THE STATE OF THE ART IN **VISUALIZING MULTIVARIATE NETWORKS**

visualization design lab

CAROLINA NOBRE, MIRIAH MEYER, MARC STREIT, ALEXANDER LEX

Name: Samuel Age: 41 Job: Nurse

Name: Ellen Age: 31 Job: Actress

Name: Roger Age: 51 Job: Doctor

Photo by Rob Curran

Name: Julia Age: 34 Job: Vet

Name: Gordon Age: 54 Job: Chef

Name: Camille Age: 42 Job: Teacher

A MULTIVARIATE NETWORK IS NETWORK TOPOLOGY + NODE AND EDGE ATTRIBUTES

Holten and Wijk, 2009

CONTRIBUTIONS

- Multivariate Network Task Taxonomy
- Typology of Multivariate Network Visualization Techniques
- Guidelines/Recommendations for Visualizing MVNs
- Summary of Application Areas
- Evaluations

CONTRIBUTIONS

Multivariate Network Task Taxonomy
Typology of Multivariate Network Visualization Techniques
Guidelines/Recommendations for Visualizing MVNs
Summary of Application Areas
Evaluations

How is an MVN task different than a regular graph task?

MVN Tasks rely on both the **topology** of the network and the **attributes** of the nodes and edges

How many of my collaborators are from the oceanography field?

Which cluster of authors has the highest number of combined collaborations?

What is an efficient way I can complete all my errands?

Tasks that rely on the **topology** of the network and the attributes of the nodes and edges

How many of my collaborators are in the oceanography field?

Which cluster has the highest number of collaborations?

What is the fastest route to get all my errands done?

Task Taxonomy for Graph Visualization

Bongshin Lee, Catherine Plaisant, **Cynthia Sims Parr** Human-Computer Interaction Lab University of Maryland College Park, MD 20742, USA

+1-301-405-7445

{bongshin, plaisant, csparr}@cs.umd.edu

ABSTRACT

Our goal is to define a list of tasks for graph visualization that has enough detail and specificity to be useful to: 1) designers who want to improve their system and 2) to evaluators who want to compare graph visualization systems. In this paper, we suggest a list of tasks we believe are commonly encountered while analyzing graph data. We define graph specific objects and demonstrate how all complex tasks could be seen as a series of low-level tasks performed on those objects. We believe that our taxonomy, associated with benchmark datasets and specific tasks, would help evaluators generalize results collected through a series of controlled experiments.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User Interfaces – Graphical user interfaces (GUI), Evaluation/methodology.

General Terms

Design, Experimentation, Human Factors.

Keywords

Task Taxonomy, Graph Visualization, evaluation

1. INTRODUCTION

Despite a long history of graph visualization research, only a few graph visualization systems have actually been tested with real users. Furthermore, the tasks that were used in these studies have been highly domain-specific. To improve the evaluation of information visualization systems, it is important to have

Jean-Daniel Fekete, Nathalie Henry INRIA Futurs/LRI Bat. 490 Université Paris-Sud, 91405 ORSAY, France

+33-1-69153460

Jean-Daniel.Fekete@inria.fr, nhenry@lri.fr

user studies of graph visualization techniques and extracted the tasks used in those studies.

After making those two lists, we considered the set of low-level Visual Analytics tasks proposed by Amar et al. [2]. These tasks were extracted from a corpus of questions about tabular data. We realized that our tasks all seem to be compound tasks made up of Amar et al's primitive tasks applied to the graph objects. When some tasks could not be represented with those tasks and objects, we added either an object or a low-level task. In this paper, we demonstrate how all complex tasks could be seen as a series of low-level tasks performed on those objects.

2. GRAPH-SPECIFIC OBJECTS

A graph consists of two types of primitive elements, nodes and links. A subgraph of a graph G is a graph whose nodes and links are subsets of G. There are several meaningful subgraphs such as connected components.

2.1 Nodes

Nodes by nature have an attribute degree that is the number of links incident to that node. In a directed graph, nodes have two types of degrees according to the direction; indegree and outdegree. For practical use, nodes also have a special "label" attribute. They often have application-dependent attributes as well. In network analysis, there are various measures used to determine the centrality, or relative importance, of a node within the graph (for example, the importance of a person within a social network). Measures of centrality include betweenness and closeness. There is also a special kind of node called an articulation point, whose removal disconnects a graph.

