two
attributes, in contrast to Juniper, which is the first tree-based graph
visualization technique designed to handle highly multivariate graphs.

3.3 Query-based Visualization of Large Graphs
A common strategy to explore large graphs is a bottom-up approach,
where the analysis begins with a search or a query, and then more
context is added as needed [48, 49]. Flavors of this approach range
from explicitly revealing neighborhoods of nodes [17, 31], to querying
for paths or connectivity in a network [26, 39], to querying based on a
degree-of-interest function [48], to associative browsing and complex
queries [24, 45]. All these examples are designed to return or expand a
single subgraph, in contrast to techniques such as VIGOR [41] that are
used to analyze (typically structural) queries that return many different
subgraphs. Although we do not contribute novel concepts to graph
querying methods, we make use of many of these approaches.

4 CONCEPT

In this section we introduce the concept of tree-based exploration of
multivariate graphs. Details on our implementation of this concept and
a number of design decisions can be found in Section 5.

The idea that we follow is to (1) extract a subgraph from a larger,
underlying graph, (2) calculate a spanning tree from the subgraph, and
(3) linearize this tree. The linearization enables us to juxtapose the tree
with a table, as illustrated in Figure 2. This tree+table approach, in turn,
allows us to visualize additional topological information, such as node
adjacency, and to show associated attributes of the nodes. Although the
first two steps are common in other systems, as discussed in Section 3.2,
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Fig. 2. From (a) a graph, to (b) a spanning tree of a subgraph. Note that node F is not included and that several edges are missing (e.g., B-D).
(c) Linearization of the tree shown in (b). The linear tree layout allows us to juxtapose a table showing hidden edges and overall node degree, an
adjacency matrix, and a table showing rich node attributes. Hidden links are shown for the selected node B. (d) Level layout of the same tree, where
all nodes at the same distance from the root are grouped together. (e) Node sorting to ensure that all nodes on path A-D-G are in sequence.

Juniper is the first technique to make use of a dynamically extracted
tree to visualize multivariate attributes.

Figure 2(a) shows an example graph. In practice, this graph can be
larger than can be conveniently displayed, can have different types of
nodes, and can have rich attributes associated with it. Following the
“search, show context, expand on demand” principle [48], we extract a
subgraph from the larger graph — either in bulk or iteratively — and
calculate a spanning tree for that subgraph using breadth-first search
(Figure 2(b)). If a subgraph is added in bulk, a key decision in this
process is the choice of the root node, since the tree-based approach
works best for tasks related to the root (e.g., it is trivial to see all
neighbors of the root). We assume that analysts will want to manually
specify a root in most cases; if no root is specified, we choose the
node with the highest degree. The order in which nodes are visited at a
given level by the breadth-first-search algorithm also has an impact on
the resulting tree, as nodes visited first will likely have more of their
neighbors available to be attached. In Juniper, the order is driven by a
user-defined sorting function; sensible options include lexical ordering
of node labels, ordering by degree, or ordering by attributes.

Layout
Once a spanning tree is calculated, we linearize the tree using one
of two complementary layout algorithms. We produce a traditional
tree layout using a depth-first search algorithm, where every node is
assigned a unique vertical position (see Figure 2(c)). The order of
nodes for layout purposes is again defined with a sorting function.

An alternative layout is the level layout, shown in Figure 2(d). In the
level layout, all nodes of a level are shown next to each other, followed
by all nodes of the next level, etc. Again, sorting of nodes is driven by
a user-specified function.

Level layout and tree layout have complementary strengths. The
tree layout is well suited to investigate precise relationships to the root
node. For example, in the bipartite co-author network, if we start with
an author, we can expand all their publications, and then expand all
the co-authors on each of these publications, giving us a sense of who
collaborated on which paper. The level layout, in contrast, allows us
to ask a different question. In level layout, the root author would be at
level one, all their papers at level two, and all their co-authors at level
three. In this layout we can easily see and compare all the co-authors
of the root author; they will be next to each other, and we can use the
table to sort the nodes, to identify, for example, the author with the
most papers. In general, the tree layout can be used to answer questions
about specific topology, whereas the level layout can be used to evaluate
all nodes at a certain distance. Note that level and tree layout can be
separately defined for each branch.

