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Fig. 1: Overview of the Loon Visualization Tool. (a) The Condition Selector visualizes cell growth rates for different drugs at
different concentrations using small multiple line charts in a matrix. Analysts can pick conditions that show interesting behavior for
detailed analysis. (b) The Image Selection View is used to navigate images and visualizes aggregate cell and track (cells tracked
over time) properties. (c) The Image View shows a selected microscopy image and the segmentation of cells. (d) The Cell and Track
Attributes View shows distributions of and correlations between attributes of cells and tracks and serves as the primary means to
define selections and filters. (e) The Exemplar Cells View shows cells extracted from the images and samples from a user-specified
distribution. It also shows the growth curves for the condition and the selected cells.

Abstract—Which drug is most promising for a cancer patient? A new microscopy-based approach for measuring the mass of individual
cancer cells treated with different drugs promises to answer this question in only a few hours. However, the analysis pipeline for
extracting data from these images is still far from complete automation: human intervention is necessary for quality control for
preprocessing steps such as segmentation, adjusting filters, removing noise, and analyzing the result. To address this workflow,
we developed Loon, a visualization tool for analyzing drug screening data based on quantitative phase microscopy imaging. Loon
visualizes both derived data such as growth rates and imaging data. Since the images are collected automatically at a large scale,
manual inspection of images and segmentations is infeasible. However, reviewing representative samples of cells is essential, both for
quality control and for data analysis. We introduce a new approach for choosing and visualizing representative exemplar cells that
retain a close connection to the low-level data. By tightly integrating the derived data visualization capabilities with the novel exemplar
visualization and providing selection and filtering capabilities, Loon is well suited for making decisions about which drugs are suitable
for a specific patient.

Index Terms—Microscopy Visualization, Cancer Cell Lines, Exemplars, Design Study.

1 INTRODUCTION

Automatically acquired, large-scale microscopy data is an increasingly
important tool in life-science research and medical practice. Areas
such as brain connectomics create high-resolution images using elec-
tron microscopes of neurons and use segmentation to reconstruct the
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connectivity of the brain [1, 21]. Similarly, high-throughput screening
to observe the effect of drug candidates on their cell lines is frequently
used in pharmacological research [12]. For these approaches, the bottle-
neck has moved from acquiring image data to processing and analyzing
the data. With the many thousands if not millions of images captured,
these pipelines rely heavily on automatic image analysis processes, such
as segmentation, to derive datasets of interest. However, completely
automated setups have proven elusive, not least due to the heterogeneity
of the images and biological structures captured [1, 31]. Analysts face
many challenges, from conducting quality control of automatic pro-
cesses (checking segmentation and tracking) to adapting the analysis
for an experiment. To address these challenges, analysts need support
through interactive visual analysis systems.
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Fig. 2: The data acquisition process. (a) Cancer cells are plated in wells, and each well is treated either with a control substance or one of several
cancer drugs (indicated as colors) at different concentrations. (b) For each well, multiple segments are imaged. (c) Individual cells are segmented.
By repeatedly imaging each location as time passes, tracks of cells can be computed. The cell segmentation and tracking information can then be
used to compute attributes such as mass and growth rates.

In this paper, we introduce Loon, a visual analysis tool for a novel
type of application: screening specific patient’s tumor samples for a
variety of cancer drugs using quantitative phase imaging (QPI) data.
Our collaborators are developing this novel technology and the associ-
ated data analysis pipeline. The goal of these experiments is to rapidly
(i.e., within 1–2 days) determine which known cancer drug inhibits
cell growth, thereby taking a leap toward personalized medicine. The
heterogeneous nature of the data — for different tumor types taken
from different patients — requires a flexible visual analysis solution.

Our contribution is twofold: on the one hand, we contribute a design
study based on a detailed analysis of the domain problem, which results
in a functioning and deployed software tool. On the other hand, we
also contribute a novel technique to visualize representative exemplars
of cells by sampling cells along user-specified data dimensions. This
approach enables analysts to both quickly validate preprocessing steps
such as segmentation and tracking, and analyze the properties of cells in
different conditions, thereby making visual analysis of microscopy data
feasible even for large datasets. We argue that this technique can be
applied broadly to other imaging/segmentation problems and beyond.

We validate our design using two case studies ––– one focused
on quality control, the other applied to data analysis — and through
examples with two datasets.

2 RELATED WORK

Our work is most closely related to visualizing cell microscopy data.
However, we also briefly discuss other approaches to visualizing repre-
sentative samples in datasets.

2.1 Cell Microscopy Data Visualization

Automated microscopy approaches, and in particular live-cell imaging,
where cells are observed while they develop, have entered the main-
stream of biological research in the last decade [27]. Data analysis and
visualization of imaging data have been identified as critical in the life
science community [15, 34], and a recent survey by Pretorius et al. [31]
has recognized it as an important emergent visualization research area.

Pretorius et al. also have introduced six classes of visualization
methods for live-cell imaging data [31]. In Loon, we leverage a variety
of these methods, including spatial embedding (for visualizing cells in
their field of observation), temporal plots (at the aggregated and faceted
level), and aggregate visualizations of classes or features. Notably,
our faceted view for comparing growth curves between conditions is
related to the approach of Khan et al. [22], but also to Pathline [29] and
MulteeSum [28], although the latter two tools use such a matrix in a
different application context. Our visualization of exemplars, however,
does not fit neatly in Pretorius et al.’s classification.

