
1

Visualization of Big Spatial Data using
Coresets for Kernel Density Estimates

Yan Zheng, Yi Ou, Alexander Lex, Jeff M. Phillips,

Abstract—The size of large, geo-located datasets has reached scales where visualization of all data points is inefficient. Random
sampling is a method to reduce the size of a dataset, yet it can introduce unwanted errors. We describe a method for subsampling of
spatial data suitable for creating kernel density estimates from very large data and demonstrate that it results in less error than random
sampling. We also introduce a method to ensure that thresholding of low values based on sampled data does not omit any regions
above the desired threshold when working with sampled data. We demonstrate the effectiveness of our approach using both, artificial
and real-world large geospatial datasets.

Index Terms—Spatial data visualization, sampling, big data, coresets.

F

1 INTRODUCTION

D ATA is collected at ever-increasing sizes, and for many
datasets, each data point has geo-spatial locations (e.g.,

either (x,y)-coordinates, or latitudes and longitudes). Examples
include population tracking data, geo-located social media contri-
butions, seismic data, crime data, and weather station data. The
availability of such detailed datasets enables analysts to ask more
complex and specific questions. These have applications in wide
ranging areas including biosurveillance, epidemiology, economics,
ecology environmental management, public policy and safety,
transportation design and monitoring, geology, and climatology.
Truly large datasets, however, cannot be simply plotted, since they
typically exceed the number of pixels available for plotting, the
available storage space, and/or the available bandwidth necessary
to transfer the data.

A common way to manage and visualize such large, complex
spatial data is to represent it using a continuous, smoothed func-
tion, typically a kernel density estimate [20], [21] (KDE). A KDE is
a statistically and spatially robust method to represent a continuous
density using only a discrete set of sample points. Informally,
this can be thought of as a continuous average over all choices
of histograms, which avoid some instability issues that arise in
histograms due to discretization boundaries. Or it is a convolution
of all data points with a continuous smoothing function. For a
formal definition, we first require a kernel K : R

¯
2×R

¯
2 → R

¯
; we

will use the Gaussian kernel K(p,x) = e−‖p−x‖2 , the most common
and pervasive kernel. Then, given a planar point set P ⊂ R

¯
2, the

kernel density estimate is defined at any query point x ∈ R
¯

2 as

KDEP(x) =
1
|P| ∑p∈P

K(p,x).

This allows regions with more points nearby (i.e., points x with a
large value K(p,x) for many p in P) to have a large density value,
and this function is smooth and in general nicely behaved in many
contexts. Using this function summarizes the data, and avoids

Y. Zheng is with Visa Research, e-mail: yanzh.cs@gmail.com; Much of this
work was completed while at the University of Utah.
Y. Ou is with Expedia, Inc, e-mail: olly93219@outlook.com; Much of this work
was completed while at the University of Utah.
A. Lex is with University of Utah, e-mail: alex@sci.utah.edu
J. Phillips is with University of Utah, e-mail: jeffp@cs.utah.edu

Fig. 1. Crimes from 2006 to 2013 in Philadelphia, the full dataset (left)
with 0.7 million points and a coreset (right) with only 5300 points.

the over-plotting and obfuscation issues demonstrated in Figure
1(left). However, just computing KDEP(x) for a single value x
requires O(|P|) time; it iterates over all data points summing their
contributions. While these values can be precomputed and mapped
to a bitmap, visually interacting with a KDE e.g., to query and filter,
would then require expensive reaggregating. For instance, as a user
zooms in on a region of interest, ideally the visual interface should
increase the resolution, and possibly shift the grid boundaries. This
would require recomputing each of these visible pixel values in
O(|P|) time each.

Towards alleviating these issues, we propose to use coresets
for KDEs. In general, a coreset Q is a proxy for a large set P;
it is a carefully designed small subset of a very large dataset P
where Q retains properties from P as accurately as possible. In
particular, in many cases the size of Q depends only on a desired
minimum level of accuracy, not the size of the original dataset P.
This implies that even if the full dataset grows, the size of the
coreset required to represent a phenomenon stays fixed. This also
holds when P represents a continuous quantity (like the locus of
points along a road network, or a spread of particulates from a
forest fire) and Q constitutes some carefully placed representative
points [24]. Figure 1 shows a dataset P with 700 thousand points
and its coreset from all reported crimes in Philadelphia from 2005-
2014. For more details on variations and constructions, refer to
recent surveys [3], [17].

In particular, a coreset for a kernel density estimate is a subset
Q⊂P [16], [31], with |Q|� |P| so that for some error parameter ε

L∞(KDEP,KDEQ) = max
x∈R

¯
2
|KDEP(x)−KDEQ(x)| ≤ ε. (1)

2

This means that at any and all evaluation points x, the kernel
density estimates are guaranteed to be close. In particular, such
a bound on the worst case error is essential when attempting to
find outlier or anomalous regions; in contrast an average case error
bound (e.g. L1(KDEP,KDEQ)) would allow for false positives and
false negatives even with small overall error. Thus, with such
a worst-case bounded coreset Q, we can use KDEQ efficiently
without misrepresenting the data.

In the rest of this paper we demonstrate two properties of core-
sets used for KDEs that make them pertinent for visual analysis.
In Section 3, we first demonstrate that we can create a coreset
that is more accurate than the naive but common approach of
random sampling. Second, very sparse subsets (e.g., from random
sampling) tend to cause anomalous regions of low, but noticeable
density; we introduce a method to counteract this problem in
Section 5, by carefully adjusting the smallest non-zero layer
of the corresponding transfer function. Towards demonstrating
these insights we design and present an interactive system for
visualizing large, complex spatial data with coresets of kernel
density estimates. Based on these insights, we believe that coresets
and kernel density estimates can become an important tool for
interactive visual analysis of large spatial data.

