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Abstract
Two of the primary reasons rainbow color maps are considered ineffective trace back to the idea that they implicitly discretize
encoded data into hue-based bands, yet no research addresses what this discretization looks like or how consistent it is across
individuals. This paper presents an exploratory study designed to empirically investigate the implicit discretization of common
spectral schemes and explore whether the phenomenon can be modeled by variations in lightness, chroma, and hue. Our results
suggest that three commonly used rainbow color maps are implicitly discretized with consistency across individuals. The results
also indicate, however, that this implicit discretization varies across different datasets, in a way that suggests the visualization
community’s understanding of both rainbow color maps, and more generally effective color usage, remains incomplete.

CCS Concepts
• Human-centered computing → Empirical studies in visualization;

1. Introduction

Two of the primary reasons rainbow color maps are considered
harmful stem from an argument that they implicitly discretize en-
coded data into hue-based bands [BT07,BRT95,Mor09]. The litera-
ture argues that this perceived banding both highlights non-existent
relationships in the data through the creation of false boundaries
and masks real relationships within a given band [BT07]. Our cur-
rent understanding of the implicit discretization in rainbow color
maps, however, is based on a combination of generalized knowl-
edge about how humans perceive the visible spectrum [RLK92] and
anecdotal evidence that has yet to be empirically tested [BT07].

To our knowledge, no work has empirically evaluated the per-
ceived banding in rainbow color maps or characterized the poten-
tial differences across color scales, datasets, or individuals. Un-
derstanding and characterizing any perceived banding in rainbow
color maps is important, as precise knowledge of how people per-
ceive these bands is essential for leveraging implicit discretiza-
tion in color-map design to improve the performance of some
tasks [PQMC17,DPR∗18]. An improved understanding of implicit
discretization also ensures that the visualization guidance regarding
rainbow color maps has proper scientific foundations [Kos16].

To better understand the perceived banding in rainbow color
maps in color displays, we conducted an exploratory study aimed
at assessing both whether rainbow color maps implicitly discretize
data and how implicit discretization varies across different indi-
viduals, datasets, and spectral schemes. Participants were shown
sets of color mapped visualizations and asked to first count the
color categories/boundaries that they perceived and then inter-
actively delineate those categories/boundaries. Participants’ de-

lineations were then compared against potential boundary loca-
tions derived from variation in the perceptual dimensions of color
for each spectral scheme. Although previous work has attributed
some perceived bands in rainbow color maps to variation in lumi-
nance [BRT95, BT07, Mor09], luminance alone cannot explain the
banding perceived in all spectral schemes [KRC02]. This study ex-
pands the investigation of banding effects to variations across all
three perceptual dimensions of color: lightness, chroma, and hue.

The study results suggest that rainbow color maps are implicitly
discretized with consistency across individuals. Additionally, the
results show correspondences between participants’ responses and
variation in each perceptual dimension of color. The results also in-
dicate that the discretization produced by a given color map varies
in unexpected and unpredictable ways across different datasets, re-
vealing practical challenges for common tasks like drawing com-
parisons across datasets. Further, the findings suggest that the visu-
alization community’s current understanding of both rainbow color
maps, and more generally effective color usage, remain incomplete.

The remainder of this paper is outlined as follows. Section 2
summarizes related work conducted in the visualization, vision sci-
ence, and cognitive science communities. Section 3 discusses the
wide range of definitions for the term rainbow color map. Section 4
details both the study’s aims and methods. Section 5 then outlines
the results of the study, which we discuss further in Section 6, be-
fore summarizing our conclusions in Section 7.

2. Related Work

This paper builds on work from two distinct bodies of literature:
the visualization community’s prior work regarding rainbow color
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maps and work regarding the categorical perception of color, con-
ducted predominantly by the vision and cognitive science commu-
nities. In this section, we highlight closely related work from both.

2.1. Rainbow Color Maps

Rainbow color maps are claimed to be harmful for three primary
reasons. First, because hue is not inherently ordered [War12], or-
dered relationships in data visualized using rainbow color maps are
not necessarily preserved [Mor09, BT07]. The other two reasons
are that rainbow color maps both mask and overaccentuate small
data differences, biasing our understanding of the underlying data
relationships [BT07, KRPC00]. Insufficient luminance variation in
certain portions of rainbow color maps can obscure small details,
and hue bands can introduce artifacts such as false boundaries that
actively mislead users. Current thought further links both problems
to the irregular nature of the implicitly perceived discretization.

Several studies provide empirical evidence for parts of these
claims. Color matching experiments by Kalvin et al. [KRPC00]
and feature discrimination experiments by Ware et al. [WTS∗17]
support the idea that insufficient luminance variation hides data
variation in the green region of the traditional rainbow color map.
Rogowitz and Kalvin show that, even though local subsections of
the traditional rainbow color map maintain a luminance-based or-
dering, the overall color map is not inherently ordered [RK01].
Recent work by Liu and Heer indicates that, when asked to com-
pare the relative distances of colors within a color map, respon-
dents are slower and more error prone with the jet color map com-
pared to both single-hue and nonrainbow multihue schemes. Fur-
ther, a study Borkin et al. conducted with medical experts shows
that the traditional rainbow color map is ineffective for real-world
tasks [BGP∗11]. This result is echoed in a recent study Dasgupta
et al. ran with climate scientists, where the jet color map produced
larger errors in average magnitude comparisons of geospatial maps
compared to color maps with monotonic luminance [DPR∗18].