Both level and tree layout are well suited to support one of our main
tasks: understanding attributes in the context of neighborhoods. To
support our other main task — understanding attributes in the context
of paths — we introduce path-based node-sorting as illustrated in Fig-

ure 2(e). In this example, the tree shown in Figure 2(b) was re-ordered
to guarantee that all nodes along the path A-D-G are in sequence of the
path, thereby supporting the analysis of its attribute in sequence and
enabling analysts to make judgments about path effects.

Reshaping the Tree and Revealing Hidden Edges

The crossing-free and easily readable layout achieved by using a span-
ning tree comes at a cost — both tree and level layouts hide edges. A
simple way to reveal all edges and neighbors of a node is to make it
the root. This, however, changes the layout drastically, which can be
disorienting for an analyst. An alternative is to gather all children of
a node. In that case, all nodes that have an edge to the target node are
attached as children to this node, with the exception of its ancestors.
We choose not to attach ancestors as children because it would lead to
similar layout changes as the make root operation.

In addition to reshaping, we use three strategies to visualize edges
that are not part of the tree. First, hidden edges are drawn for user-
selected nodes. In Figure 2(c), hidden edges are drawn for node B,
which has edges to nodes C and D, in addition to the edges to A and
E that are part of the tree. This strategy is common to most tree-based
graph visualization techniques (e.g., [31]).

Complementary to showing hidden edges on demand, we also show
a table visualizing counts for hidden edges (the number of hidden
edges in the subgraph) and graph edges (the degree of the node in
the underlying graph), as shown in Figure 2(c). Whereas the former
allows analysts to judge connections that are not apparent in the tree,
the latter can be used to judge the node relative to the whole network,
and also give analysts a sense of how many nodes would be added if
the neighbors of the node were to be added to the subgraph.

The third strategy to visualize topology is an adjacency matrix that is
fully integrated with the tree, resulting in a hybrid node-link/matrix lay-
out. The matrix is not meant to show all nodes in the subgraph, as this
would likely result in a sparse matrix and require considerable amounts
of screen-space. Instead, similar to the rationale behind NodeTrix [19],
the matrix is designed to show connectivity for highly connected nodes.
The integration of the node-link tree and the matrix allows analysts to
judge the relationships of these nodes with nodes in the tree quickly.
Note that any node can be included in the adjacency matrix, not only
those that are part of the subgraph. Figure 2(c), for example, shows
node F in the adjacency matrix, which is not included in the subgraph.
The adjacency matrix can be useful, for example, when exploring an
author’s papers and co-authors. Adding their PhD and postdoc advisors
to the matrix is useful since they have likely collaborated on many
papers. Using the matrix, an analyst can quickly judge which papers
were written in collaboration with whom, which would not be easy to
see in just the tree visualization.
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Fig. 3. Aggregation strategies. (a) Aggregation in tree layout: leaves of the same parent are aggregated by placing them in the same row. (b)
Aggregating in level mode: nodes of the same level are aggregated into a single row. (c) Aggregation with a degree-of-interest function, shown in a
level mode. Nodes B and G (green) are considered to be of interest based on a degree-of-interest function, and hence are placed in their own row.

Hiding and Aggregation

Although a tree-based linear layout has many advantages, it also limits
the number of nodes that can be concurrently displayed on the screen.
To counteract this limitation, we introduce two approaches to selectively
reduce the number of nodes: branch hiding and branch aggregation.

Branch hiding is common to most tree visualizations. It allows
analysts to selectively hide branches of a tree that may not be relevant
for the task at hand. Although it excels at saving space, the downside of
hiding is that analysts no longer have access to any information about
the hidden nodes.

Our second, less aggressive, approach is aggregation. This approach
has the advantage of preserving both topological and attribute informa-
tion in aggregate form. Aggregation is available in both tree and level
mode. In tree mode, illustrated in Figure 3(a), only leaves are aggre-
gated; the backbone of the tree and hence all the topological structure
of the tree remain visible. When aggregating in level mode, as shown
in Figure 3(b), all the nodes of one level are aggregated into a single
row, resulting in a very compact layout.

