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Figure 1: the GalStamps interface supports the linked statistical and visual analysis of galaxy observation data. Statistical plots are generated via a
plot menu (left pane) and displayed in the plot view (middle pane). Selections within plots reveal the associated 2D scalar field data (rendered as
images) in the image view (right pane). Hovering over images in the image view highlights the associated statistical data in the plot view (shown in red).

ABSTRACT

One way astronomers and astrophysicists study galaxy formation
and evolution is by analyzing and comparing real galaxy observa-
tions, captured by telescopes, and simulated galaxy observations,
generated from theoretical models. They approach this through a
combination of statistical and visual analysis, conducted either inde-
pendently or sequentially. During the first year of an ongoing design
study with astronomers and astrophysicists, we explored approaches
to integrating statistical and visual analysis to enhance understanding
of these data. Contributions from this stage of the study include a
data and task abstraction for statistically and visually analyzing real
and simulated galaxy observations, as well as an initial design, im-
plemented in a prototype called GalStamps, and evaluated through
two case studies with domain experts.

Index Terms: Visualization—Design study—Astronomy

1 INTRODUCTION

When we look out in space, we are looking back in time. Astronom-
ical observations of galaxies, like those taken by the Hubble Space
Telescope, provide snapshots at different stages of galaxy formation
and evolution — as if billions of flip books were torn apart and
spread across the sky. Theoretical astrophysicists develop models
that effectively reassemble these flip books. Through a sequence
of simulated snapshots, these models predict how galaxies form,
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interact, merge, and evolve over time. Matching real observations
from telescopes with simulated observations from snapshots of theo-
retical models can help astronomers predict the histories and futures
of individual galaxies. Comparing collections of real and simulated
observations can help validate models and clarify key processes in
galaxy formation and evolution.

Astronomers and astrophysicists studying galaxy formation and
evolution analyze and compare these data through a combination of
statistical analysis of plots and visual analysis of images and movies.
These two forms of analysis are most often completed independently
or sequentially. Integrated analysis of these data is not supported in
existing astronomical data analysis tools. The goal of this work is to
begin to fill this gap by exploring integrated approaches to statistical
and visual analysis to enhance the analysis of these data.

This work evolved out of a long-term, collaborative relationship
with astronomers and astrophysicists at the University of California
Santa Cruz. We report here on the initial results of an ongoing
design study. Current contributions of the study include: a data
and task abstraction for statistically and visually analyzing real and
simulated galaxy observations; and an initial design, implemented in
a prototype called GalStamps and evaluated through two case studies
with domain experts. Our results lay the groundwork and introduce
interesting visualization research opportunities for further design
study research. As supplemental material, we include a rich process
description in order to support transparency and transferability of
our research.

2 PROBLEM DOMAIN BACKGROUND

One of the major questions in astronomy is how galaxies were
formed and how they have evolved over time. Observational as-
tronomers study galaxy formation and evolution by analyzing ob-
servations of galaxies captured by space-based and ground-based



telescopes. These telescopes survey regions of the sky, imaging
galaxies with instruments that measure different wavelengths of
light. Astronomers then derive additional statistical measurements
from these images to characterize and analyze the observations.

Theoretical astrophysicists, on the other hand, study galaxy forma-
tion and evolution by developing computational models that simulate
how galaxies form, merge, and evolve over time. Comparing the
results of these models to real observations helps researchers val-
idate and improve models and clarify what is being exhibited in
observations. To support this comparison, theoretical astrophysicists
generate collections of simulated observations by taking snapshots of
their simulations at different angles and different stages of evolution,
rendering images at different wavelengths of light, and degrading
the images to resemble those taken by telescopes. Similar to real
observations, comparable statistical measurements are then derived
from these simulated images. Astronomers have termed these real
and simulated images galaxy postage stamps.