2 RELATED WORK

Visualizing large spatial datasets is an important challenge at-
tracting a lot of attentions among the visualization community.
Visualization researchers widely consider encoding data with
position, as it is e.g., used in scatterplots or bar charts, to be the
most powerful visual channel [6]. Yet, when visualizing geospatial
data, position is needed to indicate the position of a data point on
a map. Consequently, spatial data visualizations have to rely on
other channels such as color, e.g., by color-coding data points or
regions on a map (choropleth mapping), or size, e.g., by displaying
proportionally scaled circles on top of maps. For multidimensional
data vectors that are associated with geospatial positions, complex
glyphs drawn on top of the map are also an option [22], [25], [26].

All of these approaches, however, have significant drawbacks:
color-coding either of individual data points or regions is effective,
yet limited to one variable at a time, making it difficult to
communicate temporal trends, or complex data vectors. Adding
symbols for displaying uncertainty or other information is likely
to increase the visual complexity for map users and most of
mapping projects still disregarded data uncertainty [23]. Maps
using symbols or glyphs also commonly suffer from occlusion,
as data is rarely evenly distributed in geospatial datasets.

This uneven distribution of data points in geopspatial datasets
is also a significant problem for choropleth maps: in the case
of population-related data, for example, large, sparsely populated
areas, are over-represented on choropleth maps with respect to
the pixels on the screen. For example, while Manhattan has a
population larger than Alaska, the island of Manhattan is not even
visible on a typical map of the USA, while Alaska has a significant
share of the screen space. Some approaches address this by sizing
regions proportional to the data [8], but typically compromise the
readability of the graphs significantly.

While choropleth maps are suitable for representing data that
can naturally be aggregated into spatial units, such as vote share
per state, they are not ideal to represent data where no meaningful
spatial boundaries are present. Also, choropleth maps are problem-
atic for representing data at multiple zoom levels, for example, on

a country, state, city, and city block level. Pixel-based encodings,
i.e., representing each data point on a map, do not suffer from these
drawbacks, and are also well suited for interaction, e.g., based on
data-driven filtering [29].

However, representing each data point on a map has obvious
limitations when analyzing very large datasets, especially when
real-time interaction is desired. The data somehow needs to be
compressed, either as a subset, or by some statistical summariza-
tion. Common remedies for visualizing large data are sampling [7]
and aggregation [9].

With respect to large spatial datasets, this has led to the devel-
opment of a variety of research platforms including, inMens [15],
Nanocubes [14] and Gaussian cubes [27]. These systems all
provide a variety of ways to explore, interact, and analyze spatial
datasets at scale. For interacting with such spatial data purely
based on its density, a kernel density estimate is a necessary and
often default tool; it is the statistical premise behind a heat map.

Related approaches are also taken by database projects, such
as BlinkDB [1] and STORM [5] (shown in Figure 2). In these sys-
tems, random sampling of data is the core tool since it is efficient
and preserves to some degree most relevant statistical properties
of the data, including error in kernel density estimates [12].

Fig. 2. Screenshot image from STORM [5] showing heatmap/KDE of
tweet density in the USA.

Numerous other sampling schemes have been proposed to
reduce the dataset size for visualization [13], [30]. However, these
approaches do not directly address the preservation of kernel
density estimates. Park et.al. [30] develop heuristics to optimize a
measure related to the inverse of a KDE, and consider mainly data
from long strands of data along road networks. Kim et.al. [13]
focus on techniques for binned, one-dimensional data. Moreover,
these approaches are considerably more complicated than the ones
we consider and do not allow for efficient and stable updates in
the parameters of the KDE.

3 CORESETS CONSTRUCTIONS

When tracking tweets or when analyzing crime in an area, a high
frequency of such events in a sparsely populated area can be an
important pattern to analyze further. If a subset has low error on
average, but has locations with large deviations from the truth,
analysis based on that subset can lead to both false positives and
false negatives. In particular, the allowable error, that is the average
error is small, but may create a region which itself appears to be
much more dense than expected, thus prompting a user to spend
valuable time chasing down a potential anomaly. And the similar
effect can happen with a dense region (say around a population
center) which appears in the low-average-error approximation to
have far less density than expected.

3

On the other hand, an L∞ error, as formalized in equation (1),
ensures that all regions have small error. And as a result, if the
L∞ error is small, then we can be assured that no such false
negatives or false positives as outlined above can be present in
the approximate KDE. Both the advanced coresets techniques [31]
and random sampling [12], can make such strong L∞ guarantees
and are thus suitable for efficient summaries for visual analytics.

We next describe the two most useful ways to create such
L∞-error KDE coresets:

1) A random sample Q of size O((1/ε2) log(1/δ)) from a
large set P creates a coreset for kernel density estimates
with probability at least 1− δ [12]. We refer such a
method as RS. This can be implemented in O(|P|) time.

2) There are several techniques to create coresets for kernel
density estimates [4], [12], [16], [18], [31]. The one
we use [31] (labeled Z-order, described below) results
in a coreset of size O((1/ε) log2.5(1/ε) log(1/δ)), that
succeeds with probability at least 1− δ , and runs in
time O(|P| log |P|) time. This is roughly a 1/6 of the
size of the random sample technique. Note that other
techniques [16], [18], can in theory reduce the coreset
size to O((1/ε) log0.5(1/ε)); the Z-order method mimics
this approach with something more efficient and with
better constant factors, but a bit worse “in theory.”

3.1 Coreset method
To generate the coresets, we use the two-dimensional technique
based on space filling curves [31]. A space filling curve [2] puts a
single order on two- (or higher-) dimensional points that preserves
spatial locality. They have many uses in databases for approximate
high-dimensional nearest-neighbor queries and range queries. The
single order can be used for a (one-dimensional) B+-tree, which
provides extremely efficient queries even on massive datasets that
do not fit in memory.