11 T :......

Tasks for Multivariate Network Analysis

A. Johannes Pretorius, Helen C. Purchase, and John T. Stasko

In Chap. , a multivariate network was defined as having two important characteristics. First, nodes are connected to each other via links; there is topological structure. Second, being multivariate, nodes and links have attributes associated with them, with these attributes having a value.

In this chapter, we describe tasks associated with multivariate networks. We consider a task to be an activity that a user wishes to accomplish by interacting with a visual representation of a multivariate network. This implies that there is user intent 13, and that the network has been presented visually. At the highest level, this intent is usually described as the goal of obtaining *insight* about the data being studied 6.

Pragmatically, the notion of gaining insight from visualizations can be described as one or more very high-level tasks. As Amar and Stasko put it, tasks that "real people want to accomplish" **3**. These include:

- Make complex decisions, especially under uncertainty;
- Learn a domain;

 $\mathbf{5}$

- Identify the nature of trends;
- Predict the future;
- Identify the domain parameters;
- Discover correlative models:

An MVN task can be expressed as a combination of two fundamental tasks, as applied to different topological structures of a network.

Analyze the topology for given attributes [TgA]

Identify, characterize or compare topological structures that have certain attributes

Example: Which of my collaborators have a background in CS?

Analyze the attributes for a given topological structure [AgT]

Identify, characterize, or compare the attributes of a given topological structure

Example: What is the **average age** of **my collaborators**?

What is the average number of publications of my collaborators from Oceanography?

(1) Find the **node** with the **label 'Carolina'** - TgA

(2) Find the **subset of Carolina's neighbors** that are of type **Oceanography** - TgA

(3) Compute the **average no. of publications** for **those neighbors** - AgT

TgA and AgT tasks are applied to topological structures

Layered

We distinguish between the following network types

Trees

0 Does *not* support Supports poorly 2 Supports 3 Optimized for

			Size	Туре	Node Attributes				
			Small <100 nodes) Medium (<1,000) Large (>1,000 nodes)	Complex (sparse) Complex (dense) Layered/K-Partite Trees	Few (<5) Several (≥5) Homog. (1 type) Hetero. (>1 type)				
iyouts	On-node/edge encoding	0	3 2 1	3 1 3 3	2 1 3 2				
Link L ²	Attrdriven faceting		3 1 1	3 1 3 1	3 1 3 3				
Node-	Attrdriven positioning		3 1 1	3 1 1 1	3 1 3 1				
ayouts	Adjacency matrix	A B C D E A C D E C D C D E C D C D C D C C D C C D C C D C C D C C D C C C D C C C C	3 1 1	2 3 2 1	2 3 3 2				
ular Lá	Quilts		3 1 1	3 1 3 3	3 3 3 3				
Tab	BioFabric		3 1 1	3 3 2 1	3 3 3 3				
licit	Inner nodes & leaves		3 2 1	0 0 0 3	3 1 3 1				
[dm]	Leaves		3 2 2	0 0 0 3	3 1 3 1				
ations	Juxtaposed		321	3 1 3 3	3 3 3 3				
v Oper	Integrated		3 2 1	3 1 3 3	3 3 3 3				
Viev	Overloaded	>	3 2 1	3 1 3 3	3 1 3 1				

0 Does *not* support Supports poorly 1 2 Supports 3 Optimized for

	Size			Туре		Node Attributes	Edge Attributes		Topolog. Structures					
			Small <100 nodes) Medium (<1,000) Large (>1.000 nodes)	Complex (sparse)	Complex (dense) Layered/K-Partite	TICCS	Few (<5) Several (≥5) Homog. (1 type) Hetero. (>1 type)	Few (<3) Several (≥3)	Homog. (1 type) Hetero. (>1 type)	Single node/edge	Neighbors	Paths	Clusters Entire/enh network	Ellurgau licewar
iyouts	On-node/edge encoding	0.0	32	1 3	1 3	3	2 1 3 2	2 1	3 1	3	3	2	2	2
Link La	Attrdriven faceting		3 1	1 3	1 3	1	3 1 3 3	2 1	2 1	3	2	1	1	1
Node-	Attrdriven positioning		3 1	1 3	1 1	1	3 1 3 1	2 1	2 1	3	2	1	1	2
ayouts	Adjacency matrix		3 1	1 2	32	1	2 3 3 2	3 2	3 2	3	3	1	3	2
Tabular Lo	Quilts		3 1	1 3	1 3	3	3 3 3 3	3 3	3 2	3	3	2	2	2
	BioFabric		3 1	1 3	32	1	3 3 3 3	3 3	3 3	3	1	1	1	2
olicit	Inner nodes & leaves		32	1 0	0 0	3	3 1 3 1	0 0	0 0	3	3	3	0	3
Imp	Leaves		3 2 2	2 0	00	3	3 1 3 1	0 0	0 0	3	2	1	0	3
ations	Juxtaposed		32	1 3	1 3	3	3 3 3 3	3 3	3 3	2	1	1	2	2
Operá	Integrated		32	1 3	1 3	3	3 3 3 3	2 2	3 3	3	3	3	1	2
View	Overloaded	5	3 2	1 3	1 3	3	3 1 3 1	1 1	1 1	3	3	2	3	2