In both cases, scientists analyze galaxy postage stamps and de-
rived statistical measurements in order to identify trends, correla-
tions, and outliers that help to answer open questions about galaxy
formation and evolution. Analyzing statistical measurements reveals
features that are either not captured or less evident in the images, and
vice versa. Visually inspecting the images associated with features in
the statistical measurements allows scientists to verify their findings
and to discover correlations between statistical and visual attributes.
Finally, comparing features across real and simulated collections of
observations is critical to these scientists’ analyses: agreement in
features allows scientists to validate existing models, and thus the
underlying theory, whereas disagreement in features helps scientists
refine theory and even uncover new, key phenomena. Neither of
these forms of analysis — visually verifying statistical features, and
comparing features across real and simulated collections of observa-
tions — are supported in an integrated way by existing astronomical
pipelines and technologies. As a result, these powerful techniques
are used only on occasion. We speculate that this has resulted in
missed opportunities for verification and discovery.

3 RELATED WORK

Within the astronomy and astrophysics community, a host of ser-
vices have been developed to support the dissemination and analysis
of real and simulated observation data. These platforms support
the navigation and exploration of astronomical surveys and cata-
logues [1, 2, 24, 37] and offer a range of tools for mapping and
cross-matching observations across datasets [5, 6], statistically ana-
lyzing associated tabular data [38], and visually classifying real and
simulated galaxy observations [9]. Numerous visualization packages
have also been developed to support statistical and visual analysis of
astronomical data more generally [17,25,39]. These packages target
a broad range of data types — from catalogue data to time-evolving
numerical simulation data — and support an equally broad range of
visualization techniques — from volume rendering to 2D and 3D
scatterplots. While some of these tools support both statistical and
visual analysis, these tasks are typically performed separately.

Within the visualization community, research has mainly focused
on the visual representation of astronomical data. This work spans
efforts to visualize astronomical and cosmological simulation data [3,
21, 35] to reconstructing 3D models from 2D observations [22, 28,
41], to developing 3D Universe software, which visualizes and maps
observation data from a range of sources for use in planetariums and
other public outreach venues [7,33]. Other instances of visualization
research focus on representing uncertainty in astronomical data [23]
and supporting the mapping and cross-matching of multisurvey
observational datasets [27]. These instances focus purely on visual
analysis and not on statistical analysis.

A handful of successful approaches have combined visual and sta-
tistical analysis of astronomical data using linked views [15, 16, 31].

This work, however, falls primarily in the context of visualizing
and analyzing cosmology simulation data. A more general push
for linked view analysis of high-dimensional astronomical data has
come from the astronomy visualization community [13]. Glue [4],
a widely used Python library designed to support multidimensional
linked-data exploration, is a direct response to this call. With Glue,
users can manually generate scatterplots, histograms, and images
from multiple related datasets. The platform is built around brushing
and linking, such that selections in any one graph or image are propa-
gated to all others. Glue, however, focuses its analysis on individual
images, allowing users to query and visually inspect image pixels
corresponding to statistical properties. Our work extends the Glue
framework by supporting this analysis across collections of images.

4 DESIGN PROCESS

As part of an ongoing investigation into recording and reporting
on design study research, we include a rich process description —
detailing our methods and resulting artifacts, and reflecting on the
learning that occurred along the way — in supplemental materials1.
What follows is a high-level summary of this process description.

Figure 2: the design study was conducted in 3 core phases (P1-P3) and
structured around 5 visits (V1-V5) to the domain experts’ home institution.

As shown in Figure 2, the design study was carried out in 3 core
phases (P1-P3) structured around 5 visits (V1-V5) to the University
of California Santa Cruz (UCSC), and concluding with a period
of remote, iterative design and development. Our collaborators
consisted of faculty, graduate and undergraduate students, and a
post-undergraduate researcher, all conducting research in either ob-
servational astronomy or theoretical astrophysics and with a focus
on galaxy formation and evolution. Preconditioning and formulation
of the domain problem [36] occurred over the course of two visits to
UCSC (V1-V2) in the two years prior to the start of study. Through
reviewing the literature, attending talks and group meetings, and
conducting unstructured and semistructured interviews the visualiza-
tion researchers developed an understanding of the problem space
and honed in on an initial visualization research opportunity [36].

The first core phase of the study (P1) was devoted to developing
an initial data and task abstraction. This phase spanned 2 months and
was structured around a single visit (V3), in which visualization re-
searchers conducted interviews, think-alouds, and group brainstorms
involving existing, related tools. The final data and task abstraction,
developed and refined over the remainder of the study, is presented
in Section 5. Building on the initial data and task abstraction, the
second phase (P2) was devoted to eliciting design requirements and
developing an initial design. Over the course of 6 months and 2
visits (V4-V5), the team iteratively developed technology probes
to brainstorm and experiment with features, functionalities, and
interactions, and to explore applications to a range of datasets.