In particular, the Z-order curve is a specific type of space
filling curve that can be interpreted as implicitly ordering points
based on the traversal order of a quad tree. That is if all of the
points are in the range [0,1]2 (or normalized to be so), then the top
level of the quad tree has 4 children over the domains c1 = [0, 1

2]×
[0, 1

2], c2 = [1
2 ,1]× [0,

1
2], c3 = [0, 1

2]× [
1
2 ,1], and c4 = [1

2 ,1]× [
1
2 ,1].

Each child’s four children itself divide symmetrically, and so on
recursively. Then the Z-order curve visits all points in the child c1,
then all points in c2, then all points in c3, and all points in c4 (in the
shape of a‘Z’); and all points within each child are also visited in
such a Z-shaped order. Thus given a domain containing all points,
this defines a complete order on them, and the order preserves
spatial locality roughly as well as a quad tree does. Usefully, the
order of two points can be directly compared without knowing
all of the data, so plugging in such a comparison operation, any
efficient comparison-based sorting algorithm can be used to sort
points in this order.

To generate the coreset based on the Z-order curve, set k =
O(1

ε
log2.5 1

ε
) and randomly select one point from each Z-order

rank range [(i−1) |P|k , i |P|k]. The resulting set Q gives an ε-sample
of KDE. Note that this asymptotic value of k is what is needed to
provide an adversarial guarantee of small L∞ error for any query
point, and will work with any data set and any choice of kernel.
In many cases, this error is indeed much small.

Moreover, this approach is oblivious to the parameters and
type of the kernel density estimate (the type of kernel, the choice

of bandwidth, the bitmap on which it is visualized), so it does not
need to be updated if we change these parameters. For instance, in
an interactive visualization using such a coreset that changes from
a Gaussian kernel to an Epanechnikov kernel could use the exact
same corset Q for the new choice of kernel and be assured that the
same strong error guarantee would hold.

3.2 Pre-ordering points

The one parameter that will cause the above coresets to change
is the error parameter ε , or symmetrically the size parameter k.
Clearly if we want to increase the size of the coreset to decrease
the error, or we want to decrease the size to increase the speed
with which we can handle changes in resolution, we will need to
change the coreset. It seems this would require completely redoing
the entire coreset construction. This would take O(|P| log |P|) time
to sort the points P, and even if the data is pre-sorted selecting the
coreset would take at least another O(|P|) time. Such a process
would not meet the demands of an interactive visualization, so
changing these parameters would not be feasible within such a
system.

Rather we propose a more useful way to preprocess the data.
In particular, we can reorder the original dataset P (from the Z-
order to a different ordering) to what we call a priority ordering,
so that the first k points in that order, which we call a priority
subset, are precisely the points to choose as a coreset of size k.
For instance, such a priority ordering can be created via random
sampling: assign each point a random number, and sort on the
points by these random numbers. This priority ordering has several
enticing properties.

• The coreset construction only needs to be done once, and
this can be done offline and in code that lives outside of an
interactive visualization system. For instance, in our im-
plementation, this is realized extremely efficiently in low-
level C, but we have built our visualization in JavaScript,
Canvas, and D3. This also makes the visualization system
modular, separating the coreset construction technique,
which only needs to provide a (priority) ordered set of
points.

• If we increase the size of the coreset, the new larger coreset
necessarily contains the old smaller one. This increases
the stability of the result, since for instance increasing the
size k by one point, only changes the coreset by 1 point.
This means adjusting this parameter makes the visual
interface more efficient and less jarring. Also, for small
updates, it can allow for some caching in recomputing
various quantities. In contrast, for a coreset Q1 constructed
directly from a Z-order, if the size parameter is changed
slightly, we may recompute a new coreset Q2 to satisfy
this parameter change with no overlap with Q1. This could
cause the visualization to appear unstable and require that
everything is completely recomputed.

For the Z-order approach, we can simply describe this priority
reordering using a bit reversal. Given all of the points sorted by
the Z-order, label each point as a binary number starting from
0 . . .00, 0 . . .01, 0 . . .10, 0 . . .11, Pad the dataset with dummy
points so the total number is a power of 2; i.e., all binary numbers
of a fixed length are included. Then reverse the order of the bits, so
101011 becomes 110101. Next randomize this by taking a random
mask M and XORing the mask with all flipped numbers; basically

4

Input: Z-order index 1 2 3 4 5 6 7 x

binary representation 000 001 010 011 100 101 110 111
reverse bits 000 100 010 110 001 101 011 111

after random mask M = 101 101 001 111 011 100 000 110 010
new binary ordering index 6 2 8 4 5 1 7 3

priority ordering index 5 2 7 3 4 1 6 x
TABLE 1

An example demonstration of using bit-reversal to create a priority ordering. The first line is the input Zordering index, based on this sorted order.
There are 7 points and one dummy point designated as x. The final line indicates the resulting priority ordering after removing the dummy point.

this randomly flips half of the bits. Then sort these points by these
new binary numbers. Remove the dummy points, and this is the
new order. This is illustrated in a small example in Table 1.

An alternative way of understanding this approach is via a
binary tree. For the original data P, assign each point an index i
based on the order in the Z-order. Then we construct a binary tree
over these points based on this sorted order. Next, we fill up the
binary tree with dummy points at the end of the ordering so that
the size is a power of 2, and the binary tree is a perfectly-balanced
tree; see Figure 3 for an example with 14 points.

