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ABSTRACT

Being able to capture or predict a user’s intent behind a brush in a visualization tool has important
implications in two scenarios. First, predicting intents can be used to auto-complete a partial selection
in a mixed-initiative approach, with potential benefits to selection speed, correctness, and confidence.
Second, capturing the intent of a selection can be used to improve recall, reproducibility, and even
re-use. Augmenting provenance logs with semi-automatically captured intents makes it possible
to save the reasoning behind selections. In this paper, we introduce a method to infer intent for
selections and brushes in scatterplots. We first introduce a taxonomy of types of patterns that users
might specify, which we elicited in a formative study conducted with professional data analysts and
scientists. Based on this, we identify algorithms that can classify these patterns, and introduce various
approaches to score the match of each pattern to an analyst’s selection of items. We introduce a
system that implements these methods for scatterplots and ranks alternative patterns against each
other. Analysts then can use these predictions to auto-complete partial selections, and to conveniently
capture their intent and provide annotations, thus making a concise representation of that intent
available to be stored as provenance data. We evaluate our approach using interviews with domain
experts and in a quantitative crowd-sourced study, in which we show that using auto-complete leads
to improved selection accuracy for most types of patterns.

1 Introduction

When experts interact with a visual analysis system, they
are frequently guided by a domain-specific analysis goal,
such as identifying a gene that could be a drug target. In
service of answering this question, they execute a series of
tasks, such as selecting a set of correlated items for detailed
analysis. In contrast to the high-level goal of answering
a domain-specific question, these intermediate tasks are
often based on patterns in the data: for example, selecting
outliers, clusters, or items that correlate. Such a carefully
constructed selection of items based on a higher level but
domain-agnostic structure reflects a reasoning process, an
intent by the analyst. We refer to the motivation behind
these actions as mid-level intents of an analyst. Mid-level
intents are distinct from higher-level intents in that they are
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free of context and based solely on the data. They are also
distinct from low-level intents, such as hovering over an
item to read its label. In this paper, we introduce methods
to infer these mid-level intents for brushes in scatterplots.

Why is capturing mid-level intents important? First, in-
ferring intents based on partial selections can be used to
auto-complete selections. To select outliers, for example,
analysts would only have to brush a few examples and
could then auto-complete the selection, instead of painstak-
ingly brushing them individually. Auto-complete can also
be used to correct a selection. For example, if an analyst
intended to select a cluster, reviewing the predicted cluster
might reveal points that should be added to the selection.

Second, making mid-level intents available in provenance
data improves recall and reproducibility of analysis pro-
cesses conducted with visualization tools. By capturing
such processes at a higher abstraction than just low-level
interactions, they become more transparent when revisited
either by the original analyst or a collaborator. Hence,
analysis sessions that capture intents are more justifiable
and likely to increase trust in the process. Down the line,
such rich provenance data also has the potential to enable
re-using visual analysis sessions on modified or updated
data. For example, when an analyst first removes outliers
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Figure 1: Scatterplots showing three dimensions of a dataset. An analyst has brushed points in the right scatterplot
based on a pattern they see (orange points). Our system predicts possible intents that are ranked by their match to the
current selection. The points in green show a cluster that is recommended by our system based on the selection. When
an analyst accepts this suggestion, a semantically rich log entry is stored in a provenance graph, shown on the right.

[Interactive Figure]

before proceeding with an analysis, that action could be
translated into a rule, which then could be used to automat-
ically remove outliers from an updated dataset.

Our primary contribution is a set of methods to detect
and capture these mid-level intents for brushes and se-
lections. Even though we believe that our approach gen-
eralizes broadly, we use scatterplots and tabular data as
common and important representatives of visualization
techniques and data types, respectively. To identify the
types of patterns that map to these mid-level intents, we
conducted a formative interview study with scientists that
regularly use scatterplots in their research. We then select
data mining algorithms that are suitable to detect these
patterns in a dataset and introduce methods to address
the potentially large space of dimensions and parameters.
We develop three approaches to score the output of the
algorithms relative to an analyst’s selections.

Our secondary contribution is an implementation of
these methods in an interactive visualization technique
and leveraging them for auto-complete and prove-
nance tracking. By presenting ranked predictions of pat-
terns for a selection, we create a mixed-initiative approach
that lets analysts easily capture their mid-level intent by
verifying a prediction. We provide the means to annotate
these mid-level intents to tie them to higher-level domain
goals and capture all of this information in a provenance
graph.

To validate that we can successfully predict mid-level in-
tents, we conduct a large, crowd-sourced quantitative study
testing the correctness of the auto-completion of patterns
in an analysis process.

We demonstrate the usefulness of our approach in a set of
examples and validate our system using feedback sessions
with domain scientists while analyzing their own data.

2 Related Work

Our work is related to predicting intents in different con-
texts, data-aware brushes and selections, provenance track-
ing, and annotation of visual analysis processes, which we
discuss in the following.

2.1 Predicting User Intents

Inferring user intent has been studied in various contexts.
For example, Myers [33]] proposes methods for inferring
operations and source code from demonstrations when
implementing graphical user interfaces. More specific to
data analysis, Gotz and Zhou [21]] study analysts’ activities
and model them in four tiers, from high level tasks, to
sub-tasks, to actions, to events. This classification is the
inspiration for our categorization into high-level, mid-level
and low-level intents. Actions, which correspond to our
mid-level intent, are composed of a type, an intent, and
parameters. They represent an executable, semantic step,
such as a query, that bridges the high-level human cognitive
ability and the low level user interactions. Gotz and Zhou
implement this framework in a prototype, HARVEST, that
captures such actions. In contrast to our work, however,
Harvest captures that an action was taken, but not why. A
related tool that also captures actions is SensePath [34]. A
key difference to Gotz and Zhou’s work is that SensePath
is optimized to support qualitative data analysis, i.e., it
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is made for analysts to use the log of semantic actions in
qualitative coding.

Dou et al. [10] argue that much of the reasoning process
during a visual analysis session can be inferred by humans
from inspecting user interactions, yet it is unclear whether
this can be leveraged by automatic methods [36]]. Brown
et al. [4] have shown that user performance and certain
personality traits can also be inferred from analyzing user
interactions. A thread of work is concerned with predicting
future events in an analysis process, for example to enable
guidance [3]). Ottley et al. [|37]], for example, predict future
clicks on items based on an interaction history. Steichen
et al. [45] and Gingerich and Conati [18]] show that it is
possible to predict lower level tasks, such as retrieve value
from eye gaze data. This differs from our goal of predicting
the intent of a current selection.