Aggregation as described above can be controlled using the tree’s
topology, i.e., analysts can choose to represent individual branches in
aggregated mode. However, it is a common task to look for nodes
with certain attribute characteristics among such a large, aggregated
set. To address this, we introduce a binary degree-of-interest (DOI)
function [12]. Figure 3(c) illustrates the effect of a DOI function on
level-based aggregation. Here two nodes, B and G, shown in color,
are considered of interest and hence retain their own row, whereas the
others are aggregated. An example for the co-author network would
be to look for all highly cited papers of a network of prolific authors,
in which case highly cited papers would be afforded their own rows,
while papers with few citations would be aggregated.

Note that the visualization of hidden edges, the adjacency matrix,
and the attribute visualization can easily be adapted to support both
individual and aggregated rows.

Attribute Visualization

In line with the “topological attributes” shown in the edge count table
and the adjacency matrix, we can leverage the linearized layout to
visualize arbitrary node attributes, as illustrated in Figure 2(c). A
variety of visualization options are conceivable to show numerical,
categorical, and string/label data, in either individual or aggregated
form [11].

The key benefit of the integrated attribute visualization, as opposed
to a separate linked view, is that the topology of the tree can be used to
sort and group the elements, revealing, e.g., dependencies along a path,
or shared characteristics of all neighbors of a node. Equally valuable
is the opposite approach: the attribute visualizations can be used to
influence the tree layout, through both sorting and DOI functions. The
column representing attributes are well suited to interactively define
such a sorting, or a data range of interest for a DOI, as shown in
Figure 4.

5 DESIGN

We implemented the concept described in the previous section in an
interactive web-based tool. Here we report on the design decisions that
went into realizing this tool.

Juniper has two views: (1) a query view that is used to search for
individual nodes or to query for subgraphs, and (2) the main tree+table
view, which contains the graph and attribute visualization. A toolbar
at the top allows analysts to switch to a force-directed layout, and
to switch between different datasets. In addition, node-type specific
menus allow analysts to add attributes to the table and to filter nodes by
type.

5.1 Querying
The query interface is the starting point for any exploration in Juniper.
Analysts can browse or search for nodes in the query view and add
them to the tree+table view (see Figure 1). The search and browsing
interface is faceted by node types: when, for example, text is entered in
the search field, all matches are shown in separate, type-specific facets.
The faceting enables analysts to quickly find nodes of interest, even
with an incomplete query. The interface also shows the degree of the
nodes, so that highly connected nodes can be readily identified. A node
can be added individually, or together with all its neighbors. Nodes can
also be added to the adjacency matrix. It is possible to add multiple
roots/trees to the tree+table view simultaneously.

The query view also provides an interface to write Neo4J Cypher
queries (a query language for the graph database we use). Although this
is an expert option, it enables analysts to retrieve arbitrary subgraphs
considering both topological features and attributes.

5.2 Tree View
The tree view implements the concept outlined in Section 4. Nodes at
each level are given ample space for labels, which is a common limita-
tion in force-directed layouts. We also distinguish between different
node types by showing a custom symbol for each type. Edge types and
directions are shown as tool-tips where available.

The graph can be grown organically by revealing neighboring nodes.
In cases where a node has more neighbors than are currently shown, a
small plus sign is shown below the node that can be used to add those
missing nodes, as shown in Figure 4.

In terms of tree-restructuring, our prototype supports the previously
discussed make root and gather children operations, in addition to se-
lectively removing nodes/branches, and explicitly re-attaching a branch
at a different node, based on a hidden edge. Hidden edges are shown
for the selected node,  House Stark, in Figure 4.