Then we re-order these points by selecting points from the tree
in a random way, so the number of selected points in each subtree
is as balanced as possible; Algorithm 1 provides psuedocode for
this priority re-ordering algorithm. At each step, at each internal
node, we keep track of how many points have been selected from
each subtree. If the two subtrees have the same number of selected
points, choose one at random, and recurse. If the two subtrees
have imbalanced counts of selected points, then recurse on the
subtree (which will be unmarked) that has fewer selected points.
This randomizes the process while ensuring that the selection is
as balanced as possible with respect to the original ordering. The
new priority order of the points S = 〈s1,s2, . . . ,sn〉 is the order
in which they are selected, ignoring dummy points. The dummy
points ensure not to over-select from the existing points on the
right subtree which can have fewer points than the left subtree.

Algorithm 1 priority reordering
1: i = 1
2: loop
3: node = root
4: while (node is not leaf node and not marked) do
5: if (node→left and node→right are both unmarked)

then
6: generate a random number r from {0,1}
7: if r = 0 then node = node→left and mark node
8: if r = 1 then node = node→right and mark node
9: else if (node→left is marked) then

10: reset node→left as unmarked
11: node = node→right
12: else if (node→right is marked) then
13: reset node→right as unmarked
14: node = node→left
15: else if (both children are marked) then
16: return [all nodes have been processed]
17: if (leaf node and not dummy) then
18: output node as si
19: i = i+1

Theorem 1. The two constructions for a priority ordering on a
set P are equivalent. For any priority subset of size k, where k =
O(1

εk
log2.5 1

εk
) for an appropriate chosen εk, provides a coreset Q

such that ‖KDEP−KDEQ‖∞ ≤ εk.

Fig. 3. Index tree of a dataset of 14 points (green). Dummy nodes are
shown in grey.

Proof. We will describe how the bit-reversal approach is equiva-
lent to the binary tree approach, and then show how the binary-
tree approach preserves the coreset error guarantee. Let there be n
points in P, and assume that n = 2m is a power of 2. As explained
above, the dummy points ensure that under-filled trees are not
oversampled.

By reversing the bits of each binary representation, the new
reversed-bit ordering ensures that the first 2` points (for any integer
`) includes the (1+(n/2`) j)th point in the original order, for all
integers j = 0,1, . . . ,2`− 1. In the binary tree this is the leftmost
point from each subtree at level `. Since the first ` bits uniquely
determine which of the 2` subtrees a point falls in, then a random
mask keeps the subsets of points in the same subtree; however, it
changes the order of the subtrees, and it changes the order of the
points within the subtrees. It can be viewed as a way to randomly
exchange the order of two children of all subtrees, with the same
decision made for all subtrees at the same level. In particular, the
left most point within a subtree is now random. So the selection of
points is one from each subtree, but otherwise random – exactly
as in the binary tree approach when k is a power of 2. When k
is not a power of k (between 2` and 2`+1), then each of the first
2` points selected is also in a unique subtree at level `+ 1, and
the remaining points are chosen from other and distinct trees, at
random, at level `+1, as desired. So these methods are equivalent.

To see that the binary tree approach retains the coreset error
guarantee, we again start with k = 2`, a power of 2. In this case,
there are again k easily defined intervals (defined by the original k
subtrees at level `), and we randomly select one point from each of
them. To handle the case where k is not a power of two, we need
to use the argument of why a coreset of size O(1/ε) can be found
in 1-dimension [16]; the 2-dimensional coreset construction [31]
loses an extra factor log2.5(1/ε) using the Z-order approximation,
which carries through here unchanged. The 1-d argument works
by saying for any KDE query can be reduced [12] to two one-sided
interval (−∞,a] queries, with free parameter a, and each one-sided
interval query can be shown to induce ε-error. This works since
each query completely contains all points from P and Q in some
intervals, no points in other intervals, and in only a single interval
does it contain a partial subset of its points (it may or may not
contain the point from Q). This interval contributes at most ε

5

Kentucky Philadelphia Synthetic
S

iz
e

E
rr

or
P

lo
t

Fig. 4. Error comparison of random sample (RS), coreset (Z-order) and priority-ordered (Z-sort), or first points as presented in dataset (First). The
marks represent the average value of ten random trials with the error bar indicating the standard deviation of the errors.

error, and hence since that is the only error, it is the overall error.
What changes in our setting when k is not a power of 2, is that not
all of the intervals are the same size; some smaller ones contain
half the number of points from P as other ones. However, within
each subtree, for each small interval on the left, up to 1, there are
an equal number of small intervals on the right. Hence the error
still comes down to the single interval being split, and its error is
at most 2ε , so we get the same asymptotic bound.

We note that random sampling can also be made into a priority
ordering. We assign a random number up ∈ [0,1] to each data point
p ∈ P. Then we sort these points by this random value up, and this
is the priority ordering. To see why this works, just observe that
any priority subset k is a Poisson uniform random sample, based
on the randomness in the up random values.

4 EXPERIMENTAL EVALUATION

In our experiments we use two large real datasets and one synthetic
dataset. The first dataset (Kentucky) is of size 199,163 and consists
of the longitude and latitude of all highway data points from
OpenStreetMap data in the state of Kentucky. The second dataset
(Philadelphia) contains 683,499 geolocated data points; it consists
of the longitude and latitude of all crime incidents reported in
the city of Philadelphia by the Philadelphia Police Department
between 2005 and 2014.