A common goal for intent prediction is view specification,
i.e., the selection of data (sub)sets and suitable visual en-
codings. Systems such as Tableau’s Show Me [30] use
data properties to predict useful visual encodings. Natu-
ral language interfaces for view specification attempt to
extract user intents from language [49]] and extract config-
urations for a view. Saket et al. [42] predict user intents for
view specification from demonstrations, such as assigning
a color to a dot in a scatterplot, based on which their sys-
tem infers the intent of mapping an additional variable in a
dataset. Their follow-up work [41] demonstrates that users
seamlessly switch between manual and mixed-initiative ap-
proaches. All of these approaches are similar in the sense
that they attempt to predict intent, but none of them is
concerned with predicting intents of user selections based
on patterns in data.

2.2 Data-Aware Brushes and Selections

Selections, and the related concepts of brushes, queries,
and filters specify a subset of data items. Most selections
are defined either by explicit clicks on individual items,
“paint-brushes” that select all elements under a brush tool,
geometric brushes, such as rectangles or lassos, or textual
queries. More advanced, data-driven brushes have also
been proposed. For example, Fan and Hauser [[14] intro-
duce a method for fast brushing based on neural networks,
where they estimate an intended selection based on simple
sketches. While they do not predict intents based on these
brushes, a method like theirs could be used to improve
brushing in our system.

Data-aware selections are actions that are defined in data
space [926,31]]. For a selection, for example, this means
that it is described by conditions, not by a list of items. Dy-
namic queries [43] are commonly realized in a data-aware
way: all items that fit certain conditions, defined e.g., via
sliders, are considered to be in the query results. Certain
types of brushes [2]] can be realized in a data-aware way.
A rectangular brush in a scatterplot, for example, easily
translates into the necessary conditions. Many selections
(and other actions) are, however, realized by direct refer-

ence, e.g., by pointing at items, hence they are defined in
item space. Actions that are defined in item space have
several disadvantages: they cannot be generalized to apply
to updating data, and they cannot be used to semantically
explain a selection. Data-aware actions, in contrast, are
robust to changes, can be used to explain and justify an
action, and can be used in various ways to support an an-
alyst, e.g., by relaxing a selection [24], or for re-use in a
different context [48]].

Most data-aware selections are realized by deriving rules
directly from a brush. In more general cases, rules for
data-aware selections are harder to derive. It is possible,
however, to derive the pattern of a selection (what makes
the item in a selection belong to each other and different
from everything else) algorithmically. Xiao et al., for
example create “knowledge representations” of selections
in communication networks [51]]. This is similar in spirit
to our work, yet, Xiao et al’s knowledge representations
are limited to simple clauses and are not concerned with
higher-level patterns in the data.

2.3 Provenance

Provenance in the context of data analysis refers to the
history of an artifact, such as a dataset, a computational
workflow, or an insight. Ragan et al. [40] discuss differ-
ent purposes of provenance, including recall, replication
(reproducibility), presentation, and collaboration (among
others), but do not discuss re-use. Ragan et al. also charac-
terize the different types and purposes of provenance. They
distinguish between the provenance of data, the provenance
of visualization, the provenance of interaction, the prove-
nance of insights (which captures analytical findings), and
the provenance of rationales (which captures the reasoning
behind any decisions made). Most provenance tracking
techniques are limited to the former three, while insight
and rational provenance can currently only be achieved
using manual annotation.

With regards to provenance tracking, there are two dis-
tinct approaches: (1) tracking the history of an analysis to
achieve provenance (process-based), and explicitly model-
ing a visualization workflow (workflow-based) [15]].

Workflow-based approaches are common in large
scale scientific data processing [8]] in systems such as
Galaxy [[19] or SCIRun [38]]. Workflow approaches are
also common for specifying the visualization pipeline, for
example for volumetric data [1]], networks [[12]], and tab-
ular data [52f]. A benefit of workflow-based systems is
that they explicitly capture rules and thus can be reused
easily. However, even these rules do not typically capture
higher-level semantics or intents.

Process-based approaches are the alternative to explic-
itly modeling workflows. They provide analysts with a
interactive visualization systems while tracking the anal-
ysis process in the background [36[]. Many visualization
systems support the tracking of a history for the purpose
of action recovery (undo/redo), so we limit our discussion
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to systems that explicitly target provenance. Examples
include the graphical histories by Heer et al. [25] or Cz-
Saw [27]]; both render prior states as thumbnails. There are
also various tools that represent histories as node-link dia-
grams [22128}|44}/47]], as well as methods to automatically
detect key states in an analysis process [16], or retrieve
prior states based using search [46]]. However, in all of
these cases the tracked information is based on interaction
logs and lacks any higher-level semantics.

2.4 Annotation

One approach to capture user intents and semantics is
through note taking and annotation. Annotations are
common in visualizations designed for presentation, but
are not frequently integrated in exploratory visualization
tools, with notable exceptions (e.g., [[13}/22,23L[25/29,/50]).
Some systems, such as GeoTime [13], enable com-
plex annotations and also provide contextual information.
Click2 Annotate [|6] provides templates to quickly annotate
predefined, common patterns. Insidelnsights [32]] enables
analysts to manually document insights hierarchically and
link them to a provenance history. While manual notes,
documentation, and annotations can capture analysts’ rea-
soning and insights, creating and maintaining them is as-
sociated with a burden on the analyst and thus a lack of
scalability [21]]. Furthermore, user-generated annotations
are not readable by machines and hence cannot be lever-
aged for re-using analysts processes. Hence, in this paper,
we will use semi-automatic, data-aware insight characteri-
zation, combined with manual annotations to capture intent
and reasoning and enable re-use of analysis processes.

3 A Taxonomy of Patterns for Selecting
Data Points

When analyzing data, users have intentions at different
levels of abstraction. We are specifically interested in
the aforementioned mid-level intents behind brushes or
selections of data items in scatterplots, which are still se-
mantically rich but domain agnostic [20].

To define a taxonomy of patterns that map to these intents,
we first developed an initial classification based on the lit-
erature and our own experiences working with scatterplots.
We then validated and extended the initial classification
through a formative study that observed what types of pat-
terns are commonly used in data analysis workflows. The
goal of the study was to identify types of patterns experts
care about when analyzing scatterplots, independent of a
specific system or a selection modality. We conducted the
study with six domain experts at the University of Utah that
regularly use scatterplots in their data analysis, recruited
using a convenience sample of domain experts we had
interacted with professionally, and their research groups.
The study was reviewed by the institutional review board
and classified as exempt from full review. Our inclusion
criteria were: (1) regular use of scatterplots, and (2) and a
willingness to share scatterplots or data used in scatterplots.

We identified six participants from nursing, astrophysics,
chemical engineering, psychiatry & population health, and
surgery. The participants included one graduate student,
one research scientist, and four faculty members.