Other work suggests rainbow color maps are not always a
bad choice. Experiments by both Ware [War88] and Reda et
al. [RNA18] show that rainbow color maps are accurate for
quantity estimation tasks and provide support for some form-
comprehension and gradient-estimation tasks. Additionally, stud-
ies by Brewer [Bre97] and Gresh [Gre08] show that modified rain-
bow color maps are interpreted accurately when used as multihue
diverging schemes. Rainbow color map variants that control lumi-
nance variation to avoid many of the problems commonly attributed
to rainbow color maps also exist [KRC02,Gre11]. Collectively, this
work leaves a variety of open questions about if, when, and why
rainbow color maps are harmful.

Several papers argue that rainbow color maps are harmful be-
cause they implicitly discretize the encoded data into hue-based
bands [BT07, BRT95, Mor09]. These bands introduce false bound-
aries and obscure data variation, thereby leading users “to infer
structure which is not present in the data and to miss details that
lie completely within a single color region” [BRT95]. These ar-
guments, however, are predicated on empirical evidence that vis-
ible light is perceptually discretized when diffracted through a
prism [RLK92] and on anecdotal examples [BT07]; no work has
empirically tested whether rainbow color maps are perceived as

banded. Moreover, recent work raises questions about whether
and why implicit discretization is problematic. Padilla et al.
show that, in grayscale color maps, regularly spaced discretiza-
tion does not negatively impact, and sometimes improves, accu-
racy across various tasks [PQMC17], suggesting that discretiza-
tion can be beneficial. Further, Dasgupta et al. show that although
hue banding negatively impacts average magnitude comparisons,
it enables more accurate difference comparisons across geospatial
datasets [DPR∗18].

No prior work, however, has empirically investigated the implicit
discretization in visualizations using rainbow color maps. We ad-
dress this gap by exploring the questions of whether rainbow color
maps implicitly discretize encoded data into perceived bands and
how that discretization varies across individuals, data characteris-
tics, and spectral schemes. Our broad goal is to understand whether
any perceived banding in rainbow color maps can be predicted us-
ing the perceptual dimensions of color: lightness, chroma, and hue.

2.2. Categorical Perception of Color

The idea that humans perceive continuous color as discretized
traces back centuries to experiments by Issac Newton and Hermann
von Helmholtz [SCA94]. The phenomenon is currently believed to
be an effect of categorical perception, where viewers are faster and
more accurate at discriminating colors in different categories (e.g.,
green and blue) compared to colors in the same category (e.g., dif-
ferent shades of blue) [Han16]. Categorical perception represents
one possible explanation for why and how people might implicitly
discretize rainbow color maps.

An extensive body of literature has investigated categorical per-
ception both in general [GH10] and specifically as it applies to
color [BG17, RK09], but little work directly investigates the ef-
fects of categorical perception across continuous color ranges.
Most existing research focuses on probing individuals’ percep-
tion at a small set of established color-category boundaries in or-
der to test theories about the perceptual or cognitive underpin-
nings of color categorical perception, often using pair-wise color
judgments [OD02, HHZ∗14, WK12]. This focus likely stems from
an ongoing debate about the roles of language and perception in
forming color categories. One side argues that a perceptual phe-
nomenon gives rise to the formation of consistent categories across
languages; the other argues that prior knowledge of language biases
individuals’ perception. The literature has yet to reach a consensus
regarding what drives categorical perception [RK09, Wit18].

Two studies that examine how people perceive color categories
across the visible spectrum or approximations thereof present some
evidence of consistency in subjects’ perception of color category
boundaries [SCA94, WG13]. Small sample sizes and specific ex-
perimental design choices, however, create questions about the
generalizability of these results. Smeulders et al. asked 5 partici-
pants to delineate a diffracted spectrum into a specified number of
categories [SCA94], and Witzel and Gegenfurtner asked 10 par-
ticipants to name isolated color samples derived from isolumi-
nant hue circles presented on computer monitors using basic color
terms [WG13]. It is not clear that either set of results reflects the
potential banding expected in rainbow color mapped visualizations.
Moreover, neither study addresses the question of whether categor-
ical perception creates an implicit discretization that might affect
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Figure 1: Campbell-Robson contrast sensitivity charts visualized using (a) grayscale, (b) the traditional rainbow color map, (c) Gresh’s
perceptually linearized rainbow, (d) the jet color map, and (e) the Kindlmann color map show pronounced differences in the extents to which
rainbow color maps capture data variation. In each image, spatial frequency increases left to right, and contrast increases bottom to top.

how a user completes a given task. A handful of visualization pa-
pers leverage categorical perception either to create more effective
visualizations [Hea96, CSH08, HS12] or to model participant re-
sponses [LH18], but no work directly addresses the potential role
of categorical perception in discretizing continuous color scales.

3. Defining a Rainbow

Within the visualization community, a variety of color maps that
approximate the visible spectrum are described broadly using the
term rainbow color map. Specific research results, however, often
relate to particular spectral schemes [War88,BGP∗11,RK01,LH18,
DPR∗18], raising questions about the generalizability of those re-
sults to the larger class of rainbow color maps. This ambiguity is
problematic because not all rainbow color maps suffer from the
same problems to the same extent.

Figure 1 shows Campbell-Robson contrast sensitivity charts en-
coded using a variety of rainbow color maps. Contrast sensitivity
charts are commonly used to illustrate that rainbow color maps
hide data variation [BT07,Mor09,KES13], although prior compar-
isons are limited to grayscale (Figure 1a) and the traditional rain-
bow color map (Figure 1b). The traditional rainbow color map is
commonly defined by tracing the boundary of the device-dependent
RGB gamut from blue to red [KRPC00], although a variant that
cycles from magenta to red also exists [War88]. Figure 1 also in-
cludes comparisons to the jet color map from MATLAB [Edd14]
(Figure 1d); Gresh’s perceptually linearized rainbow [Gre08] (Fig-
ure 1c); and the Kindlmann color map [KRC02,Mor16] (Figure 1e),
which modifies the traditional rainbow color map to linearly in-
crease in perceived luminance.