Our Synthetic dataset mimics a construction of Zheng and
Phillips [32] meant to create density features at many different
scales using a recursive approach inside a unit square [0,1]2. The
dataset contains 532,900 data points. At the top level it generates 4
points p1 = (0,0), p2 = (0,1), p3 = (1,0), p4 = (1,1). We recurse
into 9 new rectangles by splitting the x- and y-coordinates into 3
intervals each and taking the cross-product of these intervals. The
intervals are defined non-uniformly, splitting the x-range (and y-
range) into pieces [0,0.5], [0.5,0.8], and [0.8,1.0]. We also add 4
new points at (0.5,0.5), (0.5,0.8), (0.8,0.5), and (0.8,0.8) to the
created dataset. In recursing on the 9 new rectangles we further
split each of these and add points proportional to the length of
their sides, and at the same non-uniform proportions. Since each
rectangle is split into more pieces in the large part of its range,
and each piece gets proportionally the same number of points,
there are more points in the larger value ranges. This pattern is
recursively true in each range, and can be seen in Figure 5.

4.1 Effective of Coreset Method
To guarantee ε-error coresets we require O((1/ε) log2.5 1

ε
) size,

while random sampling requires O(1/ε2) size. In other words,

coresets with the same error as random sampling can be about
a square root of the size. While these theoretical bounds are
useful guidance for effectiveness of these techniques, we also
demonstrate them empirically in Figure 4 using the three datasets.
In general we consider Error = KDEP − KDEQ, where P is the
original coreset and Q the sample. Visually we will also show the
relative error KDEP−KDEQ

KDEP
. We evaluate coresets using the Z-order

method and the priority ordering (Z-sort), which reorders the Z-
order coreset. Our baseline algorithms are random sampling (RS)
and simply use the points in the order they exist in the original
dataset (First). We consider subsets from size 700 to 15,000. We
evaluate the maximum error by randomly evaluating the KDEs at
10,000 random points in the range of the image, as advocated
here [32]. Our experiments fix an appropriate bandwidth for all
the samples and the original dataset. The plots show the average
value of ten random trials with the error bar indicating the standard
deviation of the errors. The method of simply using the points in
the order they exist in the original dataset doesn’t have error bars
since it is a deterministic baseline method. From the experiment,
we can see that only choosing the first few points from the original
dataset gets the highest error – dramatically worse than any other
approaches. For other methods, as the number of points in the
sample increases, the error decreases fairly consistently. For the
same size of sample points, Z-order and Z-sort perform much
better than the random sampling method; note that these are log-
log plots. For instance on the Kentucky data set, at size about
2,500, the two coreset approaches result in error about 0.02,
while RS generates 0.035 error. Another interpretation, is that
RS requires size about 6,300 samples to observe 0.02 which the
coresets obtained with a 40% of the sample size. While these
numbers vary across data sets, and show some random variation,
this sort of pattern in error ratios is typical.

4.2 Visual Demonstration on Data

To demonstrate the advantage of the coreset method over the
random sampling method, we show the visualizations of KDEs
on these three datasets in Figure 5. In this figure we show the
KDE of the original dataset, the coreset, and a random sample (we
use Z-sort coreset as the representative of coreset methods due to
not too much difference between Z-order and Z-sort method from
Figure 4). Since simply getting the first few points from original
dataset are getting much worse error, it is not necessary to visually
evaluate it. We set the size of the coreset in Kentucky to 7,675,
in Philadelphia to 7,675, and in Synthetic to 69,077. A transfer
function colors each pixel with respect to the largest KDE(x) value

6

Full Data Coreset Random Sample
K

en
tu

ck
y

P
hi

la
de

lp
hi

a
S

yn
th

et
ic

Fig. 5. Comparison of ground truth KDE (left), coreset KDE (middle), random sample KDE (right), on three datasets. Regions of high error in the
random sampling are highlighted with red frames across all conditions.

observed in the full dataset (a dark red), transitioning to a light
blue and then white for values less than 5% of this value.

The high-level structure for both the coreset and random
sample visualizations are preserved in each case; however, for
each dataset there are many subtle differences where the random
sample captures some area incorrectly. We highlight a few of these
differences in red boxes in Figure 5.

Another way to understand the error is by directly plotting
the error values, as we have done in Figure 6. We plot both the
absolute and relative error. Here the transfer function is normalized
based on the largest difference observed for each dataset and error
measure, but held the same between conditions, to allow for the
direct comparison of coreset error and random sample error. The
resulting color scale is a diverging color map: when the sample
has a larger value than the true dataset, the area is shown in
increasingly saturated shades of red; and when the true dataset has
a larger value, it is shown in increasingly saturated blue. When

similar, white is shown. We visually observe darker colors (and
more error) for random sampling than with coresets.

Note that the theory has guarantees only for the additive error;
e.g., smaller for coresets than random sampling. But we also plot
the relative error to highlight relative differences that may have
more effect both in quantitative anomaly detection and observed
visual artifacts. Indeed we observe larger relative error for random
sampling as well, compared to the coreset.

5 THRESHOLDING ISO-LEVELS

A common pattern for interactive data visualization is to show an
overview of all data and enable analysts to zoom in to investigate
regions of interest. For geospatial data, nano-cubes is a recent
system that delivers such an experience [14] for large datasets.

A critical aspect of such overviews is hence that they faithfully
represent the data in any region above some density of interest,

7

KDEfull− KDEcoreset KDEfull− KDERS
KDEfull−KDEcoreset

KDEfull

KDEfull−KDERS
KDEfull

K
en

tu
ck

y
P

hi
la

de
lp

hi
a

S
yn

th
et

ic

Fig. 6. Comparison of the differences between original KDEs and coreset KDEs (first column) and the difference between original KDEs and random
sampling KDEs (second column). The last two columns show the corresponding relative differences.

i.e., that wherever there is data above a threshold there should be
a visible mark that can be investigated in detail. In fact there is
a well-developed theory around random sampling regarding this
property called and ε-net. It says if we sample O((1/ε) log(1/ε))
points, then any geometric region (like a circle or rectangle) with
more than ε-fraction of the points (a density value larger than ε)
will contain at least one point [11].