In the study we provided the participants with paper print-
outs of scatterplots of their own data and asked them to
describe and highlight (using a pen) the kinds of patterns
they find interesting. One participant was not available for
an in-person meeting but used a pen and touch interface
to mark up his scatterplots. The interviews were video
recorded and then transcribed. The transcriptions were
coded by two independent coders using a seeded codebook
developed from the initial classification of patterns: out-
liers, clusters, categories, multivariate optimization, and
range queries. The coders did not fully agree on the number
of codes and their type for each interview. A table in the
supplementary material shows the code frequencies from
both coders for each interview. Coder 1 coded 75 segments
and coder 2 coded 79 segments. Our main intention of the
interviews, however, was to verify and potentially extend
our set of patterns. Both coders identified many instances
of outliers, clusters, categories, and range queries. Only
one of the two coders identified two cases of multivariate
optimization. However, both coders frequently identified
correlation analysis, which we originally had not included
in our set of patterns. Based on this process, we identified
the following data patterns that match user intents when
analyzing data in scatterplots.

Correlations. Correlations are associations |
between two or multiple dimensions. They were |
mentioned as a target pattern in five of our six | &°°
interviews with domain experts. Frequently, an-

alysts were looking to identify correlations in the overall
datasets or parts of the data, but also find points that do not
fit the correlations. They had the intent to identify subsets
of data that correlate, but also identify items that do
not fit the correlation. In several interviews, these were
identified as “bad data”. We found that participants did an
approximate visual regression analysis, identifying both
linear and non-linear trends.

Outliers and Inliers. Outliers are data points
that differ significantly from other items. They
were brought up as a pattern of interest in all six
interviews. Frequently, analysts wanted to under-
stand what causes the data points to be outliers, relying on
their background knowledge. Outliers are also related to,
but distinct from the aforementioned points that do not fit
a correlation: for example, an item can be an outlier in its
magnitude but perfectly fit the correlation. Outliers were
also mentioned as bad data that should be filtered out. We
consider both outliers and “inliers”, i.e., the set of points
that are not outliers, as target patterns.

Clusters and Groups. Clusters or groups of
data points are items that are similar to each
other, but distinct from the rest of the dataset.
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They were mentioned as a pattern that analysts
look for in three out of six interviews. Clusters were fre-
quently not well-defined in the data they analyzed.

Multivariate Optimization. One goal when
analyzing data is to find data points that are dom-
inant over multiple dimensions. A typical exam-
ple is to find a hotel that is both, close to the city
center and affordable. The set of such points is often called
a skyline [3]]. Hotels in the skyline are such that no other
hotel is both cheaper and closer to the center. Skylines
were brought up in two of our six interviews, and hence
are the least frequently mentioned intent.

Categories. An observed pattern can some- |,
times be traced back to the items being of distinct |22,
categories. Four out of our six expert participants | 8o .2

mentioned that they intend to select elements by
category. For example, one expert wanted to separate the
experiment from controls.

Ranges. Four of the six experts mentioned that
they select data based on numerical ranges. Sev-
eral experts mentioned that these ranges can be
based on domain conventions for setting cut-offs.
We observed range selections based on single or multi-
ple dimensions, implying that ranges can be combined for
more complicated queries.

Discussion. While we believe that the described patterns
cover a broad range of use cases, we do not argue that or
list of patterns is exhaustive. For example, there might
be domain-specific patterns that are meaningful in certain
contexts, which we did not cover. Also, analysts might
use combinations of these patterns, for example, identi-
fying the skyline of a category of values (e.g., the sky-
line of hotels, ignoring bed and breakfasts). Also, our
pattern classification is valid only for tabular data in scat-
terplots. We expect that other patterns, such as rankings,
would be common in different representations. Finally,
we have sometimes included a pattern and its anti-pattern,
such as outliers and non-outliers as separate patterns, but
have not done so consistently for all patterns. We have
included anti-patterns for those cases where they were
explicitly mentioned in our interviews (outliers and corre-
lation). However, anti-patterns could also be considered
for other cases.

4 Mapping Patterns to Intents

Most patterns that we identified in our formative study
are also commonly targeted in data mining. This implies
that various algorithms can be used to identify them. We
leverage this diversity to calculate a broad set of patterns
using different algorithms, combinations of dimensions,
and parameters. We then compare the computed patterns
with user selections and rank them according to that match.
While our initial step creates a large set of patterns, the sub-

sequent ranking makes these predictions manageable. We
explain the details of the algorithms used and our ranking
approaches in this section.

Up to this point, we have implicitly assumed that the pat-
terns we discussed appear in two-dimensional space. In
practice, however, many datasets have much higher dimen-
sionality. Hence, a key question we have to answer is: For
which dimensions should we calculate predictions? We
considered calculating patterns for:

1. all pairs of dimensions,

2. all dimensions that are actively brushed in the
system,

3. all dimensions that are visible in the system,
4. all dimensions in the dataset, and

5. any combination of these options.

Calculating all possible options is computationally expen-
sive, if not prohibitive, but also not necessary. As we aim to
predict the intent of analysts interacting with (possibly mul-
tiple) 2D scatterplots, and not to reveal high-dimensional
patterns, we decided to limit predictions to (1) pairwise di-
mensions and (2) the dimensions that are actively brushed.
We believe that predicting patterns on pairs of dimensions
is the most appropriate choice for 2D scatterplots, as these
patterns match what is visible in the plot. This is also
supported by the fact that our formative interviews did
not surface an instance of higher-dimensional selections
beyond ranges. However, we also do not want to exclude
the possibility of analysts selecting higher-dimensional
patterns. Hence we also calculate all patterns for all di-
mensions that are actively brushed, as the brushes indicate
that an analyst is explicitly interested in a combination
of these dimensions. Consequently, in a set of two 2D
scatterplots visualizing dimensions A/B and C/D, and with
active selections in both scatterplots, we would calculate
and predict patterns in two dimensions for A-B and C-D;
and patterns in 4D space for A-B-C-D.

4.1 Algorithms

Many algorithms can extract the patterns we describe. In
our system, we deliberately rely on standard algorithms
that are robust and simple, although more sophisticated
versions might exist. One reason for this is generality:
Many data mining algorithms require careful choices of
hyperparameters, but choosing good parameters requires
expertise and trial-and-error, which is not acceptable for
our use case. Instead, we choose parameters for these
simple algorithms by sampling the parameter space or
rely on defaults. For example, we run k-means with a
k of 2-7, but use defaults for all other parameters. We
do not use evaluation approaches for the quality of the
outputs; instead, we let our ranking approach reveal the
most suitable results. We also assume that the visualization
uses linear scales. However, an extension to logarithmic or
power scales would be straightforward. We use algorithms
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provided by Scikit-learn [39] unless noted otherwise, and
normalize the data before the analysis.

