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ABSTRACT

Predicting and capturing an analyst’s intent behind a selection in a data visualization is valuable in
two scenarios: First, a successful prediction of a pattern an analyst intended to select can be used to
auto-complete a partial selection which, in turn, can improve the correctness of the selection. Second,
knowing the intent behind a selection can be used to improve recall and reproducibility. In this
paper, we introduce methods to infer analyst’s intents behind selections in data visualizations, such
as scatterplots. We describe intents based on patterns in the data, and identify algorithms that can
capture these patterns. Upon an interactive selection, we compare the selected items with the results
of a large set of computed patterns, and use various ranking approaches to identify the best pattern
for an analyst’s selection. We store annotations and the metadata to reconstruct a selection, such as
the type of algorithm and its parameterization, in a provenance graph.
We present a prototype system that implements these methods for tabular data and scatterplots.
Analysts can select a prediction to auto-complete partial selections and to seamlessly log their intents.
We discuss implications of our approach for reproducibility and reuse of analysis workflows.
We evaluate our approach in a crowd-sourced study, where we show that auto-completing selection
improves accuracy, and that we can accurately capture pattern-based intent.

Keywords Provenance, Reproducibility, Intent, Brushing, Selections

1 Introduction

When experts interact with a visual analysis system, they
are frequently guided by a domain-specific analysis ques-
tion, such as identifying a gene that could be a drug target.
To answer this question, they execute a series of inter-
mediate tasks, such as selecting a set of correlated items
for detailed analysis. In contrast to the high-level goal of
answering a domain-specific question, these intermediate
tasks are based on patterns in the data: for example, se-
lecting outliers, clusters, or correlations. Such a carefully
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constructed selection of items based on a domain-agnostic
structure reflects a reasoning process — an intent — by
the analyst. We refer to the motivation behind these actions
as the pattern-based intent of an analyst. Pattern-based
intents are distinct from higher level intents in that they
are free of context and based solely on the data. They
are also distinct from low-level intents, such as hovering
over an item to read its label. In this paper, we introduce
methods to infer these pattern-based intents for brushes
in scatterplots. We define pattern-based intents as the rea-
soning behind selections based on statistical patterns or
structures in a dataset. These selections can then serve as
the basis for more sophisticated actions, such as filtering,
querying, aggregating, or labeling, so that semantic knowl-
edge about the purpose of the selection can be applied to
these actions.

Why is capturing pattern-based intents important? First,
inferring intents based on partial selections can be used to
auto-complete selections. To select outliers, for example,
analysts would have to brush only a few examples and
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Figure 1: Scatterplots showing three dimensions of a dataset. An analyst has brushed points in the right scatterplot
based on a pattern they see (orange points). Our system predicts possible intents and ranks them by their match to the
current selection. The points in green show a cluster that is recommended by our system based on the selection. When
an analyst accepts this suggestion, a semantically rich log entry is stored in a provenance graph, shown on the right.
[Interactive Figure]

could then auto-complete the selection, instead of painstak-
ingly brushing the examples individually. Auto-complete
can also be used to correct a selection. For example, if an
analyst intended to select a cluster, reviewing the predicted
cluster might reveal points that should be added to the
selection.

Second, making pattern-based intents available in prove-
nance data improves the recall and reproducibility of
analytic processes conducted with visualization tools. By
capturing such processes at a higher level of abstraction
than just low-level interactions, they become more trans-
parent when revisited either by the original analyst or a
collaborator. Hence, analysis sessions that capture intents
are more justifiable and likely to increase trust in the pro-
cess.

Down the line, such rich provenance data also have the
potential to enable reusing visual analysis sessions on
modified or updated data. For example, when an analyst
first removes outliers before proceeding with an analysis,
that action could be translated into a rule, which then could
be used to automatically remove outliers from an updated
dataset.

We use scatterplots and tabular data as common and impor-
tant representatives of visualization techniques and data
types to demonstrate the feasibility of predicting intents
from selections. To identify the types of patterns that map
to these pattern-based intents, we conducted formative in-
terviews with scientists who regularly use scatterplots in
their research.

Our primary contribution is a set of methods to detect
and capture these pattern-based intents for brushes and
selections. We select data mining algorithms that are suit-

able to detect patterns in a dataset, and compute a large
set of potential patterns for a dataset. We introduce meth-
ods to address the potentially large space of dimensions
and parameters. Finally, we develop three approaches to
score and rank the output of the algorithms relative to an
analyst’s selections.

Our secondary contribution is an implementation of
these methods in an interactive visualization tech-
nique, thereby demonstrating how they can be leveraged
for auto-complete and provenance tracking. By showing
ranked predictions of patterns for a selection, we create a
mixed-initiative approach that lets analysts easily capture
their pattern-based intent by verifying a prediction. We
provide the means to annotate these intents to tie them to
higher level domain goals and capture this information in
a provenance graph.

We demonstrate the usefulness of our approach in a set of
examples. We also show that we can successfully predict
pattern-based intents in a large, crowd-sourced quantitative
study.

2 Background and Related Work

Our work is related to predicting intents in different con-
texts, data-aware brushes and selections, provenance track-
ing, and annotation of visual analysis processes, which we
discuss in the following subsections.

2.1 Theoretical Background

Selection is one of the fundamental interactions found in
visualization systems [1]. Selections are typically com-
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municated by manipulating the appearance of items, in
which case they are also called a brush. In multiple coor-
dinated view systems, linked brushing is frequently used
to highlight the same items in multiple views [2]. How-
ever, selections can also serve as the first step in more
complicated actions, such as filtering, extracting, querying,
aggregating, grouping, manipulating, or labeling items.
Hence, understanding the intent behind a selection is also
useful to understanding the intents behind these derived
operations.

Selections are commonly discussed in task analysis for
visualization. Brehmer and Munzner [3], for example, clas-
sify selections as a manipulation method in the how part of
their typology. Rind et al. [4] classify tasks along a cube
using the dimensions abstraction (concrete to abstract),
composition (low-level to high-level) and perspective (how
and why). In their design space, a selection is an abstract,
low-level task of the how perspective.

Our goal, however, is to understand the why behind a se-
lection and hence bridge the actions and the objectives:
why has an analyst chosen to select a particular set of
points? We attempt to infer pattern-based intents from
domain-agnostic patterns in the data, and give analysts the
opportunity to annotate their actions to capture domain-
specific reasoning. Our ultimate goal is to realize Knuth’s
vision of literate programming for interactive visual data
analysis, just like notebook formats such as Jupyter Note-
books or Observable have done for scripting-based data
analysis.

Our pattern-based intents are related to insights into the
data, as defined by Karer et al. [5]: “Insights affecting the
viewer’s knowledge about statistical and other structural
information about the data.” A difference in our definition
of pattern-based intents is the viewpoint: insight is about an
analyst learning something, whereas intent is the reasoning
behind an action.

2.2 Predicting Intents

Inferring an analyst’s intent has been studied in various
contexts. For example, Myers [6] proposes methods for
inferring operations and source code from demonstrations
when implementing graphical user interfaces. More spe-
cific to data analysis, Gotz and Zhou [7] study analysts’
activities and model them in four tiers, from high-level
tasks, to subtasks, to actions, to events. Actions, which
correspond to our pattern-based intents, are composed of
a type, an intent, and parameters. They represent an ex-
ecutable, semantic step, such as a query, that bridges the
high-level human cognitive ability and the low-level user
interactions. Gotz and Zhou implement this framework in
a prototype, named Harvest, that captures such actions. In
contrast to our work, however, Harvest captures that an
action was executed, but not why. A related tool that also
captures actions is SensePath [8]. A key difference to Gotz
and Zhou’s work is that SensePath is optimized to support

qualitative data analysis: it is made for analysts to use the
log of semantic actions in qualitative coding.

Our approach is also related to query-from-example meth-
ods developed in the databases community. Dimitriadou
et al. [9], for example, infer range queries from a set of
selected items. Cavallo and Demiralp [10] use an approach
similar to ours for precomputing and predicting clusters.
These approaches are limited to a single type of pattern.
Our work, in contrast, considers diverse patterns and ranks
the predicted pattern-based intents.