However, this desire to show all possibly interesting features
runs into another problem. If we set the minimum threshold
for coloring pixels as non-white too low, then the visualization
ends up displaying a lot of noise. That is, there may be regions
which should have low (or almost 0) density, which are shown
with a visible mark. In contrast to the other sampling results
mentioned above (which require larger, O(1/ε2)-size, samples),
the guarantees for ε-nets provide no protection against false
positives. Moreover, simple random sampling is used heavily in
many big data systems, such as STORM [5].

To address this problem, we will build on a more recent
adaption of ε-nets specific to kernel density estimates, called
(τ,ε)-nets [19]. This coreset Q ⊂ P ensures that for any point
x ∈ R

¯
d such that KDEP(x) ≥ ε , there exists a point q ∈ Q such

that K(x,q) ≥ τ . That is, for any query point x above some
density threshold ε , there is some witness point in the coreset
point q ∈ Q that is nearby (its similarity K(x,q), is at least τ).
Although such guarantees can be derived from the coresets we
discussed earlier, this (τ,ε)-net only requires a random sample of

size O(1
ε−τ

log 1
ε−τ

), which for τ = ε/2 is O(1
ε

log 1
ε
), i.e., roughly

the same as the previous and slightly more complex coreset.
So how can we use this idea of a (τ,ε)-net to aid in choosing a

color threshold of our transfer function? One approach is to make
that threshold adaptive. Our proposed method will only color low-
density regions (at some threshold taking the place of τ) if they are
close to some higher density region (defined by another parameter
ε). This means spurious regions far from the main data will not be
illustrated as they are likely noise. But near a high density region
our visualization will draw the lowest density layer. Data near a
high-density regions is less likely to be noise, and so our method
displays this part as accurately as possible.

In detail, we implement this using two values. The first value ε

(= percentage) is the minimum observed value to represent a “high
density region.” The second value r (= radius) is the minimum
distance an interesting point must be to a high-density region.
Then if a pixel x is not within a distance r of some other pixel
y such that KDEQ(y) ≥ ε , then it is not drawn, as if there is no
appreciable density there. If KDEQ(x)≥ ε or if x is within distance
r of some pixel y such that KDEQ(y)≥ ε , then it will be drawn as
specified by the transfer function.

Figure 7 demonstrates this approach on our three datasets. For
each dataset, it shows the kernel density estimate for the full data, a
random sample of that data, and a de-noised version of the random
sample. In the random sample, some anomalous regions appear
due to sampling noise (examples are highlighted with red circles in
Figure 7), which disappear in the de-noised version. The denoised

8

Full Data Random Sample Random Sample after denoise
K

en
tu

ck
y

P
hi

la
de

lp
hi

a
S

yn
th

et
ic

Fig. 7. Visualization of random sample KDEs of all three datasets. Showing all isolevels of a random sample (middle) shows false anomalous
regions, circled, compared to ground truth (left). After zapping process, (right) still preserves the rough shape of the data–enough to know where to
explore more–without any of the false positive regions.

version is a more accurate representation of the original data as it
does not show various anomalous bumps of density.

6 SYSTEM

To demonstrate our approach and compare it to both, ground truth
and random sampling we build an interactive system to display
kernel density estimates of very large spatial data. It enables ana-
lysts to interactively explore such large data while avoiding false
positives. To enable a direct comparison of various approaches,
we show two windows showing the same dataset using different
methods—the KDE of the full dataset, coreset KDE, random sample
KDE, coreset error, coreset relative error, random sampling error
and random sampling relative error. Analysts can specify the error
threshold ε , based on which the system automatically generates a
coreset or a random sample based on ε .

Zooming and panning is synchronized between views, so that
analysts can navigate and compare the views at various scales and
positions. To provide geospatial context, the KDE visualization is

rendered on top of a customized Google Map widget, which shows
the geographic features as grayscale to avoid interference with the
colors used to display the KDE.

We also provide various color maps options from ColorBrewer
[10]. We allow users to dynamically change the choice of color
map, and its scaling within the colorbar.

6.1 Interactive De-noising

When applying the de-noising process that alters the low end of
the color scale with ε,τ-nets, we found that the choice of these
parameters can be difficult for a user to select. To address this,
we designed a feature where an analyst can highlight a region that
appears to be an anomalous region, and the system will suggest
a pair of minimal percentage and radius values that can be set to
remove the noise in that region. Figure 8 illustrates this process
within our system.

Analysts select an isolated regions to get rid of, then a tips
message will give the suggestions of “percentage” and “radius”,

9

Fig. 8. Illustration of the interactive de-noising process. Analysts select
a region in the visualization they suspect to contain an artifact. The
algorithm suggests parameters that can be used to remove that artifact
and applies them to the input fields.

so τ = “percentage” × the largest KDE within “radius” of the
objective point. These values can then be applied to the de-noising
process, eliminating the noisy spot and others like it.

We suggest to users to attempt this with a few isolated dots
and see the effects. Then if desired, they can also manually tune
these parameters directly and quickly see the effect.

6.2 Implementation
The front end of our technology demonstration is implemented in
HTML/JavaScript and uses D3 for axis, scales and user interface
elements, Canvas for the rendering of the KDEs and the Google
Maps API for the background maps.

The backend that generates the coresets is an extension of work
from SIGMOD 2013 [31] and is written in C. This can take any
large spatial dataset as a text file, a error parameter ε , and output
a coreset. We modify this to generate a priority reordering of the
entire dataset so that every initial subset of the data is a coreset,
with error parameter effectively decreasing as the chosen coreset
size increases. This process is also written in C, and generates a
text file sufficient for the HTML/Javascript to use as its input.

The implementation of the visualization system (https://github.
com/SayingsOlly/kernel vis d3) and the back-end code (http:
//www.cs.utah.edu/∼jeffp/students/kde/kde.html) is available un-
der the BSD 3-clause license. We invite others to download and
interact with it.