For outliers, we use the local outlier factor, in addition to
the outliers that are a by-product of the clustering algorithm
DBSCAN. We also treat inliers provided by the local outlier
factory as a separate prediction.

Multivariate optimization is used to find values that are
optimal across multiple dimensions. While a general opti-
mization would require weighting the value of each dimen-
sion, Skylines are a generic approach that determines the
items that are not dominated by other points. We imple-
mented a version of the algorithm proposed by Borzsony
et al. [3]. As a skyline requires a definition of what is
considered “good” in each dimension (e.g., a low price,
but a high customer rating is considered good for a ho-
tel), we compute skylines for all high/low permutations of
the 2D cases. We limit predictions to all-low or all-high
for higher-dimensional cases, as calculating all possible
permutations would be computationally expensive.

As clusters are frequently a matter of interpretation and
different algorithms pick up on different types of clusters,
we use two different formulations that have complementary
strengths: DBSCAN and k-means. DBSCAN is based on a
(parameterized) measure of density (clusters are clouds of
dense points of arbitrary shape), whereas k-means assumes
roughly spherical clusters, and requires the cluster num-
ber as a parameter. If no clusters are present, DBSCAN
considers the whole dataset as one cluster (except for out-
liers), while k-means always provides a segmentation of
the dataset. We solve each formulation multiple times with
different parameterizations.

The patterns that we have described so far use the out-
put of an algorithm as a reference against which we can
compare an analyst’s selection. The range-based query
pattern differs from the other patterns in that we do not
have such a reference. This is because the values used in
range-selections are typically external to a dataset. Our
interviews have shown that ranges can be the result of
domain-specific knowledge, or can be used to select all
the high or low values. We also found that analysts create
complex queries by combining multiple simple brushes

@ ® ©
Figure 2: Using decision trees to capture range-based
queries. (a) A brush is shown in red. The brush geometry
can be described with four rules. (b) The decision tree
simplifies the brush to two rules, illustrated in dark blue in
(a). (c) A simplified decision tree, where one level has been
removed. The result is a simple rule, that also includes a
point that was not in the original selection, contained in
the light-blue area in (a).

and selections. The traditional approach to storing range-
based queries is to store the extent of brushes. However,
this method is not general: it does not work for other se-
lection types, like point or paintbrush selections, and it is
only defined on spatial representations. To address this, we
introduce a method that is based on learning a decision tree
from the input of the user. We formulate the problem as
a binary classification problem, where the decision tree is
used to separate the selected from the not-selected points.
As the decision three uses information-theoretic measures,
it learns a compressed representation of the brushes of
the user. For example, the red, rectangular brush in Fig-
ure 2] (a), could be stored with four coordinates identifying
each side of the rectangle. A range query based on a deci-
sion tree, shown in Figure 2] (b), stores a generalized and
simplified version with only two rules. We can also gen-
eralize a selection, similar to query relaxation [24]], based
on this idea. By pruning the decision tree by one level, we
extract the most important components of the selections,
as illustrated in Figure [2|(c). This can be useful to correct
imprecise selections.

If a dataset contains categorical values, we treat each cat-
egory as a separate pattern. While individual categories
could conceivably be shown in the scatterplot, predicting
an overlap between a selection and a category is especially
important if a dataset has many categories that cannot be
shown at the same time.

Finally, we use regression as a framework to analyze cor-
relations in the data. To identify the sets of points that are
part of a linear or quadratic correlation patterns, we run
the following algorithm on linear and quadratic regression
dataset:

1. First we assume all the points in the dataset X
are inliers I and build a Scikit-learn regression
model R on the I.

2. Then we calculate residuals r; using R for all
points z; in X.

3. Next we define bar(r) = median(r;|x; € X).

4. Then we redefine [ as all the points where r; <
2 x bar(r).

5. We repeat this for a maximum 10 iterations, stop-
ping early if inliers do not change between itera-
tions.

4.2 Ranking Predictions

All the described patterns result in a classification for each
item in the dataset. To rank the predictions in our sys-
tem, we compare these patterns with a binary classification
representing an analyst’s selection. shows an
overview of our method. Some algorithms, like clustering,
produce a multi-class prediction, which we first transform
into a set of binary classifications. We can then use a sim-
ilarity metric to rank each of the predictions. We use a
pre-processing step to remove identical predictions from
the set of predictions to rank. Identical predictions occur
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Figure 3: Overview of ranking patterns for the users’ selection. First, we transform the output (a,b) of each of the
algorithms into disjoint boolean vectors (c). Analogous, we can express the selection (f) as a boolean vector (e), too.
Finally, these boolean vectors act as inputs to the Jaccard rankings, and the naive Bayesian classifier (d).

frequently if a pattern is robust to different parameteriza-
tions of the same algorithm. In the following, we discuss
three different ways to rank the predicted patterns that are
either optimized to infer intent for an existing selection, or
to predict intent of a partial selection, plus a special case
for ranking range queries.

Ranking for Inferring Intent. Our baseline metric is
the Jaccard index, which is a measure of similarities be-
tween sets. We consider the set of selected items S, and
the set of items in a candidate pattern C'. The Jaccard index
J(S, C) between those two sets is then defined as

_snc) 1SN0

T(8,0) = isuc| |S|+IC|—-|Sncl

Here, a value of 1 corresponds to a perfect match, while a
value of 0 indicates no overlap. The Jaccard index is well
suited to infer the intent of an existing, complete selection.

Ranking for Auto-Complete. The tasks of auto-
completing and inferring intent differ with respect to rank-
ing a possible pattern: In the case of inferring intent for a
completed selection, it is necessary to find the best match
overall. In contrast, for auto-completion, the selection is
partial, as the goal of the task is to complete the selection.
Hence, we needed to develop a ranking approach that does
not penalize incomplete selections. To do this, we rank the
predictions using a modified Jaccard index .J,,,. We define
the similarity between sets .S and C as,

1SN C|
I (9,C) =
(5,€) [SNCI+|C\S|+wx|S\C|+r

The modified similarity metric reduces the penalty for
points in S that are not present in C' by down-weighting
|S'\ C| using a factor w < 1, reflecting the goal of a partial
selection to be automatically completed. The metric also
adds a regularization parameter of r to prevent boosting
ranks in cases where few correct points are selected. Em-
pirically, we found that w = 0.2 and r = 3 gives good
results for datasets that are suitable to be visualized in scat-
terplots. Due to the regularization the metric never reaches
1, but O still indicates no overlap.