Figure 1 highlights pronounced differences in the extents to
which these color maps capture data variation. Similar differ-
ences can also be observed across prior work. Both Kalvin et
al. [KRPC00] and Ware et al. [WTS∗17] found evidence of low
discriminability in the isoluminant, green region of the traditional
rainbow color map, whereas Liu and Heer [LH18] found evidence
of high discriminability in the corresponding isoluminant, green re-
gion of the jet color map. These differences illustrate a need for
increased precision in discussions regarding rainbow color map re-
search. Within the context of this paper, the term rainbow color
map refers to any of the general class of spectral schemes shown
in Figure 2. Individual color maps, such as those referenced in our
study, are referred to using specific names: the traditional rainbow
color map, the jet color map, etc.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 2: The term rainbow color map can refer to a variety of
spectral schemes that do not necessarily suffer from the same prob-
lems to the same extent. Notable examples include: (a) the tradi-
tional rainbow color map (truncated at blue), (b) Gresh’s perceptu-
ally linearized rainbow, (c) the jet color map popularized by MAT-
LAB, (d) the traditional rainbow color map (cycling to magenta),
(e) the rainbow color map specified by matplotlib, (f) Kindlmann’s
isoluminant rainbow, and (g) the Kindlmann color map.

4. Methods and Aims

The primary objective of this research is to understand the na-
ture of implicit discretization in rainbow color maps. If the per-
ceived banding is linked to categorical perception, how much vari-
ation should we expect across individuals and how does that varia-
tion change across different rainbow color maps? Moreover, given
the known effects of spatial frequency on our perception of color-
mapped data [KRPC00, RNA18], to what extent should we expect
any perceived banding to be affected by the encoded data? To better
understand these relationships, we conducted an exploratory study
designed to generate empirical observations about how individuals
perceive hue bands across different datasets visualized using vari-
ous rainbow color maps. We focus solely on implicit discretization
in electronic displays, while controlling for expected real-world
confounds such as gamut differences and viewing conditions. The
following subsections detail our hypotheses, stimuli, experimental
apparatus, tasks, procedures, and participant demographics.

4.1. Hypotheses

In this study, we explored three main hypotheses.

H1. In line with the long-standing suppositions of the visualiza-
tion community [BT07,BRT95,Mor09], we expect that data visual-
ized using rainbow color maps is perceived as implicitly discretized
into hue-based bands. Additionally, we predict that this implicit dis-
cretization will vary across different rainbow color maps.
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The categorical perception literature provides evidence that hu-
mans perceive specific sets of colors as grouped or categorized ac-
cording to various color terms. When white light is diffracted into a
prismatic spectrum, people consistently perceive continuous ranges
of wavelengths as individual bands of uniform color [SCA94]. Sim-
ilar categories also exist in how people perceive and group individ-
ual samples of uniform color [HHZ∗14,WK12,WG13]. Therefore,
we have reason to expect that this same phenomenon might affect
visualizations encoded using continuous color maps.

The literature also suggests that the categorical perception of
color is inherently tied to a relatively small set of basic color
terms [RK09, BK99] that effectively partition color space. By def-
inition, different spectral schemes trace fundamentally different
paths through color space, suggesting that they also trace different
paths through the regions of color space associated with these color
terms. Thus, we expect that the widths of the perceived bands as-
sociated with a given basic color term should vary across different
rainbow color maps. It is not immediately clear, however, to what
extent individual variation might impact this.

H2. We predict that the implicit discretization produced by a given
color map is based on more than just luminance variation.

The idea that sudden shifts in luminance should cause visible
discontinuities in rainbow color maps is well documented in prior
work [BRT95, Mor09], but luminance alone cannot explain all the
banding seen in common rainbow color maps, which can be sur-
mised from Figures 3 and 4. Figure 3 shows the CIELCh light-
ness (L*), chroma (C*), and hue (h) profiles for four color maps:
a perceptual grayscale, the traditional rainbow color map, jet, and
the Kindlmann color map. Figure 4 visualizes three datasets using
these same color maps. Lightness is a measure of perceived lumi-
nance, judged relative to a comparably illuminated white [Fai13].
Being based on pair-wise color judgments, CIELCh is not a per-
fect metric of perceived color differences in continuous color fields;
however, a better alternative does not currently exist [Sza18].

Despite encoding linear data, Figures 4g and 4h both appear to
show banding induced by the Kindlmann color map. This banding
cannot be explained by the Kindlmann color map’s linear lightness
profile, seen in Figure 3. Figure 3 also indicates that the traditional
rainbow color map’s lightness profile has only two sudden changes
(i.e., cusps). If luminance perception alone drove this phenomenon,
Figures 4a and 4b should contain only three distinct hue bands.

We suspect that variation in chroma and, to a lesser extent,
hue also contributes to the banding perceived across the first two
columns of Figure 4. Chroma, like saturation, is a relative mea-
sure of colorfulness, the distinction being that chroma, similar to
lightness, is measured relative to the brightness of a comparably
illuminated white, whereas saturation is measured relative to the
stimulus’ brightness [Fai13]. Figure 3 indicates that the lightness
and chroma profiles for both the traditional rainbow and jet color
maps have cusps, sharp features where two curves intersect, at the
exact same locations. The chroma profile for the Kindlmann color
map also contains cusps, which could explain perceived banding
independent of luminance. Further, inflection points or concavity
changes in the chroma profiles of each color map appear to loosely
correspond to additional hue-band boundaries, such as potential
red:orange and blue:light-blue boundaries in both the traditional

rainbow and jet color maps. Weaker evidence suggests that hue
variation may also be contributing to this phenomenon. Figure 3 in-
dicates that some of the cusps in chroma correspond to cusps in hue
for both the jet and Kindlmann color maps. Additionally, there are
two inflection points in the hue profile for the traditional rainbow
color map that might also impact perceived banding. Given these
observations, we hypothesize that the implicit discretization in rain-
bow color maps might be explained by a combination of cusps and
inflection points in the perceptual dimensions of color.