Layout and Aggregation
Figure 4 shows the implementation of the previously described layout
strategies. The example shown is a Game of Thrones network that con-
tains many different node types. The tree originates at a person, Eddard
Stark, who has a connection to the û Battle at the Mummer’s Ford via
an intermediate person, Robb Stark. The layout at the root is a tree



Fig. 4. Juniper design overview using a Game of Thrones dataset, rooted at Eddard Stark, and expanded in tree layout up to Joffrey Baratheon.
Descendants of the node Joffrey Baratheon are shown in level mode. A DOI function reveals û battles with an attacker size of 10,000 and larger in
the otherwise aggregated set of battles. The associated table visualizes edge counts (hidden, visible, and graph edges) for both individual nodes
(gray) and aggregates (blue). The adjacency matrix was auto-populated with the most connected nodes in the subgraph. Again, individual rows are
shown in gray, aggregates in shades of blue. The attribute columns are specific to node types, as shown in the column header. Aggregated rows use
compact visualizations showing the values of all contained rows, where appropriate. Hidden edges are shown for the selected  House Stark. The
edge from House Stark to the Battle of the Green Fork is highlighted and a tooltip with information about the edge type and direction is shown.

layout, but descendants of Joffrey Baratheon are shown in level layout,
which is indicated by the brackets replacing direct connections. Note
that the branch starting at Joffrey is aggregated. We show aggregated
nodes as little squares, which allows easy size estimation, and facet
them by node type, so that analysts can quickly see how many nodes
of a certain type are in each aggregate. Tooltips on the aggregated
nodes reveal the node title. g Persons and  Houses are manually
deaggregated, for û Battles we use a degree-of-interest function to
partially deaggregate battles above a certain attacker size (see label
“DOI definition” in Figure 4).

Edge Count Table and Adjacency Matrix

The table for edge counts described in Section 4 is realized with a
redundant encoding using color saturation and exact numbers, as shown
in Figure 4. Numbers with three or more digits are shortened to the
most significant digit plus ‘h’ for hundred and ‘k’ for thousand. Since
aggregate values and individual nodes are commonly of different scales,
we use separate color scales for individual rows (gray) and aggregates
(blue). The color scales are defined independently for each column,
since the number of hidden edges is expected to be much smaller than
the number of graph edges, for example.

The purpose of the adjacency matrix is to further expose the con-
nections in the graph that are not captured in the tree. As discussed in
Section 4, we do not show all nodes in the matrix column, but show se-
lected nodes that complement the tree well in a hybrid node-link/matrix
layout [19]. Nodes can be added to the table from the query view or
the tree. We also auto-populate the matrix with the most connected
nodes in the tree since highly connected nodes are likely to have many
hidden edges. As in the edge count table, we use grayscale (binary in
this case) for individual rows, and a blue color scale for aggregate rows.
In contrast to the edge count table, the color scales are normalized on a
per-row basis to account for aggregates of different sizes.

Attribute Table
The attribute table can be used to visualize rich data associated with
the nodes. Each column in the table corresponds to an attribute for one
or multiple node types. Most attributes are likely only defined for one
node type, which can result in a sparse table if a graph contains many
different node types. For numerical data we use a vertical line placed
along a scale, as it uses position, the most powerful visual channel
available. Exact values are shown on hover. We visualize aggregate
rows by drawing multiple lines in the same cell, as shown for the
aggregate cell for û battles and defender size column in Figure 4, for
example. By using transparency, we can ensure that overlapping lines
are noticeable.

The attribute table, the edge count table, and the adjacency matrix
also serve as interfaces for sorting and defining degrees of interest, as
shown in Figure 4. Sorting is only applied within the levels of the tree,
to avoid edge crossings. Columns can be arranged arbitrarily through
drag and drop.

Path Visualization
A common task in networks is to find a short(est) path between two
nodes [39]. Since shortest paths can be hidden when using a tree-based
layout, Juniper provides an explicit path search feature to quickly iden-
tify all shortest paths between two nodes. Figure 5 shows the shortest
paths between two authors in the co-author network. A dedicated view
lists all the paths of the same length. Note that this list is limited to
paths in the subgraph, but could easily be extended to the whole graph.