Dou et al. [11] argue that much of the reasoning process
during a visual analysis session can be inferred by humans
from inspecting user interactions, yet it is unclear whether
a human’s ability to do so can be leveraged by automatic
methods [12]. Brown et al. [13] have shown that user per-
formance and certain personality traits can also be inferred
from analyzing user interactions. A thread of work is con-
cerned with predicting future events in an analysis process
to enable guidance [14]. Ottley et al. [15], for example, pre-
dict future clicks on items based on an interaction history.
Steichen et al. [16] and Gingerich and Conati [17] show
that predicting lower level tasks, such as retrieve value,is
possible using eye gaze data. This approach differs from
our goal of predicting the intent of a current selection.
Monadjemi et al. [18] propose a Bayesian approach to
predict intents by ranking Gaussian distribution models
based on user interactions. The ranked models can then
be used to predict the next interaction, detect exploration
bias, and summarize the analysis process based on click
patterns. Battle et al. [19] propose ForeCache, a tool for
the exploration of large datasets. ForeCache uses Markov
chains and computer vision algorithms to model analysts’
future actions based on their past moves. The system uses
these predictions to pre-fetch data. In contrast to our work,
the purpose of both these methods is to predict a future
interaction or a region of interest.

A common goal for intent prediction is view specification,
i.e., the selection of data (sub)sets and suitable visual en-
codings. Systems such as Tableau’s Show Me [20] use data
properties to predict useful visual encodings. Natural lan-
guage interfaces for view specification attempt to extract
intents from language [21] and extract configurations for a
view. Saket et al. [22] predict intents for view specification
from demonstrations, such as assigning a color to a dot
in a scatterplot, based on which their system infers the
intent of mapping an additional variable in a dataset. Their
follow-up work [23] demonstrates that analysts seamlessly
switch between manual and mixed-initiative approaches.
Demiralp et al. [24] compute patterns for a dataset and
suggest visualizations for each of these patterns, but their
approach is not reactive to analyst selections.

In summary, these related approaches usually target pre-
dicting of future interactions, visualization recommenda-
tion, query generation, or preloading of data subsets. Both
our approach — mapping analyst selections to patterns and
then ranking these patterns — and our applications — auto-
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complete and capturing intents to enable reproducibility
and reusability — are different.

2.3 Data-Aware Brushes and Selections

Selections, and the related concepts of brushes, queries,
and filters, specify a subset of data items. Most selec-
tions are defined by explicit clicks on individual items,
“paint-brushes” that select all elements under a brush tool,
geometric brushes, such as rectangles or lassos, or textual
queries. More advanced, data-driven brushes have also
been proposed. For example, Fan and Hauser [25] intro-
duce a method for fast brushing based on neural networks,
where they estimate an intended selection based on sim-
ple sketches. Although they do not predict intents based
on these brushes, a method like theirs could be used to
improve brushing in our system.

Data-aware selections are actions that are defined in data
space [26, 27, 1]. For a selection, for example, data-aware
selections mean that it is described by conditions, not by a
list of items. Dynamic queries [28] are commonly realized
in a data-aware way: all items that fit certain conditions,
defined e.g., via sliders, are considered to be in the query
results. Certain types of brushes [2] can be realized in a
data-aware way. A rectangular brush in a scatterplot, for
example, easily translates into the necessary conditions.
Many selections (and other actions) are, however, realized
by direct reference, e.g., by pointing at items, and hence
they are defined in item space. Actions that are defined in
item space have several disadvantages: they cannot be gen-
eralized to apply to updating data, and they cannot be used
to semantically explain a selection. Data-aware actions,
in contrast, are robust to changes, can be used to explain
and justify an action, and can be used in various ways
to support an analyst, e.g., by relaxing a selection [29],
or for reuse in a different context [30]. Most data-aware
selections are realized by deriving rules directly from a
rectangular brush. In more general cases, rules for data-
aware selections are harder to derive. However, deriving
the pattern of a selection (what makes the item in a selec-
tion belong to each other and different from everything
else) is possible algorithmically. Xiao et al., for exam-
ple, create “knowledge representations” of selections in
communication networks [31]. This approach is similar in
spirit to our work, yet, Xiao et al.’s knowledge representa-
tions are limited to simple clauses and are not concerned
with higher level patterns in the data.

2.4 Provenance

Our goal is not only to capture the intent behind selection-
based actions, but also to explicitly track the intents and
their constituting interactions for the purpose of repro-
ducibility and, eventually, reuse of analysis actions. We
use provenance tracking to achieve this goal. Provenance
in the context of data analysis refers to the history of an
artifact, such as a dataset, a computational workflow, or
an insight. Ragan et al. [32] discuss different purposes of
provenance, including recall, replication (reproducibility),

presentation, and collaboration (among others), but do not
discuss reuse. Ragan et al. also characterize the differ-
ent types and purposes of provenance. They distinguish
the provenance of data, the provenance of visualization,
the provenance of interaction, the provenance of insights
(which captures analytical findings), and the provenance
of rationales (which captures the reasoning behind any de-
cisions made). Most provenance-tracking techniques are
limited to the former three, whereas insight and rational
provenance can currently be achieved only using manual
annotation.

Provenance tracking has two distinct approaches: (1)
tracking the history of an analysis to achieve provenance
(process-based), and explicitly modeling a visualization
workflow (workflow-based) [33].

Workflow-based approaches are common in large-
scale scientific data processing [34] in systems such as
SCIRun [35]. Workflow approaches are also common for
specifying the visualization pipeline, for example for volu-
metric data [36], networks [37], and tabular data [38]. A
benefit of workflow-based systems is that they explicitly
capture rules and thus can be reused easily. However, even
these rules do not typically capture higher level semantics
or intents.

Process-based approaches are the alternative to explic-
itly modeling workflows. They provide analysts with an
interactive visualization systems while tracking the anal-
ysis process in the background [12, 39]. Many visual-
ization systems support the tracking of a history for the
purpose of action recovery (undo/redo), so we limit our
discussion to systems that explicitly target provenance. Ex-
amples include the graphical histories by Heer et al. [40]
or CzSaw [41]; both render prior states as thumbnails.
Various tools also represent histories as node-link dia-
grams [42, 43, 44, 45], and some methods automatically
detect key states in an analysis process [46], or retrieve
prior states using search [47]. The provenance tracking in
these systems is realized in an ad hoc way. However, recent
papers have introduced software libraries for process-based
provenance tracking [48], including the Trrack library [39].
Trrack is developed by our team at the Visualization Design
Lab. However, in all of these cases the tracked informa-
tion is based on interaction logs and lacks higher level
semantics.

2.5 Annotation

One approach to capture intents and semantics is through
note taking and annotation. Annotations are common
in visualizations designed for presentation, but are not
frequently integrated in exploratory visualization tools,
with notable exceptions (e.g., [49, 50, 51, 40, 52, 53, 45]).

Manual notes, documentation, and annotations can capture
analysts’ reasoning and insights, but creating and main-
taining them is associated with a burden on the analyst
and thus a lack of scalability [7]. Hence, in this paper,
we associate annotations with the corresponding prove-
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nance step, which can also be tied to pattern-based intents.
This approach allows analysts to elaborate on their inten-
tions, bridging the gap between pattern-based intents and
domain-specific, higher level intents.

3 Patterns for Selections

When analyzing data, analysts have intentions at different
levels of abstraction. We are specifically interested in the
pattern-based intents behind brushes or selections of data
items in scatterplots, which are still semantically rich but
domain agnostic [54]. To define a set of patterns that map
to these intents, we first developed an initial classifica-
tion based on the literature [55, 56] and our own experi-
ences working with scatterplots. We then validated and
extended the initial classification through interviews with
six scientists at the University of Utah who regularly use
scatterplots in their data analysis. We used a convenience
sample of domain experts we had interacted with profes-
sionally. Our inclusion criteria were: (1) regular use of
scatterplots, and (2) and a willingness to share scatterplots
or data used in scatterplots. The interview protocol was
reviewed by the Institutional Review Board and classified
as exempt from full review. We identified six participants
from nursing, astrophysics, chemical engineering, psychi-
atry & population health, and surgery. The participants
included one graduate student, one research scientist, and
four faculty members. We provided participants with pa-
per printouts of scatterplots of their own data and asked
them to describe and highlight the kinds of patterns they
find interesting. The goal of the interviews was to validate
our initial classification of patterns based on the literature,
and to identify patterns we might have missed. The in-
terviews were video recorded and then transcribed. The
transcriptions were coded by two independent coders using
a seeded codebook developed from the initial classifica-
tion of patterns: outliers, clusters, categories, multivariate
optimization, and range queries. A table in the supplemen-
tary material shows the code frequencies from both coders
for each interview. Both coders identified many instances
of outliers, clusters, categories, and range queries. Only
one of the two coders identified two cases of multivariate
optimization. Both coders frequently identified correlation
analysis, which we originally had not included in our set of
patterns. Based on this process, we identified the following
data patterns that match the analyst intents when analyzing
data in scatterplots.