H3. We predict that the implicit discretization perceived in a given
visualization will depend on the data being visualized.

Any banding perceived in a given color-mapped visualization
will be related to the color variation in the resulting image. When
encoding linear functions, any perceived banding in the resulting
image space should be the result of color map artifacts. Thus, as-
suming rotational invariance, we anticipate that the 1D linear ramp
and the 2D radial gradient shown in Figure 4 should have similar
perceived bands. With real-world datasets, on the other hand, we
expect that the set of the perceived boundaries in image space will
reflect a combination of not only color map artifacts but also un-
derlying data features that will vary across datasets. This potential
conflation of data features with perceptual artifacts is a core part
of why the existing literature argues that rainbow color maps are
misleading [BT07]. The larger goal of this hypothesis is to em-
pirically explore the differences between linear functions and real-
world datasets in the hope of garnering insights that might allow us
to begin to model the perceived banding in rainbow color-mapped
visualizations in subsequent work.

4.2. Anticipated Indicators

To explore hypotheses H2 and H3, we derived the locations of
cusps and inflection points from the CIELCh lightness, chroma,
and hue profiles for each of the rainbow color maps in our study.
The resulting locations – which we call indicators – are represented
as vertical dotted lines in Figure 3. Cusps are modeled as locations
of high curvature where curvature magnitude surpasses a specified
threshold, and inflection points reflect zero crossings in curvature.

These indicators were derived using standard numerical meth-
ods. Using the 256 colors in each color map, we constructed in-
terpolating cubic splines that approximate the CIELCh profiles for
each color map. The roots of the second and third derivatives of
those splines correspond to the zeros and maxima/minima in cur-
vature, respectively. We threshold the curvature maxima/minima
using the absolute value of the second derivative (i.e., curvature
magnitude) to generate a set of local maxima/minima with arbi-
trarily high curvature. Inflection points are derived similarly, using
the locations of zero curvature and thresholding based on gradient
magnitude. This process is illustrated in Figure 5.

Because numerical differentiation is known to be highly sensi-
tive to small changes [KC01], we employed both Gaussian smooth-
ing on the CIELCh profiles and thresholding of the derivatives to
eliminate numeric artifacts generated by noise. We also manually
removed any spurious indicators that could be traced to numeric ar-
tifacts, such as boundary conditions. An expanded discussion that
includes the smoothing and thresholding parameters used to derive
the indicators in Figure 3 is included as supplemental material.
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Figure 3: The CIELCh lightness (L*), chroma (C*), and hue (h) profiles for the four color maps we looked at in our exploratory study, with
dotted and dashed lines showing the derived locations of cusps and inflection points.

4.3. Stimuli

During the study, each participant was presented with 12 stim-
uli generated by encoding 3 univariate datasets with 4 different
color maps, each shown in Figure 4. The datasets included a 1D
linear ramp, a 2D radial gradient, and a complex real-world 2D
geospatial dataset. The linear ramp and radial gradient datasets
are functionally defined as affine transformations of f (x,y) = x
and f (x,y) = x2 + y2, respectively. The complex dataset is a 3-
second resolution coastal relief model of Hawaii Island sourced
from the National Oceanic and Atmospheric Administration’s Na-
tional Center for Environmental Information [Nat05]. The stimuli
shown in Figures 4j to 4l were encoded using a perceptual grayscale
color map, created by linearly interpolating from black to white in
CIELCh. This color map was chosen as a baseline to enable sepa-
rating data features from artificial boundaries created by the rain-
bow color maps, which we anticipate according to hypothesis H3.

The remaining experimental stimuli were generated from 3 rain-
bow color maps. The traditional rainbow and jet color maps were
chosen as well-known and commonly used rainbow color maps.
We generated the traditional rainbow color map by linearly inter-
polating between equally spaced blue, cyan, green, yellow, and red
control points in sRGB. For the jet color map, we utilized the im-
plementation included in matplotlib [Hun07].

As a spectral scheme with a linear lightness profile, the Kindl-
mann color map was chosen to facilitate comparisons between the
other rainbow color maps and grayscale. We chose this color map
over various other spiral color maps, such as the cubehelix [Gre11]
or black body [Mor16] color maps, because it traverses a similar
distribution of hue values to the traditional rainbow and jet color
maps, it exhibits banding that cannot be explained by luminance
variation [DPR∗18], and it has an established pattern of use by the
visualization community [Mor16,STP17,YLL15,ZH16,DPR∗18].
As no accepted device-independent definition of the Kindlmann
color map currently exists, we reconstructed the color map directly
from the original paper figure, modifying the lightness channel to
ensure linearity in CIELCh. An extended discussion of this imple-
mentation choice is included as supplemental material.