Ranking Ranges. Our range-based queries rely on a de-
cision tree of arbitrary depth; hence the pattern captured
by that decision tree is always a perfect match to the se-
lection. Consequently, the range query would always rank
at the top if we ranked it using the Jaccard index. How-
ever, this is inconsistent with what humans perceive as a
good prediction of their intent: when analysts create com-
plex selections, it is uncommon that they think of them as
long lists of rules. Instead, they likely selected a pattern
based on a higher-level relationship in the data. To address
this, we assign a score R to the range-based query using a
heuristic based on the depth d of the decision tree: R = d%.
Our heuristic relies on the assumption that simpler queries
are more likely to match an analyst’s intent than complex
queries that require deep decision trees to represent them.
The resulting score is on the same scale as the Jaccard
index, and hence can be easily integrated.

Probabilistic Ranking. The Jaccard index considers
each possible pattern independently. However, an ana-
lyst’s intent is rarely independent, and some predicted
patterns are more likely than others. To address this, we
propose a probabilistic framework that models these ef-
fects. We denote predicted patterns with C; € C and the
boolean vector representing the users’ selection as .S. Find-
ing a probabilistic ranking of the predicted patterns is the
same as determining the conditional probability P(C|S)
for each pattern. Framing the problem using probabilities
also gives us more interpretability as it relates the different
intents to one another: the probabilities for each intent add
up to one:
> P(Gi|S) = P(C]S)

C,eC
Z P(CZ|S) = P(COutliersls)+P(CClusters|S)+~ Lo=1
C,eC
To compute P(C;|S) we can use Bayes theorem:
P(S|Ci)P(Cy)
P(Ci|S) = ———
(€19 = =5
P(S|C;) models how a particular intent explains the cur-
rent selection of the user. It is scaled by the term P(C;),
which is called the prior. It describes the probability of
each intent, without considering additional information.



GADHAVE ET AL.; CAPTURING USER INTENT WHEN BRUSHING IN SCATTERPLOTS; 2020

Later, we will see how we can use this prior to capture
domain knowledge about intents. Finally, P(S) acts as a
normalizing constant that ensures that the result is a prob-
ability. To make this equation computationally tractable,
we make use of two observations. First, if we do not
consider the order of selections, the problem that we are
trying to solve is very similar to text classification. Our
description of the users’ selection is almost identical to a
bag-of-words model, which is often used in this domain.
The difference is that typically in text classification, the
bag-of-words model describes the frequency of each word.
In our method, this simplifies to a constant frequency of
one if a point is part of the selection. Second, by assuming
that each feature (selected point) is independent of another,
we can compute P(S|C;) using the naive Bayes method.
In particular, we use a multinomial naive Bayes classifier
to compute the conditional probabilities: For each selec-
tion of the user, we train such a classifier on the output
vector of each of the intents C;. Given a selection S as an
input, the classifier yields the corresponding probability.
Our prediction is then the intent that maximizes this prob-
ability. Sometimes selected points are not part of any of
the training samples, which leads to zero probabilities for
the intents. This is a common problem when using naive
Bayes classifiers. We use Laplacian smoothing to avoid
this effect.

S Visualization and Interaction Design

In this section, we describe how we implemented our meth-
ods in an interactive visualization system and explain our
visualization design decisions. The interface allows an-
alysts to add scatterplots as desired. Categories can be
visualized using glyph types (see Figure[I)). We provide a
paint-brush feature with three different brush sizes, rectan-
gular brushes, and individual, click-based selections. The
items in multiple rectangular brushes can be treated as
unions or as intersections within or between multiple plots.
Points that are selected individually or using the paint-
brush are always treated as part of the intersection. The
labels of the items in a selection are shown in a separate
view Figure ] where we also break down the number of
items in the union and intersection of multiple brushes.

We designed the prediction interface, shown in Figure [4]
as a ranked table. Each predicted pattern is a row. Hov-
ering over a prediction shows a preview; while clicking it
replaces the selection with the prediction. The different
scores are shown as bar charts in the columns as “Intent
Rank” (the Jaccard index), “Auto-Complete Rank” (the
Jaccard index modified to be sensitive to partial selections),
and “Probability”. The table can be sorted based on these
scores. Other columns denote the “Matches (M)”, i.e., the
number of points that the prediction and selection share, the
“Not Predicted (NP)” items, i.e., the number of items in the
selection but not in the prediction, and the “Not Selected
(NS)” items, i.e., the number of items in the prediction but
not in the selection. Combined with the similarity scores,
these numbers give analysts a sense of how well each pre-
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Figure 4: The prediction interface shows ranked patterns
based on the three different scores. The “Category” pre-
diction for a selection (orange points, rectangle brush) is
shown in green in the scatterplot. The M, NP, and NS
columns show the number of matching items (M), not pre-
dicted items (NP), and predicted but not selected items
(NS). Hovering over a cell highlights the corresponding
items in the scatterplot in green. The “Dims” column
displays the dimensions considered for calculating a pat-
tern. The provenance visualization (bottom right) shows
the steps which lead to current selection and prediction.
Insights (orange) are used to group and aggregate steps
that lead to them. |[Interactive Figure]

diction matches the selection. Hovering over each of the
M, NP, or NS numbers, highlights the corresponding items
in green (see Figure [4).

Each prediction also shows on which dimension it was
calculated (and their order) in the “Dims” column. We
use short labels, which we replicate on the axes of the
scatterplots to identify the dimensions. For range queries,
we display the dimensions that are used in the decision
tree.

When using auto-complete, analysts can sort by the auto-
complete score. In addition, a pop-up appears right next
to a selection in the scatterplot (Figure [5)) showing the top-
three predictions for the current selection according to the
auto-complete score. This can be used as a short-cut to
complete selections.

To enable reproducibility and recall, a provenance graph
is visualized in the history view (Figure ). Every per-
sistent action, such as adding a plot or making a brush,
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is logged in the interface and can be retrieved at a later
time. The provenance graph supports branching analy-
sis histories. A prediction can be logged as a semantically
meaningful insight, which can be supplemented with an an-
notation (see the annotation interface in Figure[I]). Textual
annotations are designed to connect the mid-level intent
driven by the patterns in the data to the high-level, domain-
specific goals. We use insights to group and aggregate
the provenance graph: all actions that were in service of
a particular insight are grouped together and can be col-
lapsed. This allows us to show a concise and semantically
meaningful analysis history, while still storing a complete
history of interactions. The example in Figure ] shows one
expanded group, indicated with an orange frame, and one
aggregated insight in the inactive branch on the left.