Correlations. Correlations are asso-
ciations between two or multiple dimen-
sions. They were mentioned as a target
pattern in five of our six interviews with
domain experts. Frequently, analysts
were looking to identify correlations in
the overall datasets or parts of the data,
but also attempted to find points that do not fit the corre-
lations. They had the intent to identify subsets of data
that correlate, but also identify items that do not fit the

correlation. In several interviews, these points were iden-
tified as “bad data”. We found that participants did an
approximate visual regression analysis, identifying both
linear and nonlinear trends.

Outliers and Inliers. Outliers are
data points that differ significantly from
other items. They were brought up as a
pattern of interest in all six interviews.
Frequently, analysts wanted to under-
stand what causes the data points to be
outliers, relying on their background
knowledge. Outliers are also related to, but distinct from,
the points that do not fit a correlation: for example, an
item can be an outlier in its magnitude but perfectly fit
the correlation. Outliers were also mentioned as bad data
that should be filtered out. We consider both outliers and
“inliers”, i.e., the set of points that are not outliers, as target
patterns.

Clusters and Groups. Clusters or
groups of data points are items that are
similar to each other, but distinct from
the rest of the dataset. They were men-
tioned as a pattern that analysts look for
in three of six interviews. Clusters were
frequently not well defined in the data
the experts we interviewed analyzed.

Multivariate Optimization. One
goal when analyzing data is to find data
points that are dominant over multiple
dimensions. A typical example is to
find a hotel that is both close to the city
center and affordable. The set of such
points is often called a skyline [57].
Hotels in the skyline are such that no other hotel is both
cheaper and closer to the center. Skylines were brought
up in two of our six interviews, and hence are the least
frequently mentioned pattern.

Categories. An observed pattern can
sometimes be traced back to the items
being of distinct categories. Four of our
six expert participants mentioned they
intend to select elements by category.
For example, one expert wanted to sep-
arate data points based on categories,
where one category corresponded to an experimental condi-
tion, and the other category was made up of unmanipulated
controls.

Ranges. Four of the six experts men-
tioned they select data based on numer-
ical ranges. Several experts stated these
ranges can be based on domain conven-
tions for setting cut-offs. We observed
range selections based on single or mul-
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tiple dimensions, implying that ranges
can be combined for more complicated queries.

Discussion. We believe that the described patterns cover
a broad range of use cases, but we do not argue that our
list of patterns is exhaustive. For example, domain-specific
patterns might be meaningful in certain contexts. Sarikaya
et al. [56] describe tasks for analyzing scatterplots. Each of
our patterns can be mapped to one or multiple tasks from
their work. For example, they mention tasks like identify
anomalies, identify correlation, and search for known mo-
tif, which can be mapped to the outlier, correlations and
cluster pattern, respectively. Their list of tasks, however,
goes beyond patterns, including, for example, explore data,
and they do not explicitly mention some of our patterns,
such as multivariate optimization.

Our pattern classification is limited to tabular data in scat-
terplots. We expect that other patterns, such as rankings,
would be common in different representations. Finally,
we have sometimes included a pattern and its antipattern,
such as outliers and nonoutliers as separate patterns, but
we have not done so consistently for all patterns. We have
included anti-patterns for those cases where they were
explicitly mentioned in our interviews (outliers and corre-
lation). However, anti-patterns could also be considered
for other cases.

4 Mapping Patterns to Intents

Most patterns that we identified in our formative study are
also commonly targeted in data mining, which implies that
various algorithms can be used to identify them. We lever-
age this diversity to calculate a broad set of patterns using
different algorithms, combinations of dimensions, and pa-
rameters. We then compare the computed patterns with
analysts’ selections and rank them according to that match.
Whereas our initial step creates a large set of patterns, the
subsequent ranking makes these patterns manageable. We
explain the details of the algorithms used and our ranking
approaches in this section. Figure 2 gives an overview of
our method.

Up to this point, we have implicitly assumed that the pat-
terns we discussed appear in two-dimensional space. In
practice, however, many datasets have much higher dimen-
sionality. Hence, a key question we have to answer is: For
which dimensions should we calculate predictions? We
considered calculating patterns for all pairs of dimensions,
all dimensions that are actively brushed in the system, all
dimensions that are visible in the system, all dimensions
in the dataset, and any combination of these options. Cal-
culating all possible options is computationally expensive,
if not prohibitive, but also not necessary. As we aim to
predict the intent of analysts interacting with (possibly mul-
tiple) 2D scatterplots, and not to reveal high-dimensional
patterns, we decided to limit predictions to (1) pairwise di-
mensions and (2) the dimensions that are actively brushed.
We believe that predicting patterns on pairs of dimensions

is the most appropriate choice for 2D scatterplots, as these
patterns match what is visible in the plot. This restriction
to pairs of dimensions is also supported by the fact that
we did not encounter examples where experts wanted to
select items based on more than two dimensions. How-
ever, we also do not want to exclude the possibility of
analysts selecting higher dimensional patterns. Hence, we
also calculate all patterns for all dimensions that are ac-
tively brushed, as the brushes indicate that an analyst is
explicitly interested in a combination of these dimensions.
Consequently, in a set of two 2D scatterplots visualizing
dimensions A/B and C/D, and with active selections in
both scatterplots, we calculate and predict patterns in two
dimensions for A-B and C-D; and patterns in 4D space for
A-B-C-D.

For example, if an analyst would like to select the species
in Fisher’s prominent Iris flower dataset, a selection based
on 2D combinations of dimensions would be difficult as
the feature are not well separated in any combination of
2D plots. In our system, they could start by plotting sepal
width and sepal length and brushing a group of similar
plants. They can further narrow the selection down by
brushing in a second plot showing petal length and petal
width. This combination of selections triggers a prediction
considering all four dimensions. They can then select the
cluster prediction that best matches their intended selection,
leveraging patterns computed on higher dimensional space.
A live version of this example is available [here].

4.1 Algorithms

Many algorithms can extract the patterns we describe. In
our system, we deliberately rely on standard algorithms
that are robust and simple, although more sophisticated
versions might exist. One reason for this is generality:
Many data mining algorithms require careful choices of
hyperparameters, but choosing good parameters requires
expertise and trial and error, which is not acceptable for
our use case. Instead, we choose parameters for these
simple algorithms by sampling the parameter space or
rely on defaults. For example, we run k-means with a
k of 2-7, but use defaults for all other parameters. We
do not use evaluation approaches for the quality of the
outputs; instead, we let our ranking approach reveal the
most suitable results. We also assume that the visualization
uses linear scales. However, an extension to logarithmic or
power scales would be straightforward. We use algorithms
provided by Scikit-learn [58] unless noted otherwise, and
normalize the data before the analysis.

We use two different algorithms for clusters, DBSCAN
and k-means, that have complementary strengths, since
different algorithms pick up different kinds of clusters,
such as circular clusters or concave-shaped clusters. DB-
SCAN is based on a (parameterized) measure of density
(clusters are clouds of dense points of arbitrary shape),
whereas k-means assumes roughly spherical clusters and
requires the cluster number as a parameter. If no clus-
ters are present, DBSCAN considers the whole dataset as
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Figure 2: Overview of our method for mapping patterns to intents. (a) An analyst makes a selection in a scatterplot. (b)
The system calculates many different patterns using various algorithms that we use for prediction. (c) We rank how
well the analysts’ selection matches the predicted patterns. (d) The analysts select their intended pattern and provides
annotations to capture their thoughts.
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Figure 3: Using decision trees to capture range-based
queries. (a) A brush is shown in red. The brush geometry
can be described with four rules. (b) The decision tree
simplifies the brush to two rules, illustrated in dark blue in
(a). (c) A simplified decision tree, where one level has been
removed. The result is a simple rule, which also includes
a point that was not in the original selection, contained in
the light-blue area in (a).

one cluster (except for outliers), whereas k-means always
provides a segmentation of the dataset. We solve each for-
mulation multiple times with different parameterizations

For outliers, we use two algorithms: the local outlier fac-
tory and the outliers identified by DBSCAN. We treat
inliers provided by the local outlier factory as a separate
prediction named nonoutliers.