When hovering over a path, it is highlighted in the tree, and shows
hidden edges if necessary. On demand, analysts can enforce that all
nodes in a selected path are laid out sequentially in the tree and, by
extension, in the table (Figure 5(b)). This is an example of how topolog-
ical features can be used to lay out the attribute table, to study potential
network effects in attribute space.



(a) Path Preview

(b) Sequential Path

Fig. 5. Shortest path search and visualization. (a) A shortest path search
between Niklas Elmqvist and the NodeTrix paper reveals that there are
two paths, shown in the view on the left. Both paths go through the
Melange paper, but one continues through Nathalie Henry, the other
through Jean-Daniel Fekete. The path via Jean-Daniel Fekete uses a
hidden edge, which is shown when hovering over the path. (b) The
selected path was laid out sequentially.

6 IMPLEMENTATION

Our prototype can be accessed at http://18.221.225.177:8080/.
Juniper is implemented as a web-application using Typescript and D3
on the client and Python and Flask on the server. Deployment and
plugins are managed using the Phovea framework1. The graph data is
stored in multiple Neo4J2 graph databases, each running in a separate
Docker container on designated ports. Graph queries can be either
submitted directly through the advanced query interface, but more
commonly are exposed through a REST API.

Juniper is open source and uses the permissive BSD license.
The source code is available at https://github.com/caleydo/
lineage/tree/seed-graph. Although the Juniper code is stored
in a branch of the Lineage repository, the code overlap between the two
is minimal and limited to the attribute table.

7 EXAMPLES AND USE CASES

Here we show several explorations using Juniper that focus on local
tasks. We demonstrate how both attribute and network data is used in
conjunction to gain insights.

7.1 Game Of Thrones Network
The network we use in this example is based on the popular books and
television show “Game of Thrones” or “A Song of Ice and Fire” by
George R. R. Martin. The dataset is available on Kaggle3. We followed
instructions to import them into Neo4j4. The network captures several
types of relationships between story characters, noble houses, battles,
books, cultures, etc. The network contains about 2,500 nodes, 17,000
edges, 18 attributes and 11 node types.

We start our exploration with one of the main characters in the show,
Eddard Stark. We see that he is associated with a handful of people,
as well as all five of the books. The books are a hub of connectivity
with ties to most characters in the story. As this is not helpful for our
investigation, we filter out nodes of type book.

We know that Eddard was killed by Joffrey Baratheon, so we add
him to the tree through the search interface. Surprisingly, the dataset
does not capture this direct connection between Eddard and Joffrey.

1https://github.com/phovea/
2https://neo4j.com/
3https://www.kaggle.com/mylesoneill/game-of-thrones
4https://tbgraph.wordpress.com/2017/06/25/

neo4j-game-of-thrones-part-3/

We see that they are connected through a set node (both are nobles)
instead, which is not interesting, so we filter out these nodes, leaving
us with a connection between the Starks and Joffrey through the Battle
of the Mummer’s Ford, as shown in Figure 4. Next, we are interested
in seeing all of Joffrey’s connections, so we use the gather children
operation. We see that he is connected to several battles, a few people,
and to House Lannister.

We want to get a better understanding of the battles and what the
role of the opposing houses of Stark and Lannister is in them, so we
switch the branch starting at Joffrey into level mode, which groups all
of his node’s descendants by their type. We then aggregate battles, add
several attributes related to battles to the table and inspect these. We
see in the attacker size aggregate cell that battles seemed to fall into one
of two groups: a few large battles with an attacker size of over 10,000
people, and many smaller battles. We are particularly interested in
understanding the large battles, so we use a brush on the histogram for
that column to set a DOI function to reveal all battles with an attacking
force of more than 10,000 people, as shown in Figure 4.

Because we are interested in the involvement of the Stark and Lan-
nister houses in these large battles, we hover over each independently
to see their connections to the battles. We see that the Stark house
is only associated with one of these large battles — the Battle of the
Green Fork. Hovering over this edge reveals that House Stark was the
attacker and lost this battle. Inspecting the adjacency matrix cell that
connects House Stark to the aggregated smaller battles shows us that
House Stark was associated with nine of the 16 battles with an attacker
size of under 10,000. Clearly, the direct interaction between Lannisters
and Starks in battle happened mainly in smaller battles.