The provenance graph contains all the information that is
necessary to reconstruct the semantics of a selection. That
means that it is not just a list of IDs, but contains, for in-
stance, the explicit range query, or the cluster centroid and
the algorithm configuration that can be used to reproduce
a specific pattern on updated data. In the future, we plan to
export the intents into machine-readable form, so that an
interactive analysis and filtering session can be used, for
example, in computational notebooks.

6 Results

We have implemented our prediction approach in
an open-source prototype, and also provide a vari-
ety of real and simulated datasets. @A demo ver-
sion of the tool is available at http://vdl.sci.
utah.edu/predicting-intent/, the source code
is available at https://github.com/visdesignlab/
intent-system.

We demonstrate our results through examples of brushes
and the matching prediction. Figure[I] for example, shows
a partially selected cluster that is also predicted as a cluster.
Figure ] shows a brush that closely matches a category and
arange. Figure[5|shows an example of how our system can
be used to auto-complete complex brushes. Here, an ana-
lyst has selected four points in a dataset. The plot overall
shows a strong linear correlation between X and Y. The
selected points, however, don’t follow that pattern. Our
system recommended “Outlier”, “Skyline”, and a “Lin-
ear Regression — Outside” pattern among the top three
patterns, with approximately equal probability (see the sup-
plementary material for a full figure including predictions).
The analyst had intended to select the outliers that deviate
from that correlation. To do this, they can simply apply the
outside linear regression prediction (previewed in green in
Figure3)) as their selection. We provide further examples
for all patterns in the supplementary material and refer to
our prototype for an interactive demonstration.

3
BIX

Figure 5: Using predictions to auto-complete complex
brushes. By selecting just four points (orange) that deviate
from the linear correlation between X and Y in this dataset,
the “Linear Regression — Outside” prediction shown in
the auto-complete pop-up can be used to reveal other points
that deviate from that linear relationship (highlighted in
green). Selecting that prediction applies that pattern as the
selection. |[Interactive Figure]

7 Evaluation

We evaluate our system using two methods: qualitative
interviews with domain experts, and a quantitative, crowd-
sourced study.

7.1 Qualitative Evaluation with Domain Experts

We demonstrated our system to two experts and inter-
viewed them about their impressions of the tool. The two
experts were selected from the participants of our forma-
tive interviews: El is a graduate student in the chemical
engineering program and E2 is a faculty member in nurs-
ing. For both interviews, we obtained datasets that each
expert works with and loaded them into our system. Both
interviews were recorded with the consent of the partici-
pants. The study was reviewed by the institutional review
board and classified as exempt from full review. For E1
the interview was conducted in person, while we used
video conferencing for E2. The interviews began with
questions about the experts’ current workflow, followed by
a demonstration of the features of our system. After the
demonstration, each expert was asked to use the system to
select interesting sets of points in their data and to describe
why those points are meaningful, as well as to explore and
comment on the intent predictions and logging mechanism.

Both E1 and E2 described their current workflows as using
scatterplots to visually find data items of interest, which
they then extract for downstream analysis. E2, in particular,
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commented on his preference to visually identify interest-
ing patterns and sets of items: “I’m one of the statisticians
that tends to be more visual. I can see the relationships
easier than just running tens and tens of models and look-
ing at tables of output to try and get an understanding of
the variability within our data.” Both experts approached
their use and evaluation of the predictions within our sys-
tem predominately as a mechanism for data item selection.
From this perspective, they both found the range intent
was a good match for their selections and speculated that
the cluster intent would also work well for datasets that
had clear clusters. E2 noted that the predictions are like
“somebody sitting over my shoulder looking at how I lasso
and select the [data items], and having a guess about it.”

The other predictions did not closely match their manual
selections. They noted, however, that these other predic-
tions could be interesting to consider as alternative sets of
items or patterns that they would not have otherwise con-
sidered. Both experts requested information about what
the specific analysis methods were and how they were se-
lecting data items, noting that before they would consider
data items suggested by the predictions they would first
want to verify the appropriateness of the underlying algo-
rithms for their analysis. These comments suggest that
the predicted intents, along with algorithmic descriptions,
could be incorporated into other tools as a mechanism to
support creativity and brainstorming during analysis.

As both experts focused on the tool and intent predictions
as a means to select data items of interest, it was diffi-
cult to engage the experts in speculating about the efficacy
of the predictions for tracking intent as part of a prove-
nance workflow. Furthermore, neither expert currently
uses automated mechanisms for capturing provenance of
their exploratory visual analysis; E1, in particular, noted
the difficulty she has in keeping track of her selections
and analysis over multiple data sets, tools, and parameters.
Both experts commented that the annotation mechanism
coupled to selections would be useful for communication
with colleagues. E2 also suggested that annotating with the
predicted intents could be a useful way to get selections
from scatterplots into a downstream analysis tool like R.
This insight suggests that annotated intents could be an
effective mechanism for chaining together analysis tools.

7.2 A Quantitative, Crowdsourced User study

We conducted a crowdsourced user study with 128 par-
ticipants on Prolific to demonstrate that our methods for
predicting patterns are valid, that they match the mental
model of the participants, and that our system can be used
to auto-complete selections. We focus on our application
scenario of auto-complete for practical reasons: a quanti-
tative study to measure the value of captured intent in a
provenance graph is difficult to conceive, in particular in
a crowd-sourced context. In contrast, it is possible to in-
struct participants to select a pattern, such as a cluster, and
measure their performance in doing so with and without
our system.

We chose a subset of our patterns: correlations (linear
and quadratic), outliers, clusters, and multivariate opti-
mization. We excluded ranges, as they are not useful for
auto-completing selections; and categories, as selecting
elements belonging to categories would be tedious in our
system without auto-complete and yet an alternative user
interface design that enables participants to explicitly se-
lect categories would solve that problem trivially.

Procedure. We used a within-subjects design for two
conditions: user-driven, using only manual brushes, and
computer supported, which adds a simplified version of
our prediction interface. The interface was simplified to
show the top-three predictions in the auto-complete pop-
up, and a simple version of the prediction interface on the
side, using only a single score (see supplementary material
or visit the study interface). The names of the predicted
patterns were not shown, to avoid biasing participants. To
counter-balance any learning effects, the conditions were
assigned in random order, the task order in each condition
was randomized, and the dataset was randomized. Based
on completion times of pilot experiments, each participant
was paid $ 6.25 USD, for an estimated duration of 25
minutes, resulting in an hourly rate of about $ 15 USD.
All participants viewed and agreed to an IRB-approved
consent form. To be eligible, participants had to use a
laptop or desktop device and either Chrome or Firefox
browsers.