7 DISCUSSION AND LIMITATIONS

We study the specific but ubiquitous visualization tool of kernel
density estimates, with the goal of how best to integrate them into
a large-scale visualization system — specifically those making
the increasingly common design choice to approximate massive
datasets. In this context we demonstrate that coresets provide
better and more efficient estimates than simple random sampling.
We also develop a new way to preprocess the coresets so that their

size resolution can be easily updated without redoing expensive
computation. Additionally, we introduced a new tool for dealing
with spatial noise at low densities — a common nuisance that
distracts the user to explore potential outliers which are not present
in the full dataset. This provides an easy way to “zap” these unfor-
tunate events with a simple rule that will apply to all similar visual
(but not statistical) anomalies. Our simple system demonstrates the
usefulness of all of these insights through interaction with real and
synthetic datasets.

Our interactive visualization system, however, is designed as a
prototype to demonstrate the strengths of the underlying technique
and is not designed to be a fully-fledged geospatial data analysis
system. Several improvements with respect to data loading and
usability are conceivable to make the system useful for actual
analysis tasks. We would also like to explore the effects of
different coreset constructions (e.g., [4], [16]) and types of kernels
other than Gaussians (e.g., Laplace or Epanechnikov).

With any interactive visualization tool, it is important to be
cognizant of the potential for visual p-hacking [28]: where a user
tweaks the visual parameters until he/she finds the interpretation of
the data he/she wants to see, but unwittingly just discovers artifacts
of data noise. Our technique moderates this by allowing users to
identify noise (perhaps using expert knowledge) and remove it.
Moreover, it enforces the same pruning criteria for all isolated
parts of the dataset, so it is not possible to design pruning criteria
separately for different areas — an easy way to overfit.

In general, one should complement this with a query-and-
filter strategy to verify abnormal or interesting aspects of the data
beyond just the visual patterns. Our tool is meant to help users
quickly determine where to take these closer looks.

7.1 Evaluation Strategies

We considered various strategies to evaluate our methods, in-
cluding a quantitative comparison to baseline algorithms and an
evaluation with human subjects. One potential human subjects
study design would be to let users pick whether our method or
an alternative, such as random sampling, is closer to the ground
truth. We ultimately decided against this design, because tangible
differences with respect to the ground truth are readily apparent in
our demonstration (see Section 4.1), and in the provided difference
images (see Figure 6). Moreover, our quantitative evaluation in
Section 4.2 provides a clear and quantitative measurement of
the error improvement of the coreset techniques versus common
baselines. An alternative question to ask would be whether the
techniques presented in this paper have an impact on correctness
and performance of a human analysts in real analysis scenarios.
Such a study design, however, is beyond the scope of this article.

8 CONCLUSION AND FUTURE WORK

We have demonstrated the use of coresets for kernel density esti-
mates, ways to preprocess them for easy parameter updates, and
how to prune a certain type of low-density noise. We believe these
are techniques that should be integrated into many visualization
systems for large spatial datasets.

However, our system itself is only a prototype. We would like
to actually map these ideas into more complex systems (e.g.,
nanocubes [14] or STORM [5]) which already deal with and
approximate various datasets and allow for other richer types of
interactions.

https://github.com/SayingsOlly/kernel_vis_d3
https://github.com/SayingsOlly/kernel_vis_d3
http://www.cs.utah.edu/~jeffp/students/kde/kde.html
http://www.cs.utah.edu/~jeffp/students/kde/kde.html

10

ACKNOWLEDGMENTS

Thanks for NSF CCF-1350888, IIS-1251019, ACI1443046, CNS-
1514520, CNS-1564287 and NIH U01 CA198935.

REFERENCES

[1] S. Agarwal, B. Mozfari, A. PAnda, H. Milner, S. Madden, and I. Stoica.
Blinkdb: Queries with bounded errors and bounded response times on
very large data. In EuroSys, 2013.

[2] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer. Space-
filling curves and their use in the design of geometric data structures.
Theoretical Computer Science, 181:3–15, 1997.

[3] O. Bachem, M. Lucic, and A. Krause. Practical coreset construction for
machine learning. Technical report, arXiv: 1703.06476, 2017.

[4] Y. Chen, M. Welling, and A. Smola. Supersamples from kernel-
herding. In Proceedings of the Conference on Uncertainty in Artificial
Intelligence, 2010.

[5] R. Christensen, L. Wang, F. Li, K. Yi, J. Tang, and N. Villa. STORM:
Spatio-Temporal Online Reasoning and Management of large spatio-
temporal data. In Proceedings of 34th ACM SIGMOD International
Conference on Management of Data, 2015.

[6] W. S. Cleveland and R. McGill. Graphical Perception: Theory, Exper-
imentation, and Application to the Development of Graphical Methods.
Journal of the American Statistical Association, 79(387):531–554, 1984.

[7] A. Dix and G. Ellis. By chance: Enhancing interaction with large data
sets through statistical sampling. In Proceedings of the ACM Conference
on Advanced Visual Interfaces (AVI ’02), pages 167–176. ACM Press,
2002.

[8] M. T. Gastner and M. E. J. Newman. Diffusion-based method for pro-
ducing density-equalizing maps. Proceedings of the National Academy
of Sciences of the United States of America, 101(20):7499–7504, May
2004.

[9] J. Goldstein and S. F. Roth. Using aggregation and dynamic queries for
exploring large data sets. In CHI 1994: Proceedings of the SIGCHI,
pages 23–29, New York, NY, USA, 1994. ACM.

[10] M. Harrower and C. A. Brewer. Colorbrewer.org: An online tool for
selecting colour schemes for maps. The Cartographic Journal, 40:27–
37, 2003.