Multivariate optimization is used to find values that are
optimal across multiple dimensions. Although a general
optimization would require weighting the value of each
dimension, skylines [57] are a generic approach that deter-
mines the items that are not dominated by other points. As
a skyline requires a definition of what is considered “good”
in each dimension (e.g., a low price, but a high customer
rating is considered good for a hotel), we compute skylines
for all high/low permutations of the 2D cases. We limit
predictions to all-low or all-high for higher dimensional
cases, because calculating all possible permutations would
be computationally expensive.

The patterns that we have described so far use the output of
an algorithm as a reference against which we can compare
an analyst’s selection. The range-based query pattern
differs from the other patterns in that we do not have such
a reference because the values used in range selections
are typically external to a dataset. Our interviews have
shown that ranges can be the result of domain-specific
knowledge, or can be used to select all the high or low
values. We also found that analysts create complex queries
by combining multiple simple brushes and selections. The
traditional approach to storing range-based queries is to
store the extent of brushes. However, this method is not
general: it does not work for other selection types, like
point or paintbrush selections, and it is defined only on spa-
tial representations. To address this problem, we introduce
a method that is based on learning a decision tree from
the input. We formulate the problem as a binary classifica-
tion problem, where the decision tree is used to separate
the selected from the not-selected points. As the decision
tree uses information-theoretic measures, it learns a com-
pressed representation of the brushes made by the analyst.
For example, the red, rectangular brush in Figure 3 (a)
could be stored with four coordinates identifying each side
of the rectangle. A range query based on a decision tree,
shown in Figure 3 (b), stores a generalized and simplified
version with only two rules. We can also generalize a se-
lection, similar to query relaxation [29], based on this idea.
By pruning the decision tree by one level, we extract the
most important components of the selections, as illustrated
in Figure 3 (c), which can be useful to correct imprecise
selections.

If a dataset contains categorical values, we treat each cat-
egory as a separate pattern. Individual categories could
conceivably be shown in the scatterplot, but predicting an
overlap between a selection and a category is especially
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important if a dataset has many categories that cannot be
shown at the same time.

Finally, we use regression as a framework to analyze cor-
relations in the data. To identify the sets of points that
are part of a linear or quadratic correlation pattern, we run
the following algorithm on linear and quadratic regression
datasets, where X is the entire dataset, I are points marked
as inliers, R is the regression model built with Scikit-learn,
ri is the residual for a point xi calculated from R, and
iters is a constant for the maximum number of iterations
we execute if the algorithm does not converge earlier.

1. First we assume all the points in the dataset X
are inliers I and build a Scikit-learn regression
model R on the I .

2. Then we calculate residuals ri using R for all
points xi in I .

3. Next we define r̄ = median(ri|xi ∈ I).

4. Then we redefine I as all the points xi|xi ∈ X
where ri < 2r̄.

5. We repeat points 1 to 4 for a predefined number
of iterations iter, stopping early if inliers do not
change between iterations.

The pseudocode for the above algorithm is expressed in
algorithm 1.
Algorithm 1 Calculate inliers for a correlation pattern.

I ← X . initially mark all points as inliers
while iters > 0 and I is changed do

R← Regression(I) . building regression model
r̄ ← median(ri|xi ∈ I) . median resiudal over I
I ← xi|xi ∈ X ∧ ri < 2r̄ . update inliers
iters← iters− 1

end while

4.2 Ranking Predictions

All the described patterns result in classifications for each
item in the dataset. To rank the predictions in our sys-
tem, we compare these patterns with a binary classification
representing an analyst’s selection. Figure 4 shows an
overview of our method. Some algorithms, like clustering,
produce a multiclass prediction, which we first transform
into a set of binary classifications using one-hot encod-
ing. We can then use a similarity metric to rank each of
the predictions. We use a preprocessing step to remove
duplicate predictions for the same pattern from the set of
predictions to rank. Duplicate predictions occur frequently
if a pattern is robust to different parameterizations of the
same algorithm.

In the following subsection, we discuss three ways to rank
the predicted patterns that are optimized either to infer
intent for an existing selection, or to predict intent of a
partial selection, plus a special case for ranking range
queries.

Ranking for Inferring Intent. Our baseline metric is
the Jaccard index, which is a measure of similarities be-
tween sets. We consider the set of selected items S, and
the set of items in a candidate pattern C. The Jaccard index
J(S,C) between those two sets is then defined as

J(S,C) =
|S ∩ C|
|S ∪ C|

=
|S ∩ C|

|S|+ |C| − |S ∩ C|

Here, a value of 1 corresponds to a perfect match, and a
value of 0 indicates no overlap. The Jaccard index is well
suited to infer the intent of an existing, complete selection.

Ranking for Auto-Complete. The tasks of auto-
completing and inferring intent differ with respect to rank-
ing a possible pattern: In the case of inferring intent for
a completed selection, finding the best match overall is
necessary. In contrast, for auto-completion, the selection is
partial, as the goal of the task is to complete the selection.
Hence, we needed to develop a ranking approach that does
not penalize incomplete selections. To do this, we rank the
predictions using a modified Jaccard index Jm. We define
the similarity between sets S and C as,

Jm(S,C) =
|S ∩ C|

|S ∩ C|+ |C \ S|+ w × |S \ C|+ r × |X|

Here X is the complete dataset. The modified similar-
ity metric reduces the penalty for points in S that are not
present in C by down-weighting |S \ C| using a factor
w < 1, reflecting the goal of a partial selection to be auto-
matically completed. The metric also adds a regularization
parameter of r to prevent boosting ranks in cases where
few correct points are selected. Empirically, we found
that w = 0.2 and selecting r such that r × |X| = 3 gives
good results for datasets that are suitable to be visualized
in scatterplots. Due to the regularization, the metric never
reaches 1, but 0 still indicates no overlap.

Ranking Ranges. Our range-based queries rely on a de-
cision tree of arbitrary depth; hence, the pattern captured
by that decision tree is always a perfect match to the selec-
tion. Consequently, the range query would always rank at
the top if we ranked it using the Jaccard index. However,
this ranking is inconsistent with what humans perceive
as a good prediction of their intent: when analysts create
complex selections, they tend not to think of them as long
lists of rules. Instead, they likely select a pattern based on
a higher level relationship in the data. To address this in-
consistency, we assign a score R to the range-based query
using a heuristic based on the depth d of the decision tree:
R = 1

d2 . Our heuristic relies on the assumption that sim-
pler queries are more likely to match an analyst’s intent
than complex queries that require deep decision trees to
represent them. The resulting score is on the same scale as
the Jaccard index, and hence can be easily integrated.

Probabilistic Ranking. The Jaccard index considers
each possible pattern independently. However, an analyst’s
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Figure 4: Overview of our method for ranking patterns for an analyst’s selection based on a cluster example. (a) A
dataset exhibits two clusters, shown in blue and green. (b) A clustering algorithm detects the clusters and assigns labels
to the points. (c) We use one-hot encoding to transform the output of each algorithm into disjoint Boolean vectors. (f)
An analyst’s selection results in (e) another Boolean vector. (d) These Boolean vectors act as inputs to compute Jaccard
indices and the naive Bayesian classifier, which are then used as scores for ranking.

intent is rarely independent, and some predicted patterns
are more likely than others. To address this, we propose
a probabilistic framework that models these effects. We
denote predicted patterns with Ci ∈ C and the Boolean
vector representing the analysts’ selection as S. Find-
ing a probabilistic ranking of the predicted patterns is the
same as determining the conditional probability P (C|S)
for each pattern. Framing the problem using probabilities
also gives us more interpretability as it relates the different
intents to one another: the probabilities for each intent add
up to one: ∑

Ci∈C

P (Ci|S) = P (C|S)

∑
Ci∈C

P (Ci|S) = P (COutliers|S)+P (CClusters|S)+. . . = 1

To compute P (Ci|S) we can use Bayes theorem. P (S|Ci)
models how a particular intent explains the current selec-
tion of the analyst. It is scaled by the term P (Ci), which is
called the prior. It describes the probability of each intent,
without considering additional information. Finally, P (S)
acts as a normalizing constant that ensures that the result
is a probability. To make this equation computationally
tractable, we make use of two observations. First, if we
do not consider the order of selections, the problem that
we are trying to solve is very similar to text classifica-
tion. Our description of the analysts’ selection is almost
identical to a bag-of-words (BOW) model, which is often
used in this domain. The difference is that typically, in
text classification, the bag-of-words model describes the
frequency of each word. In our method, the BOW model
simplifies to a constant frequency of one if a point is part
of the selection. Second, by assuming that each feature
(selected point) is independent of another, we can compute
P (S|Ci) using the naive Bayes method. In particular, we
use a multinomial naive Bayes classifier to compute the
conditional probabilities. For each selection by the analyst,
we train such a classifier on the output vector of each of
the intents Ci. Given a selection S as an input, the classi-
fier yields the corresponding probability. Our prediction is
then the intent that maximizes this probability. Sometimes,

selected points are not part of any of the training samples,
which leads to zero probabilities for the intents. This is a
common problem when using naive Bayes classifiers. We
use Laplacian smoothing to avoid this effect.