Does *not* support 0 Supports poorly 2 Supports Optimized for 3

			Size			Туре	Node Attributes			
			Small <100 nodes) Medium (<1,000)	Large (>1,000 nodes)	Complex (sparse)	Complex (dense) Layered/K-Partite Trees	Few (<5) Several (≥5) Homog. (1 type) Hetero. (>1 type)			
ayouts	On-node/edge encoding		32	1	3	1 3 3	2 1 3 2			
Link L	Attrdriven faceting		3 1	1	3	1 3 1	3 1 3 3			
Node	Attrdriven positioning		3 1	1	3	1 1 1	3 1 3 1			
ayouts	Adjacency matrix		3 1	1	2	3 2 1	2 3 3 2			
ular La	Quilts		3 1	1	3	1 3 3	3 3 3 3			
Tab	BioFabric		3 1	1	3	3 2 1	3 3 3 3			
olicit	Inner nodes & leaves		32	1	0	0 0 3	3 1 3 1			
Imp	Leaves		32	2	0	0 0 3	3 1 3 1			
ations	Juxtaposed		32	1	3	1 3 3	3 3 3 3			
v Oper	Integrated		3 2	1	3	1 3 3	3 3 3 3			
Viev	Overloaded	>	3 2	1	3	1 3 3	3 1 3 1			

0 Does *not* support Supports poorly 2 Supports

3 Optimized for

SURVEYED 205 PAPERS FROM 1991 – 2018

S. SUBSTNATES

	A	B	c	Þ	
A			0		
В					
C					
D.					

NODE

PLES

NODE

NATTR ·E ATTR

LES

Integrated

Overloaded

Hybrids

Operations View

Juxtaposed

Integrated

Overloaded

Separate views for Topology and Attributes

S)peratio ayout

Small Multiples

Hybrids

Multiple layouts for Topology or Attributes

Deriving New Attributes

Clustering

Converting Attributes/Edge to Nodes

VIEW LAYOUT OPERATIONS OPERATIONS

DATA OPERATIONS

Node-Link Diagram with on-node encoding

Small Multiples

Juxtaposed Views

Filter Data

Attribute

Name	Cole	Tom
Beverage	Port	Beer
Day 1	1	0
Day 2	0	2
Day 3	4	1

Abby	Jon	Sue	Mark
Port	Coke	Coke	Beer
4	3	3	5
5	3	5	5
2	2	4	3

Ty	pe
----	----

Duration

Co-workers	3 years
Soccer Coach	2 years
Dating	1 year
Mother / Son	7 years
Friends	12 years
Friends	3 years
Married	6 years

Node-Link Layouts

Topology Driven Layout

Node-Link Layouts

Attribute Driven Layouts

Topology Driven Layout

On-Node / On-Edge Encoding

Node-Link Layouts

Attribute Driven Layouts

Topology Driven Layout

On-Node / On-Edge Encoding

Node-Link Layouts

Attribute Driven Layouts

Attribute-Driven Faceting

Attribute-Driven Positioning

On-Node / On-Edge Encoding

Topology Driven Layout

Gehlenborg et al. 2010

Elzen and Wijk, 2014

Elzen and Wijk, 2014

Aggregating Nodes/Edges

Is easily understood by most users Works well for all types of networks

Recommended for small networks when only a few (usually under five) attributes on the nodes are shown, or in combination with a zooming/filtering strategy

Scalability. Node size leaves little space to encode attributes.