4.4. Apparatus

The study was conducted in a controlled laboratory setting. All tri-
als were conducted in a windowless room with the lights turned

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4: Experimental stimuli encoding a linear ramp, a radial
gradient, and a complex 2D geospatial dataset using four color
maps: (a)-(c) the traditional rainbow, (d)-(f) jet, (g)-(i) the Kindl-
mann color map, and (j)-(l) perceptual grayscale.

on, using two identically set-up workstations with Dell U2412M
monitors. An experimenter ran contrast and gamma monitor tests
(http://www.lagom.nl/lcd-test/) prior to the trials, to
ensure display constancy. We did not, however, use external color
measurement to verify that colors appeared the same on both mon-
itors. At each workstation, the chair, monitor, and keyboard were
placed in the same locations for all trials, with a viewing distance
of 60 cm and a monitor size of 61 cm (16:10 aspect ratio). Each
stimulus was centered full-screen on a medium-gray background,
subtending approximately 19.3◦ in visual angle (768x768 pixels).

4.5. Tasks

For every stimulus, each participant was asked to perform two tasks
according to one of two assigned instruction conditions. The first
task was to count the number of color categories or color bound-
aries that they saw. The second was to then interactively delineate
those color categories or color boundaries.

c© 2019 The Author(s)
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Early in the experimental design process, internal discussions
revealed that salient features perceived in the yellow and cyan re-
gions of the traditional rainbow and jet color maps could result
in two fundamentally different response patterns. As illustrated in
Figure 6, an individual could decide to treat these features either as
explicit boundaries or as prototypes within larger color categories.

In an effort to ensure that instructions did not disproportionately
bias individuals’ responses, we developed two separate sets of in-
structions to capture different ways of completing the tasks. In one
set of instructions, participants were asked to make judgments re-
lated to color categories, which we defined as “continuous subsets
of the color map where colors within the subset are more similar to
one another than colors outside the subset.” In the other set of in-
structions, participants were specifically asked about color bound-
aries, defined as “the locations where colors on the same side of
the boundary are considered more similar to one another than col-
ors on the opposite side of the boundary.” Each participant was
assigned a single, consistent instruction set for all trials.

In early experimental prototypes, we also noted that the inclusion
of black lines as explicit delimiters appeared to influence judgments
about the underlying color category boundaries. This observation is
not entirely surprising given that prior work showed that black line
delineations increased the number of distinct colors perceived in a
diffracted spectrum [SCA94]. It did, however, present a challenge
in terms of interface design. Our goal was to understand where peo-
ple perceive bands, yet the most direct interface for interrogating
that question influences the perception of that phenomenon.

We opted to provide an interface where the delimiters covered
only part of the underlying experimental stimuli, as illustrated in
Figure 6. By requiring participants to count the color categories or
boundaries before delineation, we prime each individual’s delin-
eation responses. The interface then allows participants to attempt
to line up the edge of each delimiter with the boundaries perceived
in the undelineated portion of the stimuli. Delimiters can be placed
or re-selected by clicking, moved by dragging, or deleted with a
double click. Although this design does not entirely control for the
potential confounding effects of explicit delimiters, we felt it was
satisfactory for an exploratory study.

4.6. Procedure

Each participant provided informed consent before beginning the
study. The participant was then assigned one of the two instruction
conditions and given a corresponding training module designed to
familiarize them with the definitions and interactions in the study.

Upon completion of the training module, the participant was
presented with the 12 experimental stimuli using a randomized
block scheme. We used 4 blocks, each containing the 3 stimuli en-
coded using a given color map. Each participant encountered these
4 blocks in a different random order; and within each block, the 3
stimuli were presented in a different random permutation. This pro-
cedure resulted in a counterbalanced randomization scheme where
each participant encountered exactly 1 of the 24 permutations of
the 4 color map blocks, and 4 of the 6 possible dataset permuta-
tions across those blocks. For each stimulus, the participants were
asked to first count and, subsequently, interactively delineate the
color categories or color boundaries that they saw according to their

Figure 5: Deriving the chroma (C*) indicators for the traditional
rainbow color map: (upper) the cubic spline approximation of the
chroma profile, (center) the derived gradient magnitude, and (bot-
tom) the derived curvature magnitude. Horizontal lines show the
thresholds used to isolate the cusps and inflection points, which are
represented by the vertical lines overlaid on the chroma profile.

(a) feature as boundary (b) feature as prototype

Figure 6: Two fundamentally different response patterns illustrated
for the salient cyan feature in the traditional rainbow color map
using the study’s boundary placement interface: (a) treating the
feature as an explicit boundary vs. (b) treating the feature as a pro-
totype subsumed by a larger color category.

assigned instructions. Working versions of both the study and the
training modules are included as supplemental material.

After completing the main study, the participants were asked to
fill out a survey in which they answered questions about their judg-
ments during the study and provided demographic information. Al-
though the participants had been prescreened for color vision de-
ficiencies, this survey included explicit secondary checks of their
color vision using Ishihara plates along with questions regarding
other potential confounds such as prior familiarity with the geogra-
phy of Hawaii Island. Response times were unconstrained, but the
study took most participants about 25 minutes to complete.

4.7. Participants

Participants were recruited from both the University of Utah’s psy-
chology participant pool and the University of Utah campus com-
munity. They were prescreened for either color vision deficiencies
or significant prior exposure to rainbow color maps through the na-
ture of their area of study, and they were compensated for their time
at either a rate of $10/hour or via course credit.

We collected data from 62 participants across both instruction
conditions, although we excluded the responses of six individu-
als who placed more than two standard deviations above the mean
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number of boundaries from the final analysis. The excluded par-
ticipants were evenly distributed across our two instruction sets.
No additional exclusions were made based on the postexperiment
survey responses. Of the 56 participants included in the analysis,
42 were female and 14 were male; and the mean age was 21.55
years (SD = 5.26). The category instructions were assigned to 25
participants (23F, 2M), and the boundary instructions to 31 partic-
ipants (19F, 12M). Although there is currently no clear consensus
regarding either the presence or absence of sex-related differences
in human color vision [JM93, RSHB08, MPMP12] and testing for
such differences was outside our intended scope, we recognize that
the sex imbalance among our participants is a potential limitation.