[11] D. Haussler and E. Welzl. epsilon-nets and simplex range queries. Disc.
& Comp. Geom., 2:127–151, 1987.

[12] S. Joshi, R. V. Kommaraju, J. M. Phillips, and S. Venkatasubramanian.
Comparing distributions and shapes using the kernel distance. Proceed-
ings 27th Annual Symposium on Computational Geometry, 2011.

[13] A. Kim, E. Blais, A. Parameswaran, P. Indyk, S. Madden, and R. Ru-
binfeld. Rapid sampling for visualizations with ordering guarantees. In
Proceedings VLDB Endowment, 2015.

[14] L. Lins, C. Scheidegger, and J. Klosowski. Nanocubes for real-time
exploratioin of spatiotemporal datasets. IEEE TVCG, 2013.

[15] Z. Liu, B. Jiang, and J. Heer. inmens: Realt-time visual querying of big
data. In Eurographics Conference on Visualization, 2013.

[16] J. M. Phillips. eps-samples for kernels. Proceedings 24th Annual ACM-
SIAM Symposium on Discrete Algorithms, 2013.

[17] J. M. Phillips. Coresets and sketches. In Handbook of Discrete and
Computational Geometry, chapter 49. CRC Press, 2016.

[18] J. M. Phillips and W. Tai. Improved coresets for kernel density estimates.
In 29th Annual ACM-SIAM Symposium on Discrete Algorithms, 2018.

[19] J. M. Phillips and Y. Zheng. Subsampling in smoothed range spaces. In
Algorithmic Learning Theory, pages 224–238. Springer, 2015.

[20] D. W. Scott. Multivariate Density Estimation: Theory, Practice, and
Visualization. Wiley, 1992.

[21] B. W. Silverman. Density Estimation for Statistics and Data Analysis.
Chapman & Hall/CRC, 1986.

[22] B. Speckmann and K. Verbeek. Necklace Maps. IEEE Transactions on
Visualization and Computer Graphics, 16(6):881 –889, nov.-dec. 2010.

[23] M. Sun, D. W. Wong, and B. J. Kronenfeld. A Classification Method
for Choropleth Maps Incorporating Data Reliability Information. The
Professional Geographer, 67(1):72–83, Jan. 2015.

[24] C. Sung, D. Feldman, and D. Rus. Trjacetory clustering for motion
prediction. In IEEE/RSJ International Converence on Intelligent Robots
and Systems, 2012.

[25] C. Tominski and H.-J. Schulz. The Great Wall of Space-Time. In
Proceedings of the Workshop on Vision, Modeling and Visualization
(VMV’12), 2012. to appear.

[26] C. Tominski, H. Schumann, G. Andrienko, and N. Andrienko. Stacking-
Based Visualization of Trajectory Attribute Data. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2565 –2574, Dec. 2012.

[27] Z. Wang, N. Ferreira, Y. Wei, A. Bhaskar, and C. Scheidegger. Gaussian
cubes: Real-time modeling for visual exploration of large multidimen-
sional datasets. In IEEE InfoVis, 2016.

[28] H. Wickham, D. Cook, H. Hofman, and A. Buja. Graphical inference
for infovis. IEEE Transactions of Visualization and Computer Graphics,
16:973–979, 2010.

[29] C. Williamson and B. Shneiderman. The Dynamic HomeFinder: Evaluat-
ing Dynamic Queries in a Real-estate Information Exploration System. In
Proceedings of the 15th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’92, pages
338–346, New York, NY, USA, 1992. ACM.

[30] B. M. Yongjoo Park, Michael Cafarella. Visualization-aware sampling
for very large databases. In IEEE International Conference on Data
Engineering, 2016.

[31] Y. Zheng, J. Jestes, J. M. Phillips, and F. Li. Quality and efficiency in
kernel density estimates for large data. In Proceedings ACM Conference
on the Management of Data (SIGMOD), 2012.

[32] Y. Zheng and J. M. Phillips. L infty error and bandwidth selection for
kernel density estimates of large data. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1533–1542. ACM, 2015.

Yan Zheng is a Research Scientist of Visa Re-
search in Data Analytics. Before joining Visa,
she received a PhD from University of Utah in
computer science. Her primary research inter-
ests are Data Analytics, Machine Learning and
Deep Learning

Yi Ou is a Software Engineer at Expedia. Before
joining Expedia he was a master student at the
University of Utah and received his MS in 2017.
His research interests mainly are data mining,
data visualization and machine learning.

Alexander Lex is an Assistant Professor of
Computer Science at the Scientific Computing
and Imaging Institute and the School of Com-
puting at the University of Utah. Before joining
Utah he was a lecturer and a post-doctoral vi-
sualization researcher at the Harvard School of
Engineering and Applied Sciences. He received
his PhD from the Graz University of Technology
in 2012. His primary research interests are data
visualization, especially applied to molecular bi-
ology, and human computer interaction.

Jeff M. Phillips is an Associate Professor in the
School of Computing at the University of Utah.
He received a BS degree in computer science
and the BA degree in math from Rice University,
and a PhD from Duke University in computer sci-
ence. He was an NSF Graduate Research Fel-
low at Duke University, an NSF CI postdoctoral
fellow at the University of Utah, and received an
NSF CAREER Award in 2014.

	Introduction
	Related Work
	Coresets Constructions
	Coreset method
	Pre-ordering points

	Experimental Evaluation
	Effective of Coreset Method
	Visual Demonstration on Data

	Thresholding Iso-Levels
	System
	Interactive De-noising
	Implementation

	Discussion and Limitations
	Evaluation Strategies

	Conclusion and Future Work
	References
	Biographies
	Yan Zheng
	Yi Ou
	Alexander Lex
	Jeff M. Phillips