Attribute-Driven Faceting

Attribute Driven Layouts

Attribute-Driven Positioning

Semantic Substrates Shneiderman and Aris, 2006

- 🗆 X REGIONS Supreme 36 📕 Circuit 13 CITES Supreme to Supreme 0 Supreme to Circuit 0 Circuit to Supreme 18 🔳 Circuit to Circuit 2 RANGES Supreme + 4 1978 -- 2002 Circuit • 1991 -- 1993 SWERSITY O HCIL Copyright (C) 2006 Univ. of Maryland

Querying and Filtering

Attribute-Driven Faceting

Group-in-a-box Rodrigues et al. 2011

Group-in-a-box Rodrigues et al. 2011

On-Node / On-Edge Encoding

Attribute-Driven Faceting

Well suited for networks with different node types or with an important categorical or set-like attribute.

Attribute-Driven Faceting

Less scalable with respect to the number of nodes and network density than node-link layouts.

Neighborhoods, paths, and clusters are not easily visible if they span different facets.

Recommended for networks where nodes can be separated into groups easily and where these groups are central to the analysis

Attribute-Driven Faceting

Attribute Driven Layouts

Attribute-Driven Positioning

ANCHORAGE

VANCOUVER EDMONTON SEATTLE PORTLAND

SAN FRANCISCO

DENVER

1

MINNEAPOLIS / ST. PAUL

KANSAS CITY Y TORONTO CLEVELAND DALLAS BALTIMORE WASHINGTON D.C. PHILADELPHIA NEW YORK JFK & NEWARK .

يد وسو

mail.

TAMPA BAY

Graph Dice Bezerianos et al. 2010

On-Node / On-Edge Encoding

Attribute-Driven Positioning
Edge Map Dork et al. 2011

Querying and Filtering

On-Node / On-Edge Encoding

Attribute-Driven Positioning

Attribute-Driven Positioning

Does not lend itself well to visualizing the topology of the network.

Recommended for smaller, sparse networks where relationships between node attributes are paramount to the analysis task, and topological features only provide context

Adjacency Matrix

Tabular Layouts

BioFabric

Tabular Layouts

.....

.....

Coach

	<u>F</u>	Name	Beverage	Day
		Abby	Port	1
arried		Sue	Coke	0
		Jon	Coke	4
iends	Co- Worker	Tom	Beer	5
		Mark	Beer	2
		Cole	Port	3

		Name	Beverage	Day
ating	Friends	Tom	Beer	5
		Jon	Coke	4
		Cole	Port	3
	Married	Mark	Beer	2
		Abby	Port	1
		Sue	Coke	0

rdbeere imbeerei 0

Buchweizenflocken Haferflocken Haferkleie Amaranth gepufft Fünf Körner Honeyboons Leinsamen Crunchy and Oat Plantago-Samen Vollkorn-Cornflakes Dinkelflakes Dinkel gepufft Bircher Deluxe Chocolate-Dream Quinosflocken Schoko Corner Aroniabeeren Ananas Gojibeeren Feigen Bananen Cranberries Erdbeeren Himbeeren Apfelstücke Mango Mango Heidelbeeren Aprikosen Rosinen Datteln Sauerkirschen Weintrachen Pstansiskerne Kokoschips Cashewkerne Mandeln Sonnenblumenkerne Kürbiskerne Walnusskerne Macadamia Pitatrusskerne Schoko Digkelb Schokoholic-C Hafer-Crunchy Corn-Crisper Schokoplättchen Honigflocken eiße Schokplade

Moritz Stefaner, Musli Ingredient Network. <u>https://truth-and-beauty.net/projects/muesli-ingredient-network</u>

Α B C D E

A B C D E

Alper et al, 2013

	-		+		
			city	Portland	Seattle
			state	OR	MA
+_ ^{degree}	city	state	airport	PDX	SEA
1.00 1.04k			airport		
•	Minneapolis	MN	MSP		
	Des Moines	IA	DSM		
	Fargo	ND	FAR		
	Sioux Falls	SD	FSD		
	Bismarck/Ma	ND	BIS		
	Duluth	MN	DLH		
	VVIIIISton		ISIN		
•					
•	Brainord				
•	Bemidii	MN	BIL		
•	Dickinson	ND	אוס		
•	Grand Forks	ND	GEK		
•	Devils Lake	ND	DVI		
•	Cedar Rapids	IA	CID	-	
•	Jamestown	ND	JMS	-	
•	Minot	ND	MOT		
•	Rapid City	SD	RAP		

Kerzner et al, 2017

Ideal for dense and completely connected networks

Requires quadratic space with respect to the
number of nodes.Complexity of choosing the right reordering
algorithm

Recommended for smaller, complex and dense networks with rich node and/or edge attributes, for all tasks except for those involving paths

Tabular Layouts

BioFabric

	Name	Beverage	Day '
•	Mark	Beer	1
•	Sue	Coke	0
	Cole	Port	4
•	Jon	Coke	5
•	Tom	Beer	2
	Abby	Port	3
)		

Dating

elationship

BioFabric

Longabaugh, 2012

Can be used to visualize rich edge attributes and node attributes at the same time

BioFabric

More difficult to discover neighbors and clusters in Biofabric compared to matrices.