5. Results

Given our hypotheses that implicit discretization is occurring and
is influenced by both color map and dataset characteristics, we
were primarily interested in analyzing where individuals perceive
and delineate banding in rainbow color-mapped visualizations. Al-
though our open-ended boundary placement task directly examines
this question, we have no way of knowing a priori which subset
of participants’ delimiters is supposed to correspond to a particu-
lar perceived boundary. That correspondence would require prior
knowledge of the very facts we are attempting to establish: that in-
dividuals perceive bands and where they perceive the boundaries
of those bands. It is not clear how one would perform quantita-
tive analyses on predicted cusps and inflection points without prior
knowledge of these facts. As a result, much of our analysis relies on
qualitative visual analysis methods, which provide a structured way
of exploring both participants’ response trends and our hypotheses
about what drives those trends, free from any assumptions about
the existence or nature of hue banding. As a descriptive analysis,
we also tested if the color maps influenced the number of color
boundaries or categories that participants counted and placed. The
statistical analyses are discussed in Section 5.1, and the remaining
subsections provide an overview of our visual analyses as they per-
tain to each of our three hypotheses. We have also included a variety
of interactive tools and expanded discussions as supplemental ma-
terial to assist readers in better assessing the validity of our claims.

5.1. Descriptive Statistical Analysis

To get an initial understanding of the relationships present in the
results, we conducted statistical analyses on the number of bound-
aries/categories participants perceived. We used a linear mixed-
effects analysis due to the mixed design with unbalanced sample
sizes. Participants were modeled as a random effect, and color
map (traditional, grayscale, jet, Kindlmann), dataset (1D, 2D, com-
plex), instruction condition (category, boundary), task/response-
method (counted, delineated), and potential color-map:dataset and
instruction:response-method interactions were all modeled as fixed
effects. Additionally, the grayscale color map and complex dataset
were used as reference groups, given that we specifically hypothe-
sized differences compared to these groups.

While full equations and output can be found in the supplemen-
tal materials, Figure 7 illustrates the core relationships in this linear
mixed-effects analysis. The analysis revealed main effects where
each of the rainbow color maps elicited significantly more delin-
eations than grayscale, and the 1D dataset elicited significantly
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Figure 7: The mean number of delineations that participants per-
ceived and/or placed along with the 95% confidence interval for
each color map and dataset. Descriptive statistical analysis indi-
cates that each rainbow color map elicited significantly more de-
lineations than grayscale, that the 1D dataset elicited significantly
more delineations than the complex dataset, and that there were
significant color-map:dataset interactions.

more delineations than the complex dataset. It also showed signifi-
cant color-map:dataset interactions, with subsequent post hoc anal-
ysis revealing that, for both the jet and Kindlmann color maps, par-
ticipants perceived significantly more boundaries for the 2D dataset
compared to the complex dataset but no significant difference in
the number of boundaries for grayscale. Additionally, both before
and after accounting for these color-map:dataset interactions, nei-
ther the instruction condition nor the task/response-method had a
significant effect on the number of perceived boundaries.

These statistically significant effects do support the idea that both
color map and dataset influence how people perceive boundaries in
a given color-mapped visualization, but proving or disproving our
hypotheses hinges on showing differences in the distributions of
the perceived boundaries. Consider the grayscale results shown in
Figure 7, for example. As "black", "white", and "gray" are all basic
color terms in English [BK99], meaning grayscale contains multi-
ple color categories, we expect participants to count and delineate
boundaries in the grayscale stimuli. We further expect, however,
that any delineated boundaries will be randomly distributed in the
1D and 2D stimuli, but centered around data features in the com-
plex stimuli. Likewise, for each rainbow color map, we anticipate
that the delineated boundaries will center around color map arti-
facts in the 1D and 2D stimuli, but be confounded by data features
in the complex stimuli. In each case, understanding the distribution
of participants’ delineations is critical.

5.2. H1: Evidence of Implicit Discretization

Figure 8 provides an overview of the distribution of participants’
placed delimiters. For each color map, dataset, and instruction
condition, we use kernel density estimation (KDE) to calculate
a probability density function (pdf) from the participants’ col-
lective delimiter placements. The pdfs shown use different band-
widths, each computed from the associated delimiter placements
through multiple iterations of leave-subject-out Monte Carlo cross-
validation (CV), utilizing a train-test split of 90% to 10%. Leave-
subject-out CV is an established blocked CV approach with theo-
retic optimality that accounts for dependencies within subject re-
sponses [XH12, SLJ∗17, RBC∗17, LVS∗17]. Peaks in the resulting
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Figure 8: Probability density functions fit to the participants’ col-
lective delimiter placements, partitioned by wording condition,
color map, and dataset. Peaks highlight clusters in participants’ re-
sponses for all three rainbow color maps across all three datasets.
Participants’ greyscale responses also show a few larger clusters
but, overall, are more uniformly distributed.

pdfs highlight consistencies across participants’ placed delimiters.
Figure 8 also illustrates that the distributions of participants’ delim-
iters are largely similar across both instruction sets.