Our procedure consisted of five phases and follows
guidelines on training participants for complex analysis
tasks [35]]: passive training, in the form of an 8-minute
video introducing the types of patterns and the interface,
active training, where they had to complete representative
tasks, but could use a help-feature to reveal the answer,
trials in the two conditions, and a short post-study survey.
The tasks instructed participants to select one of the pat-
terns they learned about during training. For clusters, a
specific cluster was marked in the plot with a red cross.
See the supplementary Figures[S9]and [SI0]for the study
interface and the study interface for specific task instruc-
tions.

Data and Tasks. We generate synthetic two-
dimensional datasets with between 200 and 222
items for linear correlations, quadratic correlations, out-
liers combined with a linear correlation, outliers combined
with a single cluster, clustered datasets with three or four
cluster, and datasets for multivariate optimizations, each
in three levels of difficulty: easy, medium, and hard. The
levels of difficulty are driven by how apparent a pattern
is. For example, an easy clustering dataset has fully
separated clusters, whereas a hard dataset has clusters
that significantly overlap. We generate two variations of
each combination (to be used in the different experimental
conditions), for a total of 36 datasets for the study and 6
datasets for training tasks.

For each dataset, we generate ground-truth through human
labeling. Patterns such as clusters or outliers can be am-
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biguous and our goal is to match the human perception of
those patterns. So, we chose to ask expert coders to label
the datasets. Our coders were five doctoral students in
visualization, with experience in analyzing these patterns.
We instructed them to carefully label each dataset for a spe-
cific pattern, with no algorithmic support. We then treat all
points that 4-5 of our coders selected as correct, the points
that 23 coders selected as ambiguous (neither correct nor
incorrect), and the points that only a single coder selected
as incorrect. The supplementary material contains images
of the datasets, the ground truth labels, and the code used
to generate them.

Measures. We measure accuracy, time to completion,
the type and rank of a predicted pattern chosen by a par-
ticipant, and survey responses. After each question, we
also elicit confidence and perceived difficulty on a five-
point Likert scale, and ask for comments. We also log
detailed interactions in a provenance graph. We calculate
the accuracy of the participant’s responses by using the
Jaccard index of the response overlapping with the ground
truth, where we first remove the ambiguous points (hence,
selecting ambiguous points neither benefits nor penalizes
a score). For our time measures, we subtract the times
where the browser window showing the study was inactive.
The final survey asks about the satisfaction with different
features, and experience with visualization and statistics.
Demographic data is provided through Prolific user pro-
files.

Pilots, Analysis, and Experiment Planning. We con-
ducted several tests and pilots to evaluate tasks, system
usability, data collection modalities, measures, and our pro-
cedure. We estimated the number of participants required
to uncover effects based on a pilot run on Prolific with
10 participants. We used a power analysis to estimate the
variance in our measures, which we combined with our
observed means to estimate the number of trials required.
Due to the limitations of null hypothesis significance test-
ing, we base our analysis on best practices for fair statis-
tical communication in HCI [[11] by reporting confidence
intervals and effect sizes. We compute 95% bootstrapped
confidence intervals [7]] and effect sizes using Cohen’s d
to indicate a standardized difference between two means.
For the accuracy values of the medium/difficult tasks, we
also supplement our analysis by including p-values from
Wilcoxon signed-rank tests (given the non-normal distri-
butions of our data and the within subjects design). We
consider a Bonferroni-corrected threshold for significance
of p = 0.01.

Expectations. We expected that accuracy will be higher
using computer-supported mode for the medium and hard
datasets, and that accuracy will be about the same and
consistently very high with the easy datasets. We assume
that the value of the prediction system will be greater on
ambiguous patterns, and that obvious patterns will be easy
to select manually, given the brushing tools we provide.
We also expected that participants will perceive predic-
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Figure 6: Tasks specific accuracy for combined medium
and hard tasks shown as medians and 95% confidence
intervals. Blue (UD) encodes the user-driven condition,
orange (CS) the computer-supported condition. Violin
plots visualize the underlying distribution. We also give the
number of trials per condition for each task (n), Cohen’s
d for effect sizes (d), and p-values. All differences are
significant.

tions as accurate, the interface as user-friendly, and pre-
fer computer-supported mode. Finally, we initially also
expected computer-supported mode to be faster, but we
realized during testing and pilots that this would unlikely
be the case.

Results. 128 participants completed the study. Af-
ter reviewing the provenance data using a cus-
tom visualization (see https://vdl.sci.utah.edu/
intent-study-analysis/) we realized that partici-
pants sometimes chose not to use predictions in the
computer-supported condition. Since our goal was to mea-
sure the effects of using predictions, we removed trials
that were not completed using predictions in computer-
supported mode. To avoid biasing our data by remov-
ing low-effort results in one condition, we also always
removed the equivalent trial in user-driven mode. We in-
clude data for all trials in our supplemental material. Based
on these criteria, we retained 1381 of 2268 trials in each
the computer-supported and user-driven. Hence, when
auto-complete was available, participants chose to use it in
61% of cases. We analyze medium and hard tasks together
(936 valid trials), and treat simple tasks as a baseline. For
clusters, linear, and quadratic regression, the accuracy in
easy tasks is > 95% in both conditions. For multivariate
optimization and outliers, the effects, both in terms of accu-
racy and trends are similar to the medium and hard tasks, as
shown in supplementary Figure[ST4] Accuracy and speed
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for every task individually are shown in supplementary
Figure

Figure[6|summarizes our main results. For the medium and
hard tasks, accuracy was also fairly high in both conditions
for clusters, linear regression, and quadratic regression
(median of 84-97%), with a small to medium, significant
effect showing higher accuracy in the computer-supported
condition. The computer-supported clustering condition
shows a small “bump” at an accuracy of around 0.5. Anal-
ysis of provenance data has revealed that this bump is
due to one of the clustering predictions aggregating two
ground-truth clusters into one.

Overall accuracy for the multivariate optimization task was
lowest overall, with accuracy in the computer-supported
condition being significantly higher, with a small to
medium effect size. Interestingly, many of our expert
coders omitted points that are contained in the formal def-
inition of a skyline, resulting in a “bump” of accuracy
scores at around 0.85, representing participants who have
selected the formally correct skyline as recommended by
the algorithm.

The accuracy for outliers was, to our surprise, significantly
lower, with a small to medium effect size, in the computer-
supported condition than in the user-driven condition. Our
intervention lead to worse performance! Inspection of the
provenance data revealed that in many cases, applying a
prediction for outliers made user selections worse. We
believe that this is due to a mismatch between how the
experts coded an outlier, and what the algorithm and its
parameterization underlying our prediction considered an
outlier. Generally, we found that our coders and partici-
pants considered only clear outliers, while the algorithm
also considered points at the margin of a pattern to be
outliers.