7.2 Exploring a Co-Author Network

We curated the co-author dataset introduced previously by retrieving a
list of papers from DPLP5. We extracted all papers published at ACM
CHI and IEEE TVCG up to 2015. We have also included additional
attributes about papers based on the visualization publication dataset
compiled by Isenberg et al. [21]. We used this information to also
compile aggregate citation counts for authors.

We start by querying for a paper that is relevant for this manuscript:
the TreePlus paper by Lee et al. [31]. By expanding its neighbors
(Figure 6(a)), we reveal that the paper has seven co-authors. Several
of the authors are familiar names, but we would like to see which ones
are the most prolific scholars. To answer this, we scan the graph edges
column, which corresponds to the number of papers these authors have
published at CHI and TVCG combined. We see that Catherine Plaisant
and Ben Bederson have published 29 papers each, and Bongshin Lee
has published 28. But does this group combined publish more at CHI
or at TVCG? To answer that question, we expand all neighbors of
these authors (their papers) and put the tree into level layout in order
to group together all papers and to group them by type. However, as
this combined list is quite long, we aggregate the papers, as shown in
Figure 6(a). We see that overall, there are about five times as many
papers at y CHI than in ^ TVCG for these authors. By looking at the
adjacency matrix cell for the TVCG papers and Ben Bederson, we can
see that he does not have a TVCG paper, other than TreePlus, but is a
very prolific author at CHI. We confirm this by hovering over his node,
which reveals an edge to the CHI aggregate but not to TVCG.

Next, we focus on the other authors’ papers. Have they published
exclusively at CHI, in TVCG, or both? By switching from aggregated
level to tree mode, we see that Catherine Plaisant and Bongshin Lee
have published frequently at both, CHI and TVCG, as shown in Fig-
ure 6(b). We hone in on Catherine Plaisant’s papers by gathering all
her co-authored papers, and look at the aggregate information for the
years she published (see Figure 1). We see that she was immensely suc-
cessful at CHI in the 90s and continued publishing at CHI afterwards,
and that her TVCG publications start in 2008, soon after the first VIS
publications appeared in TVCG.

Now we want to learn about Catherine Plaisant’s co-authors. Has
she published with many different people, or does she have consistent

5https://dblp.uni-trier.de/
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(a) Distribution of papers by authors of treePlus. (b) Individual paper distributions.

(c) Frequent co-authors of Catherine Plaisant.

Fig. 6. A use case for exploring the relationships between scholars and papers. (a) Distribution of papers of authors of the TreePlus paper across
y CHI and ^ TVCG. These authors have published about five times as much at CHI than in TVCG. In particular, Ben Bederson has no TVCG
paper other than the TreePlus paper (which is the root), as is evident form the matrix and the missing link from his node to the TVCG aggregate. (b)
Distribution of papers for individual authors. Bongshin Lee has published most evenly between TVCG and CHI. (c) Frequent co-authors of Catherine
Plaisant. Authors are sorted by the number of hidden edges. Ben Shneiderman is a frequent collaborator, but has also published many papers with
others. Taowei David Wang has published all his papers with Catherine Plaisant.

collaboration partners? We set the branch starting with her to level
mode, expand all of her children, and aggregate the papers. Next we
sort her co-authors by the number of hidden edges — those edges
correspond to papers these authors have co-authored with Catherine
Plaisant (Figure 6(c)). We quickly identify that she has collaborated
extensively with Ben Shneiderman. She has written 14 papers at TVCG
and CHI together with him. We also see that Ben Shneiderman has
published many more papers at CHI (38) than in TVCG (8). We
discover that her second-most frequent co-author is Taowei David
Wang, who has published all of his four papers together with Catherine
Plaisant.

Cahterine Plaisant has also published with other prolific scholars,
which we can identify by sorting the authors by citation. To clean
the list up, we aggregate and set a DOI to only show authors with
more than 15 citations (Figure 1; note that these citation counts reflect
only citation included in this dataset [21]). We see that, in addition to
Ben Shneiderman, Jean-Daniel Fekete, Petra Isenberg, Nathalie Henry
Riche and Heidi Lam are in this list. But looking at the hidden edge
column, we see that these have been co-authors only on one or two
papers in our dataset.