For each of the three rainbow color maps, participants’ delimiter
placements are clustered around distinct locations, but those loca-
tions vary both across the color maps for a given dataset and across
the datasets for a given color map. In each case, however, the clus-
ters are irregularly spaced, confirming that the perceived bands in
rainbow color maps are not uniform in size. By comparison, partic-
ipants’ delimiter placements for the grayscale stimuli are more uni-
formly distributed across the normalized data value range. Some of
the patterns in the grayscale responses, however, can be explained
either by artifacts caused by mapping the perceptual grayscale color
map into 24-bit RGB color or by data features in the case of the
complex dataset. The former is illustrated in the 1D grayscale re-
sults presented in Figure 9, where breaking out participants’ de-
limiter placements by individual shows responses clustered around
a series of doubled values in the color map. Further discussion of
grayscale patterns is included as supplemental material.

Taken together, these results provide empirical support for H1.
Participants appear to implicitly discretize rainbow color-mapped
datasets with marked consistency across individuals. Moreover, as
hypothesized, this discretization varies across the different rainbow
color maps tested. Given the provided task, it is possible individuals
may have also attempted to use color categories when reasoning
about grayscale; however, the clustering in participants’ responses
is less consistent than for the rainbow color maps.

5.3. H2: Clear Correspondences Beyond Luminance

In comparing participants’ responses to the derived indicator sets,
the results support hypothesis H2. As we hypothesized, luminance
does play a role in the implicit discretization observed in the rain-
bow color-mapped stimuli, but so does chroma and, to a lesser
extent, hue. As shown in Figure 9, the majority of participants’
response trends correspond to cusps or inflection points in the
CIELCh profiles of each color map. Not every indicator predicts
a response trend, however. Here, we provide an overview of par-
ticipants’ responses related to the 1D dataset, where any clusters
or trends should be artifacts of the color maps themselves. Supple-
mental materials show similar findings across each of the datasets
and instruction conditions in the study.

For each perceptual dimension of color (lightness, chroma, and
hue), cusps in the CIELCh profiles of a given color map ex-
hibit some correspondence with participants’ response trends. As
prior work predicts [BRT95, Mor09], the cusps associated with the
salient cyan and yellow features in both the traditional rainbow
(Figures 9a and 9b) and jet color maps (Figures 9d and 9e) cor-
respond to strong participant response trends in 1D. In addition,
strong response trends align with some cusps in the chroma and
hue profiles of the Kindlmann color map. In other cases, however,
cusps in the perceptual dimensions of the color maps have weak or
no correspondence with participants’ delimiter placements. The co-
incident lightness and chroma indicators corresponding to the dark-
blue:blue boundary in the jet color map (Figure 9c), for example,
capture only the right-hand side of a split response trend. Addition-
ally, the 1D Kindlmann results reveal chroma and hue cusps that
either correspond to weak trends that emerge only when partici-
pants place a large number of boundaries (Figures 9f and 9g) or fail
to correspond to any response trends (Figure 9h).

The correspondences between participants’ response trends and
inflection points in each color map’s CIELCh profiles are similarly
mixed. Inflection points in chroma capture a number of strong re-
sponse trends that are not predicted by cusps, such as those corre-
sponding to potential blue:light-blue boundaries in the traditional
rainbow (Figure 9i) and jet color maps (Figure 9m). Again, how-
ever, not every inflection point corresponds to a response trend.
Certain inflection-point indicators exhibit pronounced offsets from
their associated response trends (Figures 9j to 9l), whereas others
have no corresponding response trend (Figure 9n).

5.4. H3: Unexpected Patterns in Data-Driven Variation

As shown in Figures 10 and 11, for each of the rainbow color maps
tested, the different datasets show shifts in the locations and con-
sistency of clusters in participants’ responses. Consequently, our
results provide support for our H3 hypothesis that implicit dis-
cretization depends on the dataset. The variation that we found,
however, differs from what we originally anticipated. We expected
that a complex stimuli based on real-world data would result in an
implicit discretization different from a smoothly varying 1D or 2D
stimuli. This reasoning, however, neither predicts nor explains the
observed differences in our participants’ response trends for the 1D
vs. 2D stimuli for each rainbow color map. Further, for the com-
plex stimuli, we found no clear indication that the underlying data
features impacted participants’ response trends. Neither Figure 10
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Figure 9: An overview of participants’ delimiter placements in the 1D experimental stimuli. In the top and bottom plots, each row of
marks contains the delimiters placed by a single participant with participants ordered along the y-axis by the average number of delimiters
they placed overall. For each rainbow color map stimuli, dotted lines show the locations of cusps (top) and inflection points (bottom),
with corresponding bands showing the expected individual variation for color category boundaries [WK12]. The same indicators are also
overlaid on the pdfs (center) estimated from the delimiters. Convenience labels (a)-(n) are included for indicators referred to in the text. For
the grayscale stimuli, dotted lines mark the locations of color map artifacts, with doubled values corresponding to a large response cluster.

nor Figure 11 provides evidence of data features creating or accen-
tuating perceived boundaries.

Figure 10 provides an overview of participants’ delimiter place-
ments across the 3 experimental stimuli encoded using the tra-
ditional rainbow color map. This overview contains several no-
table differences in the strengths and/or locations of participants’
response trends. The response trend associated with the leftmost
inflection-point indicator (Figure 10a) shifts to the right in the 2D
stimuli compared to 1D stimuli, but dissipates into a weaker trend
in the complex stimuli. The other end of the color map (Figure 10d)
exhibits a pronounced shift in the location of participants’ 1D and
2D response trends. Also, toward the center of the color map 2 more
trends (near Figures 10b and 10c, respectively) vary in strength
across the 3 datasets. Even though each of these trends happens
to correlate with an inflection point in chroma, these shifts do not
appear specific to trends associated with either chroma variation
or inflection point indicators. Figure 11 exhibits similar variations
across both the jet and Kindlmann stimuli that affect trends corre-
sponding to a wide variety of indicator types.