Recommended for small, sparse networks with many nodes and rich edge attributes

Juxtaposed

View Operations

Integrated

Overloaded

View Operations

Juxtaposed

Name	Beverage	Day 1
Mark	Beer	1
Sue	Coke	0
Cole	Port	4
Jon	Coke	5
Tom	Beer	2
Abby	Port	3

Name	Beverage	Day 1	
Mark	Beer	1	
Sue	Coke	0	
Cole	Port	4	
Jon	Coke	5	
Tom	Beer	2	
Abby	Port	3	

Dating	4
Mother / Son	12
Co-workers	3
Soccer Coach	2
Friends	8
Friends	3
Married	4

🕼 Gephi 0.8.2 - Proj	ject 0				
File Workspace Vie	w <u>T</u> ools <u>W</u> indow	/ Plugii	ns <u>H</u> elp		
Overview	🔲 🔲 Data Lab	oratory		Preview	
Preview Settings 88			60 Preview	86	
🖉 Presets					
Default		•			
Nodes					
Border Width	1.0				
Border Color	custom [0,0,0]				
opacity	100.0				
- Node Labels		Ξ			
Show Labels					
Font	Abcde				
Proportional size	1				
Color	custom [0,0,0]				
Shorten label				000	
Max characters	30				6 IT
Outline size	0.0			· ·	
Outline color	custom [255,255,255]				
Outline opacity	80.0				
Box					×
Box color	parent				
Box opacity	100.0	T		.///	
Preview ratio: 100%				7 4 1	
		esh		• •	
Export: SVG/PDF/PNG			Backgro	und Reset zoom - +	-

Gephi

Juxtaposed

Control Panel		ompound-Reaction-Enzyme-Gene
Style Select MetScape		9-
Build Pathway-based \$ Network		No West
Input		
Organism Human ‡ Clear All		1 A BAR AND
Data Files		
Compounds: metabolites		
Genes: genes Select		
Compounds		
C00047 L-Lysine		
C00064 L-Glutamine		
C00079 L-Phenylalanine	9 - X - X - X - X - X - X - X - X - X -	
C00187 Cholesterol		The CAN State of the second
Add Remove Clear Reset		and the second second
Genes		
Input ID A Input Symbol	5 - N - N - N - N	**************************************
10 NA12 15 AANAT		they to see and the
16 AARS	2	
18 ABAT		
Add Remove Clear Reset	Table Panel	
Options	Select All Concepts Deselect All Concepts	Create Subnetwork Save Co
Network Type	Deselect All concepts	Create Subiletwork
Compound-Reaction-Enzyme-Gene ‡	Concept Name A Nu	mber of Enriched-Driving Genes Number of Ge
Query	1,4-Dichlorobenzene degradation 21	9
Use compounds/genes	3-Chloroacrylic acid degradation 15	8
Use selected nathway	Acute myeloid leukemia 53	8
TCA such	Adherens junction 74	12
I CA cycle 🗧	Adipocytokine signaling pathway 71	12
	Mainine and aspartate metabolism 50	20
	Alkaloid biosynthesis 1 17	10
Build Network Output as File Close	Alkaloid biosynthesis I 17	10

Cytoscape

Juxtaposed

Memory: OK 🔵 _____

0.583

0.546

0.392

0.675

0.198

0.95

0.362

0 32

0.359

0.293

0.172

0.467

0.042

0.901

↓ 0.151

0 1 2 5

Concept Filter

Independent views can optimize for topology and attribute independently.

Not great for tasks on topological structures beyond a single node or edge.

