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A MULTIVARIATE NETWORK IS
NETWORK TOPOLOGY +
NODE AND EDGE ATTRIBUTES
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» Guidelines/Recommendations for Visualizing MVNs



How is an MVN task different than a regular graph task?

MVN Tasks rely on both the topology of the
network and the of the nodes and edges



C. Nobre



A. Bigelow

|
— 2

/ C. Nobre

M. Pisareva

M. Streit

How many of my collaborators are from the oceanography field?
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Which cluster of authors has the highest number of combined collaborations?
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» How many of my collaborators are in the oceanography field?

» Which cluster has the highest number of collaborations?

» What is the fastest route to get all my errands done?

Tasks that rely on the topology of the network
and the attributes of the nodes and edges
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ABSTRACT

Our goal 1s to define a list of tasks for graph visualization that has
enough detail and specificity to be useful to: 1) designers who
want to improve their system and 2) to evaluators who want to
compare graph visualization systems. In this paper, we suggest a
list of tasks we believe are commonly encountered while
analyzing graph data. We define graph specific objects and
demonstrate how all complex tasks could be seen as a series of
low-level tasks performed on those objects. We believe that our
taxonomy, associated with benchmark datasets and specific tasks,
would help evaluators generalize results collected through a series
of controlled experiments.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User
Interfaces — Graphical user interfaces (GUI),
Evaluation/methodology.

General Terms
Design, Experimentation, Human Factors.

Keywords

Task Taxonomy. Graph Visualization, evaluation

1. INTRODUCTION

Despite a long history of graph visualization research, only a few
graph visualization systems have actually been tested with real
users. Furthermore, the tasks that were used in these studies have
been highly domain-specific. To improve the evaluation of
information visualization svstems. it is important to have

Jean-Daniel Fekete,

Nathalie Henry
INRIA Futurs/LRI Bat. 490
Université Paris-Sud,
91405 ORSAY, France

+33-1-69153460
Jean-Daniel.Fekete@inria.fr, nhenry@Iri.fr

user studies of graph visualization techniques and extracted the
tasks used in those studies.

After making those two lists, we considered the set of low-level
Visual Analytics tasks proposed by Amar ef al. [2]. These tasks
were extracted from a corpus of questions about tabular data. We
realized that our tasks all seem to be compound tasks made up of
Amar et al’s primitive tasks applied to the graph objects. When
some tasks could not be represented with those tasks and objects,
we added either an object or a low-level task. In this paper, we
demonstrate how all complex tasks could be seen as a series of
low-level tasks performed on those objects.

2. GRAPH-SPECIFIC OBJECTS

A graph consists of two types of primitive elements, nodes and
links. A subgraph of a graph G is a graph whose nodes and links
are subsets of G. There are several meaningful subgraphs such as
connected components.

2.1 Nodes

Nodes by nature have an attribute degree that is the number of
links incident to that node. In a directed graph, nodes have two
types of degrees according to the direction; indegree and
outdegree. For practical use, nodes also have a special “label”
attribute. They often have application-dependent attributes as
well. In network analysis, there are various measures used to
determine the centrality, or relative importance, of a node within
the graph (for example, the importance of a person within a social
network). Measures of centrality include betweenness and
closeness. There is also a special kind of node called an
articulation point, whose removal disconnects a graph.
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Tasks for Multivariate Network Analysis

A. Johannes Pretorius, Helen C. Purchase, and John T. Stasko

In Chap. [II a multivariate network was defined as having two important
characteristics. First, nodes are connected to each other via links; there is
topological structure. Second, being multivariate, nodes and links have at-
tributes associated with them, with these attributes having a value.

In this chapter, we describe tasks associated with multivariate networks.

We consider a task to be an activity that a user wishes to accomplish by
interacting with a visual representation of a multivariate network. This im-
plies that there is user intent |13
visually. At the highest level, this intent is usually described as the goal of
obtaining insight about the data being studied [6].

, and that the network has been presented

Pragmatically, the notion of gaining insight from visualizations can be

described as one or more very high-level tasks. As Amar and Stasko put it,
tasks that “real people want to accomplish” [3]. These include:

Make complex decisions, especially under uncertainty;

Learn a domain;
Identify the nature of trends;
Predict the future;

Identify the domain parameters;
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An MVN task can be expressed as a combination of
two fundamental tasks, as applied
to different topological structures of a network.



Analyze the topology for
[T9A]

|dentify, characterize or compare topological structures
that have certain attributes

Example: Which of my collaborators have



Analyze the for a given topological structure
[AgT]

|dentity, characterize, or compare the attributes of a given
topological structure

Example: What is the of my collaborators?



What is the average number of publications
of my collaborators from Oceanography?

(1) Find the node with the - TgA

(2) Find the subset of Carolina’s neighbors that
are of type - TgA

(3) Compute the for
those neighbors - AgT



Single Node/Edge Node Neighbors

Network/Subnetwork

TgA and AgT tasks are applied to topological structures



Layerec Trees

We distinguish between the following network types
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Topolog. Structures

Single node/edge
Neighbors
Entire/sub network

Paths
Clusters

B)2 1 11
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Node-Link Diagram with on-node encoding
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Source Target Type Duration
/‘\ /’%\ Co-workers 3 years
/‘\ w Soccer Coach 2 years
‘g /&\ Dating 1 year
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/\%\ A Friends 3 years
%\\ & Married 6 years
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s easily understood by most users
Works well for all types of networks

On-Node / On-Edge
Encoding

Scalability.
Node size leaves little space to encode attributes.

Recommended for small networks when only a few (usually under five) attributes on the
nodes are shown, or in combination with a zooming/filtering strategy
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Well suited for networks with different

node types or with an important Attribute-Driven

Faceting

categorical or set-like attribute.

Less scalable with respect to the number of nodes
and network density than node-link layouts.

Neighborhoods, paths, and clusters are not easily

visible if they span different facets.

Recommended for networks where nodes can be separated into groups
easily and where these groups are central to the analysis
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Edge Map Dork et al. 2011
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Well suited for quantitative attributes
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Does not lend itself well to visualizing
the topology of the network.

Recommended for smaller, sparse networks where relationships between node attributes are
paramount to the analysis task, and topological features only provide context
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Matrix

Requires quadratic space with respect to the
number of nodes.

Complexity of choosing the right reordering

algorithm

Recommended for smaller, complex and dense networks with rich node and/or edge
attributes, for all tasks except for those involving paths
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Can be used to visualize rich

edge attributes and node

attributes at the same time
BioFabric

More difficult to discover
neighbors and clusters in
Biofabric compared to matrices.

Recommended for small, sparse networks with many nodes and rich edge attributes
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Independent views can optimize for | 1

topology and attribute independently. Juxt d
uxtapose

Not great for tasks on topological structures
beyond a single node or edge.

Recommended for large networks and/or very large numbers or
heterogeneous types of node and link attributes
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good at integrating attributes with
topology, if the topology can be
represented in a linear layout.

Integrated

Not suitable for networks that can not be sensibly
linearized.

Recommended for networks with several, heterogenous, node attributes
and well suited for tasks on single nodes, neighbors, and paths
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Not ideal for large networks, or tasks on clusters

Recommended for small networks where the tasks are focused on attribute comparison
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Multivariate Network Visualization Techniques

A companion website for the STAR Report on Multivariate Network Visualization Techniques.

HOME TECHNIQUES WIZARD

Use the Wizard

vdl.sci.utah.edu/mvnv/

Adlrolind NODre, wirian wvievyer, vidrl fs AlNd Alexdlnder Le

To appear in Computer Graphics Forum (EuroVis 2019)
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