In summary, the results do support H3, but they also highlight
questions about the nature of the interaction between color maps
and datasets. Additional research is needed to determine which
dataset characteristics produce variation in implicit discretization
and what the underlying perceptual mechanisms for this effect are.

6. Discussion

The perceived banding in rainbow color-mapped visualizations de-
pends on the data being encoded, but in a way that is neither pre-

dicted nor readily explained by existing theory. The results pre-
sented in this paper show differences in participants’ discretiza-
tions of smoothly varying linear and radial data gradients that can-
not be immediately explained by the human visual system’s de-
creased chromatic sensitivity to high-spatial-frequency informa-
tion [KRPC00,WTS∗17,RNA18]. Given that both the 2D and com-
plex datasets contain varying gradient magnitudes, known interac-
tions between color and size might account for the data-driven vari-
ation we observed. Models for color-size effects [Sza18], however,
have not yet been extended to handle the complexities of continu-
ous scalar fields.

The results also provide evidence that implicit discretization is
driven by more than just luminance. We illustrate correspondences
between the perceived banding in rainbow color maps and both
cusps and inflection points in each of the perceptual dimensions of
those color maps. The rainbow color maps that we tested, however,
contain coincident and proximately located indicators, making it
challenging to fully separate the effects of luminance, chroma, and
hue. Assessing what truly drives many of the individual response
trends that we observed would require more systematic control than
was present in our exploratory study.

The results further indicate that the implicit discretization caused
by rainbow color maps is relatively consistent across individuals.
Although the nature of the study’s tasks did not allow us to directly
assess the amount of individual variation across participants’ per-
ceived hue-bands, estimates of individual variation from prior color
category experiments [WK12] approximate the variation in many
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Figure 10: An overview of participants’ boundary placements within the
traditional rainbow color map stimuli, showing changes in participants’
response trends across the different datasets. Contrary to expectations,
the changes include noticeable shifts in responses between 1D and 2D.
Further, the underlying data features in the complex dataset appear to
have had minimal impact on participants’ responses. Convenience labels
(a)-(d) are included for specific indicators referred to in the text.

1D

2D

Complex

Boundary Boundary

Figure 11: The probability density plots of participants’ de-
limiter placements for both the jet and Kindlmann stimuli
also exhibit significant variation in participants’ response
trends across all three datasets. Notable differences between
the adjacent plots are marked with a • symbol.

of the response trends seen in the results. The results also confirm
that the perceived hue-bands in rainbow color maps are, indeed,
irregularly spaced. We observed no apparent confounding impacts
from sex differences or inter-monitor variation, though both are po-
tential limitations that should be addressed in subsequent work.

The study’s findings show that different datasets create unpre-
dictable variation in the perceived hue bands in rainbow color-
mapped visualizations. This unpredictability presents challenges
for experts in a variety of scientific fields [BGP∗11, QM16,
BTGM16, KES13, ZDM∗15, DPR∗18], where the implicit dis-
cretization in rainbow color maps is used either for classification
or as a heuristic for quick visual comparisons. Moreover, given that
the results show similar data-driven inconsistencies in the Kindl-
mann color map, which follows the visualization community’s core
guidelines regarding effective color usage [BRT95], these same
practical challenges may apply to a larger set of multi-hue continu-
ous color scales. This variation could also explain the recent finding
of Dasgupta et al. that hue banding negatively impacted magnitude
estimation [DPR∗18].

Despite the visualization community’s promotion of more per-
ceptually appropriate alternatives [BGP∗11,BRT95,Mor09,Tru81,
LH92, Gre08, KRC02], rainbow color maps remain commonplace
in a variety of scientific domains, including medicine [BGP∗11],
atmospheric and climate sciences [QM16, DPW∗15], bioengineer-
ing [BTGM16], aerospace [KES13], and astronomy [ZDM∗15].
Although domain convention is often used to justify the inclusion
of rainbow color map variants in visualization systems [WP13,
QM16, PWB∗09], we still do not understand why experts con-
tinue to gravitate to spectral schemes. Cited reasons include fa-
miliarity [BGP∗11, QM16], aesthetic preference [BGP∗11, Bre97,
Mor16], and ease of use [BT07, Mor16], but evidence also sug-
gest that rainbow color maps may be a satisficing design choice for
specific types of tasks, such as locating and quantifying extreme

values [DPW∗15, WTS∗17, WTB∗18, RNA18, War88, WTB∗18].
Improving our understanding of both how rainbow color maps are
used and the ways in which they are ineffective could lead to im-
proved guidance regarding effective color usage more broadly.

7. Conclusions and Future Work

In this paper, we presented an exploratory study investigating the
nature of hue banding in rainbow color maps. The results repre-
sent a necessary first step in addressing open questions, including
whether rainbow color maps implicitly discretize encoded data into
hue-based bands and how that discretization varies across different
individuals, datasets, and spectral schemes. The results presented in
this paper also suggest that the visualization community’s current
understanding of how rainbow color maps are perceived and used
remains incomplete.

The results begin to address gaps in our understanding of the
nature of implicit discretization in common spectral schemes, but
they also reveal open questions. Rainbow color maps appear to dis-
cretize data into hue-based bands, but we currently have an insuffi-
cient understanding of the mechanisms that drive this phenomenon
and no method for modeling or predicting the banding. Additional
potential directions for future work include exploring whether the
gradient variation in the encoded datasets plays a role in the re-
sponse trend variations we observed, examining how to minimize
implicit discretization in multihue color maps, and attempting to
compare the effects of implicit discretization to the effects of ex-
plicit discretization as tested by Padilla et al. [PQMC17].
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