Recommended for large networks and/or very large numbers or heterogeneous types of node and link attributes

View Operations

Integrated

Name	Beverage	Day 1
Mark	Beer	1
Sue	Coke	0
Cole	Port	4
Jon	Coke	5
Tom	Beer	2
Abby	Port	3

Name

Beverage	Day 1
Beer	1
Coke	0
Port	4
Coke	5
Beer	2
Port	3

Juniper Nobre et al. 2018

Integrated

Juniper Nobre et al. 2018

Integrated

Deriving New Attributes

Querying and Filtering

Integrated

Circos Krzywinski et al. 2009

Integrated

good at integrating attributes with topology, if the topology can be represented in a linear layout.

Integrated

Not suitable for networks that can not be sensibly linearized.

Recommended for networks with several, heterogenous, node attributes and well suited for tasks on single nodes, neighbors, and paths

Small Multiples

Layout Operations

Layout Operations

Small Multiples

Day 1

Day 1

Day 2

Day 3

Peakspotting - <u>https://truth-and-beauty.net/projects/peakspotting</u>

Small Multiples

On-Node / On-Edge Encoding

Bach et al. 2014

Small Multiples

Adjacency Matrix

Common layout facilitates attribute comparisons in specific topological features

Small Multiples

Recommended for small networks where the tasks are focused on attribute comparison

Juniper

	<i>د 1865</i>	Edges (698 ⁶) (sit.	sr ,	Nith	u ^{ae} no	ANS NOT	king throngs		
Grad	N ^L Visib	Hidden	•	19 71 19 71		ance			las Ga	name U 🌢 🗣 🖉 🛈	S	equence
. –	. –	. –	89%	11%	11%	11%	11%	11%	11%	. –	Ш	
8	8	1: 1:	B	8	8	8	3	1: 3	8	15	1	
8	8	-								arya stark		
8h	1	-								clash of k		
8h	1	-								dance with		
1k	1	-								feast for		
4h	1	-								game of th		
4h	1	-								noble		
1h	1	-								stark		
1k	1	-								storm of s		
1h	1	-								northmen		

Select Subgraph

Querying and Filtering

Deriving New Attributes

Integrated

Attribute-Driven Positioning

🕇 🗖 📲 Arya Stark

♪

Ð

- Clash of kings
- Dance with dragons
- Feast for crows
- Game of thrones
- 🗣 Noble
- 🗳 Stark
- Storm of swords
- O northmen

Querying and Filtering

Deriving New Attributes

Attribute-Driven Positioning

Integrated

ndragons orde	nesthrones	
	, name (1) 🌢 🛨 🖉 (1)	sequence
.% 11% 11%		
	↓ F ⊗	1 ↓ = 6 ເ⊗
	arya stark	
	clash of k	
	dance with	
	feast for	
	game of th	
	noble	
	stark	
	storm of s	
	northmen	

Multivariate Network Visualization Techniques A companion website for the STAR Report on Multivariate Network Visualization Techniques.

TECHNIQUES WIZARD HOME

About

This is a companion website for a review article on multivariate network visualization techniques.

Multivariate networks are networks where both the structure of the network and the attributes of the nodes and edges matter. It turns out, these are very common. Every person in a social network, for example, has both, relationships and lot o other characteristics, such as their ade, the school they went to, or the city they live notative and the school they be able to show both, these attributes and the school they went to be able to show both, these attributes and the school they went to be able to show both, these attributes and the school they went to be able to show both, these attributes and the school they went to be able to show both. These attributes and the school they went to be able to show both. These attributes and the school they went to be able to show both. These attributes and the school they went to be able to show both. These attributes and the school they went to be able to show both. These attributes and the school they went to be able to show both. These attributes and the school they went to be able to show both. These attributes and the school they went to be able to show both. These attributes and the school they went to be able to show both. These attributes and the school they went to be able to show both. These attributes and the school they went to be able to show both. These attributes and the school they went they are the school the school they are designed to be able to show both, thes techniques, we can analyze, for example, if a network of friends predominantly went to the same high school.

The visualization research community has developed many techniques to visualize these kinds of networks, and our review article – and this website – are designed to help you sort through these options.

Browse through the techniques illustrated below, or use our wizard to find the right multivariate network visualization technique for your datasets and tasks!

Get in touch if you have questions or comments.

Use the Wizard

Read the Review Article

The State of the Art in Visualizing Multivariate Networks Carolina Nobre, Miriah Meyer, Marc Streit, and Alexander Lex To appear in Computer Graphics Forum (EuroVis 2019)

Thank You! @carolinanobre84 www.vdl.sci.utah.edu

visualization design lab