Time to completion was generally slower by about 5 sec-
onds (with completion times ranging from 21-31 seconds
on average) for the computer-supported condition for the
medium and hard tasks (see supplementary Figure [ST2).
Again, the exceptions were outlier tasks that were slower
by about 8 seconds on average. We speculate that the fail-
ure of our system to provide a prediction consistent with
the participant’s mental model caused that delay. Previous
work by Saket et al. has shown that task completion in
multi-paradigm interfaces can be slower, compared to a
single paradigm interface [41]]. They argued that optimiz-
ing efficiency is not a suitable goal in many contexts and
that multi-paradigm tools can make analysts think more
carefully.

Confidence was higher, and difficulty was perceived lower
in the computer-supported condition, for all tasks except
for outliers, where they were about the same (see supple-
mental Figure[ST3)), suggesting that participants trusted the
predictions when they matched their mental model. We
also analyzed whether the type of predictions chosen by
participants matched the patterns they were instructed to
select, which is a useful metric to judge the quality of our
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predictions and rankings. Figure[ST8|shows the results. We
see a strong overlap between prediction and target pattern.
Notably, quadratic and linear regression were frequently
substituted, and non-outliers were also frequently chosen
for regression tasks.

Our exit survey revealed that participants generally found
predictions accurate (average score of 3.6 on a 5-point
Likert scale), found the prediction interface easy to use (av-
erage score of 4.2), found them helpful (average score of
3.8) but liked user-driven and computers-supported mode
about equally well (average 3). The (default) paint-brush
feature was widely appreciated (average score of 4.5), the
rectangle brush tool was barely used, according to prove-
nance data, and lowly rated (average score of 2.2).

Overall, our results are largely consistent with our expecta-
tions. The negative result for outliers shows that it is imper-
ative that the mental model of a pattern matches with the
predictions of an algorithm, and highlights the challenge
in identifying suitable parameters. The otherwise higher
accuracy for datasets of medium or hard difficulty leads us
to conclude that our method for predicting intents works,
except for detecting outliers. We were surprised by the
evenly split preference between user-driven and computer-
supported mode. The data is bimodal, suggesting that par-
ticipants either liked or disliked computer-supported mode.
We hope that a more detailed analysis of the provenance
data will be able to shed light on this effect.

8 Discussion

In this work, we demonstrate a method for semi-
automatically detecting and capturing analysts’ mid-level
intents. We argue that detecting intents is useful for two
scenarios: to auto-complete selections, and to be able to
semi-automatically record semantically rich insights in
provenance data and therefore make visual analysis pro-
cesses reproducible and justifiable. By capturing mid-level
intents, we can, for example, more easily create curated
analysis stories by leveraging ideas from our prior work
on using provenance information to create interactive data
stories [22]. The capability to capture mid-level intents
opens up numerous other prospects as well.

Integration in Computational Workflows and Analy-
sis Re-Use. Our interviews show that analysts frequently
use scatterplots in combination with statistical modeling
tools and computational notebooks, such as R-Markdown
or Jupyter notebooks. Having semantically meaningful in-
tents available means that we can generate robust analysis
scripts based on interactive visualization, supporting more
automatic computation workflows. For example, if an ana-
lyst uses our tool to select a specific cluster for downstream
analysis, we will be able to generate code that will select
this cluster even for updated data.

Learning from Interaction. Through large-scale cap-
turing of intents, we can empirically learn patterns that
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analysts select to further improve our predictions. Such
a system could dynamically “auto-correct” analysis and
allow large-scale feedback on the usefulness and effec-
tiveness of various features within complex tools. For
instance, a software tool with a diverse set of users and
skill levels would allow intent to be trained on experienced
users so that novices are guided quickly towards effective
strategies [3].

Other Visualization Techniques and Data Types. We
chose to limit ourselves to scatterplots and tabular data be-
cause we believe that these are important cases that can be
used to demonstrate the feasibility of our approach. There
are numerous straightforward extensions and generaliza-
tions of our work. This ranges from implementing more
brushing tools, such as lasso selections, to also allowing an-
alysts to filter datasets. We argue that our framework could
be extended to other visualization techniques, such as par-
allel coordinates, histograms, or tabular visualizations [17]]
with small adaptions. Other visualization techniques could
also provide additional clues we could use for predicting
intents. For example, in a tabular visualization, the ac-
tion of sorting a table is likely important to understand the
intent of a subsequent selection. Other data types, such
as time-series or network data, are likely amenable to the
same approach, but would require identifying appropriate
patterns and the corresponding algorithms first.

Higher Dimensionality. While we allow users to ex-
plore multiple two-dimensional views, building a mental
model of high-dimensional data can be difficult. A poten-
tial solution to this is dynamic dimensionality reduction.
That is, given points already selected, the system could
dynamically adjust a linear projection (e.g.PCA) to the
best capture those datasets in a 1-, or 2-dimensional sub-
space. Alternatively, given more complex selections, like
clusters of relevant points, the dimensionality reduction
can use techniques such as Latent Discriminant Analysis
to find the best linear projection towards separating the
clusters. Another approach is to label pairs of points that
should be close (or far). Using these pairs, a similarity
learning method could provide the best linear projection
that satisfies those constraints. An intent-driven tool could
suggest the most informative point-pairs to label.

9 Limitations

Even in a simple scatterplot environment, there are nu-
merous complexities our work has identified. When more
than 2 — —4 dimensions of a data set are relevant in the
exploration, the combinatorial complexity of all the pos-
sible intents we model is significant. Complex actions
would place an even larger burden on the prediction en-
gine. One potential solution is the automatic filtering of
entire classes of intents so that not all of them need to be
explicitly explored.

Our tool currently does not handle missing data. When
working with our collaborators, we frequently encountered
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datasets that were generally well suited to our approach
but contained invalid or missing cells. On the front-end,
we plan to provide separate views for items with missing
data. On the back-end, appropriate interpolation and fitting
strategies could be a solution.

Our current approach to parameter space exploration is
naive. We could potentially improve our prediction by
evaluating our classifications using methods such as sil-
houette analysis for clustering and varying the parameters
accordingly.

10 Conclusion

In this paper, we introduce the first approach to predict,
capture, and annotate mid-level intents of analysts as they
interact with data in a scatterplot. We use a mixed-initiative
approach, leveraging data mining methods to identify pat-
terns in datasets, ranking potential matches based on user
selections, and allowing analysts to specify which (if any)
of the predicted intents fits their actual intents. We discuss
two application scenarios: auto-completing selections, and
increasing reproducibility. We believe that our work will
form the foundation of many future projects. Immediate
next steps are the application to different visualization tech-
niques and data types. Other prospects include learning
from interactions and integrating the output of interactions
in visualizations into computational workflows.
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