8 DISCUSSION

Juniper is designed for the tree-based graph exploration of highly multi-
variate graphs. As discussed in Section 2, Juniper addresses local tasks,
such as those related to adjacency and paths, yet always in the context
of the relationship between the topology and attributes of a network.

As far as the analysis of topology is concerned, tree-based graph ex-
ploration has been shown to perform better by Lee et al. [31] than
force-directed layouts for various tasks, including path-based and
connectivity- based tasks. The same study also showed that tree-based
graph exploration leads to significantly higher confidence and that users
preferred the tree-based layout.

Our goal in the development of Juniper was to (1) improve on the
current state of the art in tree-based graph exploration, by providing
novel visual encodings and interactions, such as topology/path-based
sorting, DOI-based aggregation, attribute-driven sorting, and the com-
bination of an adjacency matrix with the tree-layout, and (2) leverage
the tree-based layout to visualize attributes, tightly integrated with
topology. We argue that Juniper is well suited to address our key
tasks: understanding attributes in the context of paths in a network, and
understanding attributes in the context of neighborhoods.

One of the downsides of using a tree-based layout is that it is diffi-



cult to understand cycles in a network. Although we believe that the
visualization of hidden edges makes it possible to do that in Juniper,
it is not the ideal solution because it requires interaction to uncover a
cycle. We are considering various strategies to address this, including
a supplemental view for cycles, a special encoding along the tree, or
breaking with the tree-convention for selected nodes.

Also, our technique targets local tasks, yet overviews can be useful
in some scenarios. A potential solution would be to integrate Juniper in
a graph exploration framework that also, provides overview technique
as, for example, described by van den Elzen and van Wijk [47].

Scalability
Since Juniper is a bottom-up graph visualization technique, the size of
the underlying graph is limited only by the capabilities and performance
of the graph database. The largest network we currently include in
our demo (the co-author network) has about 34,000 nodes and 90,000
edges and results in no noticeable delays for common queries.

The scalability of the subgraph is limited by the number of rows that
can be simultaneously displayed. On a large desktop screen we can
show about 50-60 rows. The number of rows, however, corresponds to
the number of nodes only when no aggregation is used. We found that
the use of aggregation combined with a DOI function is a very efficient
way to explore subgraphs with a few hundred nodes, depending on the
properties of the network. In cases where more rows are displayed than
can be fit on the screen, we use scrolling. However, we currently do
not provide a good solution for linking to off-screen content; hence
working with many more rows can be tedious.

In terms of the number of attributes, Juniper is exceptionally scal-
able compared to other multivariate network visualization techniques.
We consciously reserve a sizable portion of the available screen for
making long node labels, such as paper titles, readable. Even with
that much space dedicated to labels, we can display 10-20 additional
attribute columns on a desktop display. Our current visual encodings
for attribute visualization favor precision and details over compactness;
more compact representations, such as those used in enRoute [40] are
conceivable and could increase that number considerably.

Comparison to Related Techniques
We compare Juniper to TreePlus [31], since TreePlus is the most com-
prehensive of all the tree-based graph visualization techniques dis-
cussed in Section 3.2. Although TreePlus shares the basic idea of
tree-based graph exploration with Juniper and was an important inspi-
ration for our work, Juniper introduces several novel concepts that go
significantly beyond the capabilities of TreePlus. The key distinction
to TreePlus is our ability to visualize rich attribute data, due to the
linearized layout and the juxtaposition with the table. However, we also
argue that Juniper is at least competitive with TreePlus when only con-
sidering topological tasks. Even though the linear layout needs more
space than the layout chosen in TreePlus, we argue that our aggregation
methods counteract the increased spatial demand of the linear layout,
and that our DOI-based deaggregation is effective at revealing relevant
nodes and connections even when aggregation is used. TreePlus also
does not have a level layout, which can be used to quickly identify
nodes at a certain distance from the root.