The final phase (P3), spanning the last 4 months of the study,
was devoted to translating the study findings and the results of the
technology probes [20] into a deployable prototype. During this
time, visualization researchers met remotely with one collaborator,
on a weekly or biweekly basis, to iteratively design and develop the
prototype using a case study that was central to the collaborator’s
research. Results of this phase are presented in Section 6.

5 DATA AND TASK ABSTRACTION

Within our collaborators’ analysis, data items correspond to individ-
ual observations and datasets correspond to collections of observa-
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tions. Whether real or simulated, a single observation corresponds
to a region in the sky where a number of measurements are taken.
These measurements are recorded as images and represented as a set
of 2D scalar fields, where each field stores a different measurement,
or visual attribute, across a 2D grid. Measurements derived from
the set of 2D scalar fields are recorded as statistical attributes of
the observation, and stored as a row of tabular data along with the
statistical attribute values of all other observations within the given
collection. Thus, each observation in a collection is represented both
as a set of 2D scalar fields and as a row of tabular data. The two
representations are linked via an observation ID.

The goal of our collaborators’ analysis is twofold: to verify that
their theoretical simulations, and thus the underlying physics, are
accurately capturing what is being observed in nature; and to use
these simulations to help characterize what is being captured by
observations. In order to do this, our collaborators compare real
and simulated galaxy observations. The associated visualization
tasks involve identifying important features within each collection
of observations, and comparing these features across collections [8].

Identifying features within a single collection of observations
involves analyzing statistical attributes within the tabular data, visual
attributes within the 2D scalar data, and the relationships between
these attributes. Visualization tasks include locating, exploring, and
browsing [8] patterns, trends, correlations, and outliers within and
across statistical and/or visual attributes. Comparing features across
collections of observations involves analyzing the relationships [12]
(similarities, differences, correlations, etc.) between features across
datasets. Designing for this comparative level of analysis is a focus
of future work in our ongoing design study.

6 VISUALIZATION DESIGN

Our second contribution is a visualization design for statistically
and visually analyzing real and simulated galaxy observations. We
implemented our design in a prototype called GalStamps, named
after the galaxy postage stamps that our collaborators analyze. The
GalStamps interface, shown in Figure 1, comprises a plot menu
and two linked views: a plot view and an image view. Our design
was grounded in the visualization literature and the results of our
design study, and was heavily informed by prior work surrounding
combined statistical and visual analysis using linked views [18, 30].
GalStamps was implemented in D3.js. A video demonstration of the
system is included in supplemental materials.

6.1 Plot Menu
The plot menu, shown as the leftmost pane in Figure 1, allows users
to generate custom plots from the statistical attributes available for a
given dataset. We found manual selection of plot attributes to be an
efficient approach, as each domain expert was interested in exploring
unique and specific sets of attributes. Users can generate three types
of plots: scatterplots, parallel coordinate plots, and binned-SPLOMs.
We detail these plots in the proceeding sections.

6.2 Plot View
The plot view, comprising the middle pane of the prototype shown in
Figure 1, serves two primary function. First, it supports the analysis
of statistical observation attributes. As described in Section 5, this
involves identifyingpatterns, trends, correlations, and outliers within
and across statistical attributes. We support this through the analysis
and comparison of plots. Second, the plot view provides a selection
mechanism for querying 2D scalar field data based on selections
of statistical attribute data. Selections are made via brushing. The
plots are linked, such that selections in one plot are propagated to
all other plots. For selections in multiple plots, the intersection of
the selections is utilized.

Examples of scatterplots and parallel coordinate plots are shown
in Figure 1. In the scatterplots, observations are encoded as points

of uniform radius, and histograms encode the distribution of points
along each axis. Users can toggle to display isodensity contours.
Point selections are made via a single 2D rectangular brush; iso-
density contours are selected via mouse-click. Scatterplots support
zooming and panning, and may be expanded to the width of the plot
view. In the parallel coordinate plots, observations are encoded as
joined line-segments, and selections are made via 1D rectangular
brushes along one or multiple axes. Users can zoom and pan along
each axis and reorder axes via dragging. Our initial inclusion of par-
allel coordinate plots was exploratory, as our collaborators had never
seen them before. Interestingly, the domain experts predominately
used the parallel coordinates plots as interactive legends for filtering
high-dimensional data, which echoes the findings of others [19]. As
described in Section 7, they also proved useful for summarizing the
statistical attributes for a given observation.