5 Visualization and Interaction Design

In this section, we describe how we implemented our meth-
ods in an interactive visualization system and explain our
visualization design decisions. The interface allows an-
alysts to add scatterplots as desired. Categories can be
visualized using glyph types (see Figure 1). We provide a
paint-brush feature [2] with three brush sizes, rectangular
brushes, and individual, click-based selections. The items
in multiple rectangular brushes can be treated as unions or
as intersections within or between multiple plots. Points
that are selected individually or using the paint-brush are
always treated as part of the intersection. The labels of
the items in a selection are shown in a separate view (see
Figure 5), where we also break down the number of items
in the union and intersection of multiple brushes.

We designed the prediction interface, shown in Figure 5,
as a ranked table with scores shown as bar charts [59].
Each predicted pattern is a row. Hovering over a prediction
shows a preview, and clicking it replaces the selection
with the prediction. The different scores are shown as bar
charts in the columns as “Intent Rank” (the Jaccard index),
“Auto-Complete Rank” (the Jaccard index modified to be
sensitive to partial selections), and “Probability”. The
table can be sorted based on these scores. Other columns
denote the “Matches (M)”, i.e., the number of points that
the prediction and selection share; the “Not Predicted (NP)”
items, i.e., the number of items in the selection but not in
the prediction; and the “Not Selected (NS)” items, i.e., the
number of items in the prediction but not in the selection.
Combined with the similarity scores, these numbers give
analysts a sense of how well each prediction matches the
selection. Hovering over each of the M, NP, or NS numbers
highlights the corresponding items in the scatterplot in
green (see Figure 5).

Each prediction also shows on which dimension it was
calculated (and their order) in the “Dims” column. We
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Figure 5: The prediction interface shows ranked patterns based on the three scores. The “Category” prediction for a
selection (orange points, rectangle brush) is shown in green in the scatterplot. Hovering over a row in the prediction
interface shows a preview of the prediction. Clicking the row replaces the current selection with the predicted selection.
The M, NP, and NS columns show the number of matching items (M), not predicted items (NP), and predicted but not
selected items (NS). Hovering over a cell highlights the corresponding items in the scatterplot in green. The “Dims”
column displays the dimensions considered for calculating a pattern. The “Probability” column encodes the probabilistic
ranking. The provenance visualization (right) shows the steps that lead to the current selection and prediction. Insights
(orange) are used to group and aggregate steps that lead to them. [Interactive Figure]

use short labels, which we replicate on the axes of the
scatterplots to identify the dimensions. For range queries,
we display the dimensions that are used in the decision
tree.

When using auto-complete, analysts can sort by the auto-
complete score. In addition, a pop-up appears right next
to a selection in the scatterplot (Figure 6) showing the top
three predictions for the current selection according to the
auto-complete score. This popup can be used as a short-cut
to complete selections.

To enable reproducibility and recall, a provenance graph
is visualized in the history view (Figure 5) [39]. Every
persistent action, such as adding a plot or making a brush,
is logged in the interface and can be retrieved at a later
time. The provenance graph supports branching analysis
histories. A prediction can be logged as a semantically
meaningful insight, which can be supplemented with an
annotation (see the annotation interface in Figure 1). Tex-
tual annotations are designed to connect the pattern-based
intent in the data to the high-level, domain-specific goals.
We use insights to group and aggregate the provenance
graph: All actions that were in service of a particular in-
sight are grouped together and can be collapsed. This
grouping allows us to show a concise and semantically
meaningful analysis history, while still storing a complete
history of interactions. The example in Figure 5 shows one
expanded group, indicated with an orange frame, and one
aggregated insight in the inactive branch on the left.

The provenance graph contains all the information that
is necessary to reconstruct the semantics of a selection,
which means that a selection is not just a list of IDs, but

contains, for instance, the explicit range query, or the clus-
ter centroid and the algorithm configuration that can be
used to reproduce a specific pattern on updated data. In the
future, we plan to export the intents into machine-readable
form, so that an interactive analysis and filtering session
can be used, for example, in computational notebooks.

We chose to use scatterplots and point/brush-based selec-
tions for our prototype, because Scatterplots are a com-
monly used and widely understood visualization technique,
and are well suited for brushing items. Combined with
highlighting, scatterplots allow us to demonstrate analyst
selections and system predictions clearly. We chose to
focus on selections because they are not only important
by themselves, but also are frequently precursors to more
complex interactions like filtering, grouping, labeling, or
segmentation. Our goal was to demonstrate the capturing
of intent at the selection stage.

The visualization system described here is a technology
demonstration that we developed with the goal of showing
and validating the methods to detect and capture intent.
We expect that a production system using our approach
will use a simplified user interface for ranking intents,
potentially closer to the simplified selection interface we
used for our study (shown in Figure 6).

6 Results

We have implemented our prediction approach in an open-
source prototype, and also have provided a variety of real
and simulated datasets. An online version of the tool is

10

http://3.136.64.162:5000/index.html#/?paperFigure=prediction-interface


GADHAVE ET AL.; PREDICTING INTENT BEHIND SELECTIONS IN SCATTERPLOT VISUALIZATIONS; 2021

available at [here], and the source code is available at
[redacted for review].

We demonstrate our results through examples of brushes
and the matching prediction. Figure 1, for example, shows
a partially selected cluster that is also predicted as a cluster.
Figure 5 shows a brush that closely matches a category and
a range. Figure 6, which shows the study stimulus, gives an
example of how our system can be used to auto-complete
complex brushes. The plot, overall, shows a strong linear
correlation between X and Y . Here, a participant has se-
lected four points in a dataset (the four points in the top-left
corner), and intended to select outliers. Our system recom-
mended a list of predictions on the right and shows the top
three predictions on the plot itself. Selecting a prediction
in the pop-up or the ranked table on right reveals the points
recommended for auto-completing the selection in green.
Here, the first pattern matches the outliers above the main
trend,and the third pattern matches all outliers, including
those above and below the main trend. We provide further
examples for all patterns in the supplementary material
and refer to our prototype for an interactive demonstration.

7 Evaluation

We explored various approaches to evaluate our methods.
First, we decided to focus our evaluation on the primary
contribution of this paper: a set of methods to detect and
capture analysts’ pattern-based intents behind selections.
We do not evaluate details of our visualization design, as
they are meant to be technology demonstrations in service
of our primary contribution. To validate our primary con-
tribution, we have to determine how well our predicted
intents match the mental models of analysts. To do this,
we considered qualitative evaluation with experts using
our system, case studies, usage scenarios, and quantita-
tive evaluation. We ultimately chose a two-pronged ap-
proach: a demonstration of our results through a prototype
with many preloaded datasets illustrated by a discussion
in the previous section and the supplementary material,
and a quantitative evaluation. For our quantitative study,
we had to make trade-offs among ecological validity (re-
alism), internal validity (isolating factors), and external
validity (generalization), and we opted for a controlled
crowdsourced study with a simple interface to have control
over the factors (internal validity) and to include diverse
participants, beyond just experts (external validity) [60].

We validate our predictions using auto-complete as an
application scenario (see Figure 7-I). This choice is prag-
matic: Even though our ability to capture mental models
is at least equally important to auto-complete, evaluating
auto-complete is significantly easier, because it enables
us to run a large-scale study and cover various types of
patterns. We argue that successes in predicting correct
pattern-based intents in an auto-complete scenario is trans-
ferable to capturing pattern-based intents for the purpose
of reproducibility and reuse.