Lineage [38] is a domain-specific tool developed for visualizing
clinical genealogies and was published recently by some authors of this
manuscript. Although Lineage shares the idea of using a linearized
tree to visualize multivariate attributes of that tree in a table, it is in
fact a tree visualization tool, and not a general graph visualization
technique, like Juniper. The genealogies that can be visualized in
Lineage have to be tree-like, i.e., have to trace back to a single founder.
Rare cross-links within the tree are removed by duplicating the nodes in
a preprocessing step. Since Lineage visualizes trees, it has no notion of
re-shaping a tree based on a graph, does not show topological context
by combined a node link and a matrix layout, and can represent only
static instances of a tree, instead of growing a tree from a subgraph that
is dynamically extracted from a large graph. Lineage does not support
path-linearization and has no level mode. Lineage is an important
tool in its niche application area. Juniper, in contrast, is a general

purpose multivariate graph visualization technique with the potential
for applications in many domains.

Evaluation
We considered various strategies to evaluate Juniper against the claims
we make: that it is a well-suited technique for local tasks in multivariate
network analysis. We considered qualitative/usability evaluation, case
studies, and insight based evaluation, which we have rejected for differ-
ent reasons. Ultimately, we decided between (1) quantitative evaluation
of task performance (time, correctness), and (2) evaluation by argument
and usage scenarios.

With regards to quantitative evaluation, the key choices to make
in the study design are (a) the tasks to use in the evaluation, and (b)
the comparison target. Both are problematic in Juniper’s case, yet
our main reason not to use quantitative evaluation was the lack of an
adequate tool to compare to. Quantitative evaluation works best when
there are conditions that clearly isolate what is being tested and keep
confounding factors to a minimum. This is problematic when studying
bespoke and highly interactive visualization tools. Would a comparison
to a state of the art tool such as Cytoscape be reasonable? There are
likely so many confounders that the results would be meaningless. The
only approach to evaluate the core contribution of a complex technique
such as Juniper would be to implement a reasonable alternative in the
same general framework. In our case, a good comparison would be
to compare Juniper to a MCV system using our attribute table and
a force-directed layout. However, while we provide a simple force-
directed layout for illustration in our prototype implementation, we
do not provide advanced features such as aggregation, expanding or
collapsing branches, etc. Unfortunately it is not obvious on how to best
implement such features, leading to both, the need for significant effort
in realizing such a system, and additional potential confounders, as it
matters how these features are implemented.

We believe that a better approach to quantitative evaluation would be
to compare a set of simplified, potentially even static multivariate graph
visualization techniques in a well controlled study. We are currently
planning a comprehensive review on multivariate graph visualization,
supported by such an experiment. Yet such a study would only evaluate
a small part of the technique (the basic visual encoding), hence reducing
its ecological validity.

Finally, there is evaluation by argument and demonstration,
which we have chosen for this paper. Following the tradition of re-
cent successful papers (e.g. [20, 33, 46, 47]), we believe that design
arguments and demonstrations through use cases provide excellent evi-
dence for the utility of complex, interactive visualization techniques.
However, we believe that further work by the visualization community
is necessary to address the challenges of evaluating bespoke, general
purpose visualization tools and to arrive at more rigorous conclusions.

9 CONCLUSION AND FUTURE WORK

We believe that Juniper is widely applicable to different graph datasets
across various domains. Juniper’s strengths is in interactive exploration,
and in supporting local tasks for multivariate graph visualization. In the
future we hope to develop techniques for connecting to off-screen nodes,
which is a current scalability limitation. Also, allowing duplicate nodes
could be helpful for certain tasks, yet node duplication requires careful
encoding to not confuse users. Juniper currently also does not support
rich edge attributes. A simple solution would be to show attributes for
incoming edges in the attribute table, which would be unambiguous
since each node is guaranteed to have exactly one incoming edge.
However, in this case, hidden edges would have to be treated separately.
Finally, for graphs with many different node types, the attribute table
can be sparse. We plan to investigate interleaving cells for different
attributes in a single column to remedy this.
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