Examples of the third type of plot, which we have termed binned-
SPLOMs, are shown in the plot view panes in Figure 3. In a binned-
SPLOM, the bottom (x) and left (y) axes are preserved across all
cells. Data in each cell is filtered into 2D bins, defined by sec-
ondary, top (x’), and right (y’) axes. The static form of these plots
is gaining popularity in the astronomy and astrophysics research
community as an effective way to identify trends along pairs of sec-
ondary attributes [11,42]. In this work, we experimented with adding
interactivity to these plots. Zooming and panning allows users to
adjust the ranges of the primary x and y axes. Histogram-scented
filters allow users to adjust bin sizes and ranges along the secondary
x’ and y’ axes. Observations are encoded as points, users can toggle
to display isodensity contours, and selections are made via a 2D
rectangular brush, or via mouse-clicks for isodensity contours.

6.3 Image View
The image view, shown in the rightmost pane in Figure 1, supports
the analysis of visual attributes for a collection of observations. This
includes tasks for analyzing individual observations, represented as
sets of 2D scalar fields, and for comparing multiple observations.

As a preprocessing step, 2D scalar fields are assigned a colormap
and rendered as images. For a given observation, users can switch
between different 2D scalar fields, via a dropdown menu, or can
view the set of 2D scalar fields side by side. Image size can be
adjusted via a slider, and users can toggle in and out of zoom mode,
which supports zooming on images via mouse-scroll. Zooming on
one image translates to all other images. For a given selection in
the plot view, the associated images are displayed in rows and are
ordered to reflect the xy distribution of the selection (the selection
space) in the plot view. We liken this to an abstracted version of
image scatterplots [40]. For intersected selections, this defaults to
the latest selection. Given multiple plots in the plot view, users
can toggle between selection spaces via radio buttons. Images can
also be reordered manually via dragging — we found this to be
useful both for comparing images side by side and ordering groups
of images based on visual patterns.

7 CASE STUDIES

In this section, we present two case studies used to evaluate our initial
design and its implementation in GalStamps. These case studies
validated our integrated approach to enhancing and accelerating
our collaborators’ analysis, and verified that our initial design was
effective in supporting this approach. Additionally, the first case
study revealed the need to support comparison of multiple collections
of observations; the second case study illustrates the use of parallel
coordinates for summarizing distributions along each attribute.

7.1 Comparing Real & Simulated Galaxy Observations
The first collaborator used the tool to examine findings from a re-
cent paper [42]. The paper employed data derived from both real
and simulated galaxy observations to model the evolution of galaxy



Figure 3: our first collaborator used the prototype to compare real (foreground)
and simulated (background) galaxy observations and to confirm prior claims
based on deep learning analysis.

shapes within the CANDELS galaxy survey [14]. This collaborator
began by examining a real collection of galaxy observations. Using
the plot menu, he recreated a central figure of the paper, a binned-
SPLOM, shown in Fig. 3 (forefront). In the plot view, he adjusted
the histogram-scented brushes to reflect the original binning in the
paper, and began brushing to select various regions of interest within
the different cells. With each selection, he studied the resulting
images, hovering over individual images to reveal and assess the cor-
responding plot point. He was reassured that the images confirmed
his expectations, and that he could reason about any disagreements.

In a separate browser, he then recreated and examined the same
binned-SPLOM, this time generated using a simulated collection
of galaxy observations, shown in Figure 3 (background). Selecting
the same regions of interest in the plot view, he confirmed that the
associated simulated galaxy observations appeared as he expected.
He commented that being able to easily pull up and inspect the
associated images was useful. As a final step, he examined the
two browsers side by side, selecting the same regions in each of
the binned-SPLOMs, and visually comparing the resulting sets of
images. In each case, the simulated images looked very similar to
the observed images, thereby validating the paper findings [32]: “we
made this claim [...] based on deep learning analysis, but this is
much better confirmation! [...] looking at the images and seeing
how similar they are is really quite nice!” In discussing plans to
support the comparative analysis of multiple datasets (e.g., real and
simulated), he responded “why make things more complicated? This
is fine!” Finally, this collaborator remarked on the broader utility of
the system. Speaking about a related project, he commented: “tools
like this one would be enormously helpful in analyzing these data.”