In our study, participants were instructed to select a specific
pattern in two conditions: either using only brushes, or
using brushes and auto-complete based on our prediction
system (see Figure 7-II). The study is designed to test
the validity of our approach using two primary measures:
accuracy and match between intended and predicted
pattern.

We chose a subset of our patterns: correlations (linear and
quadratic), outliers, clusters, and multivariate optimiza-
tion. We excluded ranges, since they cannot be used for
auto-complete, and categories, since selecting elements
belonging to categories would be tedious in our system
without auto-complete, and yet an alternative user inter-
face design that enables participants to explicitly select
categories would solve that problem trivially.

We also describe the study in a data comic, shown in Fig-
ure 7, because data comics are an effective way to commu-
nicate the complex procedures of a study [61].

7.1 Procedure

We used a within-subjects design for two conditions: user-
driven, using only manual brushes, and computer sup-
ported, which adds a simplified version of our prediction
interface. Participants were instructed to select points that
belong to a specified pattern. The interface, shown in Fig-
ure 6, was simplified to show only the rankings tailored
to auto-complete. The names of the predicted patterns
were not shown to avoid biasing participants. To counter-
balance any learning effects, the conditions were assigned
in random order, the task order in each condition was ran-
domized, and the datasets were randomized. We recruited
128 participants for the study on Prolific, a crowdsourcing
platform with a research focus. Based on completion times
of pilot experiments, each participant was paid $ 6.25 USD,
for an estimated duration of 25 minutes, resulting in an
hourly rate of about $ 15 USD. All participants viewed
and agreed to an IRB-approved consent form. To be eligi-
ble, participants had to use a laptop or desktop device and
either the Chrome or Firefox browsers.

Our procedure consisted of five phases (see Figure 7-III)
and followed guidelines on training participants for com-
plex analysis tasks [62]: passive training, in the form of an
8-minute video introducing the types of patterns and the
interface; active training, where they had to complete rep-
resentative tasks, but could use a help-feature to reveal the
answer; trials in the two conditions; and a short poststudy
survey. The full study with all phases is available online.

Our initial study had a negative result for outlier detection.
Upon investigating the reasons behind this result, we found
that our outlier prediction algorithms did not perform ad-
equately. The algorithm we used at that time was Local
Outlier Factor (LOF), which compares the local density of
the object to density of its neighbours. This local density is
given by the k-nearest neighbors algorithm. The algorithm
is good at detecting local outliers, i.e., data points that are
some distance from a dense cluster are considered outliers,
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Figure 6: The study interface for the computer-supported condition for an outlier task. The user-driven condition was
identical, except for the absence of the ranking on the right and the prediction pop-up. [Interactive Figure]

whereas a point that is far from a sparse cluster might be
considered a part of the cluster, due to the cluster being
sparse. We added another outlier detection algorithm, DB-
SCAN, to the interface. DBSCAN clusters the given data
into density-based clusters and marks the points lying in
low density region as outliers, which ensures that points
that are outliers with respect to the entire dataset are cor-
rectly marked as outliers most of the time. We re-ran the
study only for the outlier task. We edited the instructional
video to remove explanations on other tasks; otherwise,
the procedure remained the same. We recruited 130 partic-
ipants for the revised outlier-only study. Participants were
paid $ 3.52 for an estimated study duration of 14 minutes.
For transparency, we report on both our original outlier
results (referred to as “outlier old” going forward) and the
revised outlier condition (“outlier revised”).

7.2 Data and Tasks

We generated synthetic two-dimensional datasets with be-
tween 200 and 222 items for (1) linear correlations, (2)
quadratic correlations, (3) outliers combined with a linear
correlation, (4) outliers combined with a single cluster,
(5) clustered datasets with three or four clusters, and (6)
datasets for multivariate optimizations, each in three lev-
els of difficulty: easy, medium, and hard. The levels of
difficulty were driven by how apparent a pattern is. For
example, an easy clustering dataset had fully separated
clusters, whereas a hard dataset had clusters that signifi-

cantly overlap. We generated two variations of each combi-
nation (to be used in the different experimental conditions),
for a total of 36 datasets for the study and 6 datasets for
training tasks. For each dataset, we generated ground-
truth through human labeling. Patterns such as clusters
or outliers can be ambiguous, and our goal was to match
the human perception of those patterns. Hence, we chose
to ask expert coders to label the datasets. Our coders were
five doctoral students in visualization not involved with
this paper, with experience analyzing these patterns. We
instructed them to carefully label each dataset for a specific
pattern, with no algorithmic support. We then treated all
points that 4–5 of our coders selected as correct, the points
that 2–3 coders selected as ambiguous (neither correct nor
incorrect), and the points that only a single or no coder
selected as incorrect. The supplementary material contains
images of the datasets, the ground-truth labels, and the
code used to generate them.

The tasks instructed participants to select one of the pat-
terns they learned about during training. As an example,
for outliers, the prompt was: “Select the points that are out-
liers, i.e., that are not following the main pattern you see in
the data” (see Figure 6). For clusters, a specific cluster was
marked in the plot with a red cross, and the prompt was
“Select the points which belong to cluster centered around
the cross.”
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Figure 7: Data comic [61] showing the motivation, tasks, conditions, study design, analysis, and results of our study.

7.3 Measures

We measured accuracy, time to completion, the type
and rank of a predicted pattern chosen by a partici-
pant, and survey responses. After each question, we also
elicited confidence and perceived difficulty on a five-point
Likert scale and asked for comments. We also logged
detailed interactions in a provenance graph. We calcu-
lated the accuracy of the participant’s responses by using
the Jaccard index of the response overlapping with the
ground-truth, where we first removed the ambiguous points
(hence, selecting ambiguous points neither benefits nor pe-
nalizes a score). For the time measures, we subtracted the
times where the browser window showing the study was
inactive. The final survey asked about the satisfaction with
different features, and experience with visualization and
statistics. Demographic data is provided through Prolific
participant profiles.

7.4 Pilots, Analysis, and Experiment Planning.

We conducted several tests and pilots to evaluate tasks,
system usability, data collection modalities, measures, and
our procedure. We estimated the number of participants
required to uncover effects based on a pilot run on Prolific
with 10 participants. We used a power analysis to esti-
mate the variance in our measures, which we combined
with our observed means to estimate the number of trials
required. Due to the limitations of null hypothesis sig-
nificance testing, we base our analysis on best practices
for fair statistical communication in HCI [63] by report-
ing confidence intervals and effect sizes. We compute
95% bootstrapped confidence intervals [64] and effect
sizes using Cohen’s d to indicate a standardized differ-
ence between two means. For the accuracy values, we
also supplement our analysis by including p-values from
Wilcoxon signed-rank tests (given the non-normal distri-
butions of our data and the within-subjects design). We
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0.911  −  0.924  −  0.936

n=248, W=8990, p=6.71e−05, d=0.343

0.759  −  0.794  −  0.826

0.667  −  0.705  −  0.741

n=213, W=5193.5, p=1.22e−06, d=0.331

0.697  −  0.722  −  0.744

0.783  −  0.807  −  0.829

n=398, W=43793.5, p=6.15e−10, d=−0.353

0.706  −  0.735  −  0.763

0.647  −  0.67  −  0.695

n=413, W=27483.5, p=6.92e−06, d=0.237
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Figure 8: Task-specific accuracy shown as medians and
95% confidence intervals on a scale of 0–1. Blue (UD)
encodes the user-driven condition, orange (CS) the
computer-supported condition. Violin plots visualize the
underlying distribution. The numbers on the left show
the median and the extent of the 95% confidence interval.
We also give the number of trials per condition for each
task (n), Cohen’s d for effect sizes (d), and p-values. All
differences are significant. Note that the number of trials
varies due to our exclusion criteria, and that the outlier
tasks have higher numbers of trials as they group multiple
outlier configurations (outliers on top of clusters, regres-
sions, etc.) Also note that “Outlier Old” shows the result
of our original study, whereas “Outlier Revised” shows
the result of the separate study with an improved outlier
detection algorithm.

consider a Bonferroni-corrected threshold for significance
of p = 0.0083.

7.5 Expectations

We expected that accuracy would be higher using
computer-supported mode for the medium and hard
datasets, and that accuracy would be about the same and
consistently very high with the easy datasets. We assumed
that the value of the prediction system would be greater
on ambiguous patterns, and that obvious patterns would be
easy to select manually, given the brushing tools we pro-
vided. We also expected that participants would perceive
predictions as accurate and the interface as user-friendly,
and they would prefer the computer-supported mode. Fi-
nally, we initially also expected computer-supported mode
to be faster, but we realized during testing and pilots that
this would unlikely be the case.

7.6 Results

The original study had 128 participants and the follow-up
outlier study had 130 participants. After reviewing the
provenance data using the reVISit system [65], we realized
that participants sometimes chose not to use predictions in
the computer-supported condition. Since our goal was to
measure the effects of using predictions, we removed trials
that were not completed using predictions in the computer-
supported mode. To avoid biasing our data by removing
low-effort results in one condition, we also always removed
the equivalent trial in the user-driven mode. We include
data for all trials in our supplemental material. Based on
these criteria, we retained 1381 of 2268 trials in each of
the computer-supported and user-driven conditions (826
of 1560 for the second study). Hence, when auto-complete
was available, participants chose to use it in 61% of cases
(53% for the second study). We argue that the removal
of these trials is justified and even necessary, but this ar-
gument leads to the question of why predictions were not
used in many cases. We do not have definitive answers for
that question, since conducting follow-up interviews with
crowd participants is not possible. We do believe, however,
that skipping the prediction interface is a sign of a crowd
participant minimizing their effort, which is well known to
be a challenge in crowdsourced studies [66].

We analyze easy, medium, and hard tasks together, result-
ing in 1785 valid trials across both studies. Figure 8 sum-
marizes our main results. Accuracy and speed for every
task are shown individually in Supplementary Figure S21
and Figure S22. We also break down results by levels of
difficulty (see Supplementary Figures S14, S15 and S16).
Accuracy was fairly high in both conditions for clusters,
linear regression, and quadratic regression (median of 84-
98%), with a small to medium, significant effect show-
ing higher accuracy in the computer-supported condi-
tion. The computer-supported clustering condition shows
a small “bump” at an accuracy of around 0.5. Analysis of
provenance data has revealed that this bump is due to one
of the clustering predictions aggregating two ground-truth
clusters into one.

Overall accuracy for the multivariate optimization task was
lower, with accuracy in the computer-supported condi-
tion being significantly higher, with a small to medium
effect size. Interestingly, many of our coders omitted
points that are contained in the formal definition of a sky-
line, resulting in a “bump” of accuracy scores at around
0.85, representing participants who have selected the for-
mally correct skyline as recommended by the algorithm.

The accuracy for our original outliers condition (“outlier
old”, in Figure 8) was significantly lower in the computer-
supported condition than in the user-driven condition. In-
spection of the provenance data revealed that in many
cases, applying a prediction for outliers made user selec-
tions worse. As previously discussed, we re-ran our study
using a different outlier prediction algorithm (outliers as
reported by DBSCAN). In the second study, we saw signif-
icantly higher accuracy for computer-supported mode,
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Pattern Asked For in Tasks

Cluster (N=257) Linear
Regression (N=265)

Quadratic
Regression (N=248)

Multivariate
Optimization (N=213)

Outlier
Old (N=398)

Outlier
Revised (N=520)

Average

Cluster 256 (223) 6 (6) 82 (78) 13 (2) 43 (25) 44 (5) —
Linear Regression — Within 0 (0) 136 (136) 54 (54) 1 (0) 4 (1) 1 (0) —

Quadratic Regression — Within 0 (0) 82 (82) 84 (84) 0 (0) 2 (1) 0 (0) —
Multivariate Optimization 0 (0) 0 (0) 0 (0) 175 (163) 21 (10) 22 (22) —

Linear Regression — Outside 0 (0) 1 (0) 0 (0) 0 (0) 0 (0) 60 (44) —
Quadratic Regression — Outside 0 (0) 0 (0) 0 (0) 2 (0) 0 (0) 13 (0) —

Non-Outlier 1 (0) 40 (39) 28 (28) 0 (0) 1 (1) 0 (0) —
Outlier 0 (0) 0 (0) 0 (0) 22 (2) 327 (174) 380 (178) —

Correct Pattern 99% (87%) 51% (51%) 34% (34%) 82% (76%) 82% (44%) 73% (34%) 70% (54%)

Pa
tt

er
n

Pr
ed

ic
te

d

Correct+Reasonable Pattern 99% (87%) 66% (66%) 45% (45%) 82% (76%) 82% (44%) 87% (48%) 77% (61%)

Table 1: To analyze the matches between patterns, participants were instructed to select (columns) and patterns they
chose from our set of predictions. The values in the cells show the number of times participants selected a certain
predicted pattern for a pattern they were asked to select. For example, the first column, “Cluster” contains responses for
all trials that instructed participants to select a cluster. The first row, also “Cluster”, shows all trials where participants
chose a cluster pattern from the predictions. Consequently, the first cell shows that when asked to select a “Cluster”, in
256 trials, participants have also selected a predicted pattern of type “Cluster”. Cells containing precise matches are
highlighted in green. Cells highlighted in yellow show matches with analogous patterns . For example, the “outside
linear regression” pattern is a reasonable substitute for the “outlier” pattern. The numbers in parentheses show how
frequently a response resulted in a correct solution (assuming correct to be an accuracy > 0.75). The bottom two lines
give percentages for the correctly identified patterns and correct+analogous patterns combined. Again, the number
of responses with an accuracy > 0.75 is in parentheses. Overall, correct patterns were used frequently for clusters,
multivariate optimization, and outliers. Results for linear and quadratic regression show a frequent mix-up with the
other type of regression pattern, and for quadratic regression also with clusters. Interestingly, these mismatched patterns
do not negatively influence accuracy.

although overall accuracy had gone down. The reduced
overall accuracy could be caused by reduced learning ef-
fects in the study with fewer tasks.

The difference in accuracy in favor of the computer-
supported condition was more pronounced in medium and
hard tasks. The accuracy in easy tasks was similar for both
conditions (see Supplementary Figures S14, S15 and S16).

Our exit survey revealed that participants generally found
predictions accurate (average score of 3.6 on a five-point
Likert scale) and helpful (average score of 3.8 on a 5-point
Likert scale). In terms of the interaction choices for selec-
tions, the paintbrush selection was rated more helpful (av-
erage 4.5/5) than the rectangular brush (average 2.3/5) and
individual point selection (average 3.3). Every task was fol-
lowed by a mini survey in which participants reported their
confidence in their selection and self-reported the difficulty
of the task. Confidence and difficulty were reported on 1-5
scale with 1 being confident, 5 being not confident, 1 being
easy, and 5 being difficult. Confidence was higher and
difficulty was reported lower for the computer-supported
condition for all tasks except outliers, where they were
about the same, suggesting that participants trusted the
predictions when they matched their mental model.

We also analyzed whether the type of predictions cho-
sen by participants matched the patterns they were in-
structed to select, which is a useful metric to judge the
quality of our predictions and rankings. We see a strong
overlap between prediction and target pattern (see Table 1);
participants selected the right type of pattern 70% of
the time from our predictions, and used the correct pat-
tern or a reasonable substitute (e.g., “outside linear regres-

sion” instead of “outlier”) 77% of the time. There were
variations between patterns: clusters were almost perfectly
matched, whereaas both regression patterns were less fre-
quently correctly matched. Notably, quadratic and linear
regression were frequently substituted, and nonoutliers
were also frequently chosen for regression tasks.

Time to completion was generally slower by 3–12 sec-
onds (with completion times ranging from 21-37 seconds
on average) for the computer-supported condition (see
Supplementary Figure S13). Given the higher accuracy —
overall, the median accuracy for computer supported mode
was 3–9% higher (excluding the old outlier condition) —
but the slower response times, it is worth asking whether
this a trade-off worth making. In retrospect, the longer
response times for computer-supported work make sense.
Previous work by Saket et al. has shown that task com-
pletion times in multiparadigm interfaces can be higher
compared to a single paradigm interface [23]. However,
Saket et al. also argue that optimizing efficiency is not
a suitable goal in many contexts and that multiparadigm
tools can make analysts think more carefully. How mean-
ingful are 10 seconds of an analyst’s time when trying to
understand an important dataset? We argue that accuracy
by itself is much more important than time, when the time
difference is a few seconds, for most analysis scenarios.
Furthermore, for our study specifically, we were able to
show not only that the accuracy in computer-supported
mode was higher, but also that we were able to correctly
predict patterns based on participant selections in most
cases, which has the benefit that this data is now avail-
able as structured information that can be leveraged for
reproducibility and reuse.
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7.7 Study Discussion

Overall, our expectations were verified: accuracy was con-
sistently higher in the computer-supported condition, and
we were able to correctly predict a large percentage of pat-
terns. In terms of predicted patterns, quadratic and linear
regression showed lower accuracy in predicting correct pat-
terns, even when including nonoutliers as a reasonable sub-
stitute. This result is likely due to the linear and quadratic
regression algorithms using our thresholding being quite
similar. Creating an umbrella intent “regression” would be
one possibility to address this problem.