7.2 Deconstructing 2D Scalar Fields
The second collaborator intended to use the system to investigate
a puzzling statistical feature in a simulated observation dataset.
Questions about the image data, however, caused her to redirect her
analysis, using the system instead to identify the visual attributes
stored within each of the 2D scalar fields. By plotting related sta-
tistical attributes, selecting specific regions, and cross-verifying the
associated images, she was able to test various hypotheses and even-
tually draw a tentative conclusion. A snapshot of this process is
depicted in Figure 1. Building on her conclusion, she was then able
pursue her initial investigation, generating preliminary hypotheses.

In reflecting on this process, she commented that the system
enabled her to ask and answer her questions quickly and efficiently,
in what would otherwise be a long, iterative process involving python
scripts. She remarked that seeing the tabular and image data together
allowed her to explore the data in new ways. She also commented
on the usefulness of the parallel coordinate plot for summarizing

the statistical attribute values for a given observation, and for cross-
verifying them with the images: “instead of jumping around from
plot to plot, I can just look at how each of [the attributes] are related.”

8 DISCUSSION

The case studies presented in Section 7 provide validation for our
data and task abstraction and our initial design, and illustrate two
ways in which the design can be used to enhance our collaborators’
analysis. Our collaborators found the GalStamps interface to be intu-
itive, and that the workflow — iteratively generating plots, selecting
regions of interest, and cross-examining the associated observations
— allowed them to effectively and efficiently pursue existing ques-
tions of their data, while also prompting new kinds of questions.
These results give us confidence to continue with our initial design
and reveal interesting design considerations moving forward. First,
while our ultimate goal is to support the comparative analysis of real
and simulated galaxy observations, and while our findings through-
out the study indicate the importance of designing for this level of
comparison, we wonder whether utilizing two side-by-side versions
of the system is in fact sufficient, as evidenced by our first case study,
or whether there is significant added benefit integrating this analysis.
Second, feedback gathered with the technology probe and in the sec-
ond case study suggests a different use of parallel coordinate plots
beyond exploring correlations between attributes: as an interactive
legend for filtering and summarizing high-dimensional data.

Our findings throughout the first stage of this design study point
to two interesting mismatches between visualization guidelines and
domain practice. First, as we describe in the rich process description
included in supplemental materials, interactive 3D scatterplots play a
valuable role in our collaborators’ current analysis workflow. As one
collaborator put it: “I’ve built my career analyzing 3D scatterplots.”
3D scatterplots, however, are argued against within the visualization
community [10,26,29]. Building on existing work in this space [34],
we see this collaboration as opportunity to further investigate the
potentially underappreciated value of interactive 3D scatterplots for
analyzing and detecting features in 3+ dimensional data. Second, an
underlying question for us throughout this study was: why hadn’t
this system already been developed? The GalStamps prototype uses
a standard multiple linked view approach with rich interactions,
but these design standards had not yet made their way into the
astrophysical community. We see this collaboration as a valuable
opportunity to investigate the barriers that domains face in adopting
established visualization techniques.

9 CONCLUSIONS AND FUTURE WORK

We present the initial results of an ongoing design study exploring
the integration of statistical and visualization techniques to enhance
the analysis and comparison of real and simulated galaxy obser-
vation data. Contributions from this stage include a data and task
abstraction for statistically and visually analyzing galaxy observa-
tion data, and an initial design, implemented in a prototype called
GalStamps. Evaluation through two case studies validates the design
and informs the next stages of our study.

Moving forward, our collaborators plan to use the prototype
in several upcoming and ongoing projects. We plan to use these
opportunities to continue to test and develop our design, including
integrating support for comparative analysis of real and simulated
galaxy observations. In addition to developing the standalone system,
we have begun working with lead researchers for yt and Glue to
develop our system as extensions of these visualization and analysis
packages. We hope this will help disseminate our results to the
broader astronomy and astrophysics community and beyond.
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