We also believe that the matches between patterns and
predictions will be much higher in practice when labels
for the patterns are shown, so that analysts can pick the
pattern that corresponds to their mental model.

Although we were able to show that we can successfully
predict pattern-based intents for auto-complete, the ques-
tion remains how useful real-life analysts will find the
ability to track semantically meaningful pattern-based in-
tents. To answer this question, we plan to develop our
prototype system into a visual exploration tool that enables
actions derived from selections, such as filters and group-
ings, and provides features such as sharing, replaying, and
exporting the analysis process into other pipelines or tools
such as Jupyter Notebooks. We can then design a more
comprehensive evaluation strategy that can validate the
efficacy of this system with regard to reproducibility and
reusability.

8 Discussion

In this work, we demonstrate a method for semi-
automatically detecting and capturing analysts’ pattern-
based intents. Detecting intents is useful for two scenar-
ios: to auto-complete selections and to be able to semi-
automatically record semantically rich insights in prove-
nance data and therefore make visual analysis processes
reproducible and justifiable. By capturing pattern-based
intents, we can, for example, more easily create curated
analysis stories by leveraging ideas from prior work on
using provenance information to create interactive data sto-
ries [45]. The capability to capture pattern-based intents
opens up numerous other prospects as well.

Integration in Computational Workflows and Analysis
Reuse. Our interviews show that analysts frequently use
scatterplots in combination with statistical modeling tools
and computational notebooks, such as R-Markdown or
Jupyter notebooks. Having semantically meaningful in-
tents available means that we can generate robust analysis
scripts based on interactive visualization, supporting more
automatic computational workflows. For example, if an
analyst uses our tool to select a specific cluster for down-
stream analysis, we will be able to generate code that will
select this cluster even for updated data.

Learning from Interaction. Through large-scale cap-
turing of intents, we can empirically learn patterns that
analysts select to further improve our predictions. Such
a system could dynamically “auto-correct” analysis and
allow large-scale feedback on the usefulness and effec-
tiveness of various features within complex tools. For
instance, a software tool with a diverse set of users and
skill levels would allow intent to be trained on experienced
users so that novices are guided quickly toward effective
strategies [14].

Generalization to Other Visualization Techniques and
Data Types. We chose to limit ourselves to scatterplots
and tabular data because we believe that these are impor-
tant cases that can be used to demonstrate the feasibility of
our approach. There are numerous extensions and gener-
alizations of our work, ranging from implementing more
brushing tools, such as lasso selections, to allowing ana-
lysts to filter datasets. We argue that our framework could
be extended to other visualization techniques, such as par-
allel coordinates, histograms, or tabular visualizations [67]
with small adaptions. Other visualization techniques could
also provide additional clues we could use for predicting
intents. For example, in a tabular visualization, the ac-
tion of sorting a table is likely important to understand the
intent of a subsequent selection. Other data types, such
as time-series or network data, are likely amenable to the
same approach, but would require identifying appropriate
patterns and the corresponding algorithms.

Higher Dimensionality. Although we allowed analysts
to explore multiple two-dimensional views, building a
mental model of high-dimensional data can be difficult.
A potential solution to this problem is dynamic dimen-
sionality reduction. That is, given points already selected,
the system could dynamically adjust a linear projection
(e.g., PCA) to best capture those datasets in a 1-, or 2-
dimensional subspace. Alternatively, given more complex
selections, like clusters of relevant points, dimensionality
reduction can use techniques such as Latent Discriminant
Analysis to find the best linear projection to separate the
clusters. Another approach is to label pairs of points that
should be close (or far). Using these pairs, a similarity
learning method could provide the best linear projection
that satisfies those constraints. An intent-driven tool could
suggest the most informative point-pairs to label.

Scalability Our current system recalculates the predic-
tions every time an analyst interacts with the system. This
delay in the prediction mechanism can be prohibitive for
large datasets, large combinations of dimensions, or more
parameterizations for algorithms. The prediction mecha-
nism’s two main phases are to run the machine learning
algorithms on the datasets and to rank the results based on
an analyst’s selection. Only the second step has to be done
in real time. The first, computationally expensive, step can
be done once, on data upload, as an offline step. Precom-
puting would also allow us to include a larger combination
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of dimensions and add more algorithms and parameteriza-
tion without substantially adding to the prediction time.

Active Pattern Exploration. Instead of just passively
suggesting which pattern matches to a selection, we could
also suggest various patterns in the data set as possible
aspects to explore at the beginning of an analysis. In this
way, analysts could, for example, see all computed skylines
without ever using selections. The downside of such an
approach is the potential for increased complexity in the UI:
analysts would be confronted with many different analysis
choices, and rankings or suggestions would be difficult to
achieve without prior input from the analyst.

Multiverse Analysis. As in any multi-step analysis pro-
cess, analysts must make choices about their analysis paths,
leaving other reasonable paths behind. As we capture anal-
ysis paths explicitly, it would be intriguing to also explore
different analysis paths from the multiverse and visualize
the results of these alternatives using a framework like
Boba [68].

9 Limitations

Even in a simple scatterplot environment, our work has
identified numerous complexities. When more than four
dimensions of a dataset are relevant in the exploration, the
combinatorial complexity of all the possible intents we
model is significant. One potential solution is to automati-
cally filter entire classes of intents so that not all of them
need to be explicitly explored.

Showing many scatterplots also raises the problem of fit-
ting them visually on the screen. Predicting intents in
higher dimensions based on selections in 2D scatterplots
is tricky, because scatterplots do not provide a good vi-
sual representation of high-dimensional patterns. We plan
on addressing this problem by providing additional visu-
alizations for visualizing high-dimensional data, such as
parallel coordinate plots or heat maps, or by using dimen-
sionality reduction.

Our tool currently does not handle missing data. When
working with our collaborators, we frequently encountered
datasets that were generally well suited to our approach
but contained invalid or missing cells. On the front-end,
we plan to provide separate views for items with missing
data. On the back-end, appropriate interpolation and fitting
strategies could be a solution.

Our current approach to parameter space exploration is
naive. We could improve our prediction by evaluating our
classifications using methods such as silhouette analysis
for clustering and varying the parameters accordingly.

In some cases, meaningful selections might not correspond
to predicted patterns, yet our ranking system will still rec-
ommend a pattern, although with low scores. We consid-
ered including a “no pattern” prediction in the ranking, but
ultimately decided against it, since it would be difficult

to rank in either of our ranking frameworks. However,
analysts can explicitly record “custom insights” that are
not based on any ranked pattern to account for same.

As analysts interact with a visualization over a longer pe-
riod of time, the provenance graph keeps growing. The
Trrack library [39] can demonstrably handle a large num-
ber of actions, but the provenance visualization will be-
come hard to navigate. As a partial remedy, we group
the actions in a provenance graph when an insight has
been generated, which allows the collapse of the prove-
nance visualization to give a higher level overview. We
can improve this approach by allowing analysts to manu-
ally group provenance actions and collapse the tree further.
Finally, search functionality on the provenance graph may
be a scalable solution to the problem [47].

10 Conclusion

In this paper, we introduce the first approach to predict, cap-
ture, and annotate pattern-based intents of analysts as they
interact with data in a scatterplot. We use a mixed-initiative
approach, leveraging data mining methods to identify pat-
terns in datasets, ranking potential matches based on se-
lections, and allowing analysts to specify which (if any)
of the predicted intents fit their actual intents. We discuss
two application scenarios: auto-completing selections and
increasing reproducibility. We believe that our work will
form the foundation of many future projects. Immediate
next steps are the application to different visualization tech-
niques and data types. Other prospects include learning
from interactions and integrating the output of interactions
in visualizations into computational workflows.
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