Many commercial and academic microscopy analysis tools provide
segmentation and quality control methods. CellProfiler [7] is a widely
used open-source image processing pipeline for microscopy data, and
provides the means of refining segmentations, sharing some of our
analysis goals. In the context of connectomics, both semi-automatic

segmentation approaches [19] as well as proofreading workflows for
cell segmentations [1] have been developed.

Our collaborators use both custom and commercial systems. The
commercial systems they use — Livecyte [2] and HoloMonitor [32] —
are packaged with analytical software. Both systems provide various
statistical plots to aid in the analysis. Although the quality of the images
can be easily monitored with these software packages, determining the
quality of the segmentation and tracking, and filtering inappropriately
segmented objects, is onerous. Our approach of providing cell track
exemplars that recalculate in real-time as filters are applied to object
features makes quality checks much more efficient, yet our tool remains
compatible with the data generated from these commercial platforms.

Other tools support visualization of imaging data and derived sta-
tistical metrics. CellProfilerAnalyst [18], for example, provides such
visualization interfaces. Notably, the most recent version of CellProfil-
erAnalyst also provides a gallery view of extracted cells [11], although
in contrast to our approach, the cells are not sampled to provide a
representative picture, and they do not consider a temporal dimension.
Hamilton et al. [14] analyze the similarity of microscopy images and
arrange them in 2D such that similar images are close to each other.
They also compute and show a set of representative images. In contrast
to our work, they operate on an image level, i.e., they do not extract
exemplar cells or other components. Krueger et al. [23] embed individ-
ual cells in a plot using dimensionality reduction, but they do not show
representative samples of certain classes.

The tool most closely related to our own is ScreenIt [12], which
is designed for high-throughput and high-content screening for drug
discovery. ScreenIt also combines image data with visualization of
attributes, and also uses exemplars, although, in contrast to our work,
exemplars are selected manually and then used to define a phenotype
of interest. Our use of exemplars is different, as we automatically pick
a suite of exemplars for a user-selected data attribute so that analysts
can understand typical and outlier cases for these conditions.

2.2 Exemplars in Different Contexts

Using representative examples to visualize classes of objects is a pow-
erful approach. Many clustering algorithms, for example, can provide a
“typical” member of a cluster that can then be used to represent a class.
For example, Bach et al. [4] aggregate groups of temporal networks
represented as adjacency matrices into piles based on clustering and
show an example to represent the pile. Lekschas et al. [24] take a
similar approach for genome interaction matrices, but also project the
piles and the associated examples into 2D space based on similarity.
In the context of computer vision, Carter et al. have developed an ac-
tivation atlas that uses a structured layout of “activation images” and
projects them into 2D space [8], leveraging exemplars to aid in the
understanding of how a neural network sees.

These examples illustrate that exemplars are a powerful way to aid
analysts in understanding a large dataset, but they are quite distinct
from our approach and from our application area.



3 BIOLOGICAL BACKGROUND

Cancer is a complex and dynamic disease with individual tumors pre-
senting substantial genomic and transcriptomic heterogeneity, which
makes it difficult to select the appropriate therapy for treating an in-
dividual cancer patient. Functional precision medicine seeks to guide
treatment decisions using assays that measure the response of patient-
derived tumor cells to candidate therapies [13]. Our collaborators
are demonstrating the use of quantitative phase imaging as a method
to measure the growth rate of individual cancer cells in response to
chemotherapy. Technically, they use the exponential growth constant.
For simplicity, we use the term growth rate in this paper, which is
similar conceptually. Effective chemotherapies reduce cell growth rates
at low concentrations, indicating sensitivity. This work is therefore a
step toward a functional precision assay.

QPI measures the phase shift of light as it passes through and inter-
acts with cell mass. This phase shift is proportional to cell mass [36].
QPI has previously been applied to rapidly (within 5–10 h) measure
chemotherapy sensitivity [9] and changes in cell phenotype associated
with metastatic dissemination with single-cell resolution [16, 37]. QPI
is, therefore, an ideal method for assessing the response of cancer cells
to potential therapies.

In a typical experiment, illustrated in Figure 2, a cancer cell line
derived from a tumor sample is plated at low density (cells covering
20%-50% of the cell culture surface) in a plate containing 24–96 indi-
vidual wells. Each well is then treated with different drugs (or controls)
at different concentrations. Then, multiple imaging locations for each
well are selected. These locations are imaged repeatedly, once every
10–30 minutes, for a period of 1–5 days. We refer to an image in a time
series as a frame.

To process the resulting phase images, our collaborators first use
a rough segmentation to separate the cells from the background and
average the background from 1000 images in order to do background
correction. Next, they use a segmentation algorithm to segment cells
and compute the mass of segmented cells by integrating the phase shift
over the area of each cell. Cells are then tracked from frame to frame
(see Figure 2) by minimizing the distance between cells in frame n
relative to frame n+1, in a three-dimensional vector space such that
the linearly independent components are distance traveled in x, distance
traveled in y, and change in mass.

4 DATASET DESCRIPTION

The Zangle Lab and the Judson-Torres Lab are currently using Loon to
analyze their datasets. In this paper, we focus on one dataset from each
lab as examples, although Loon is applicable to many similar datasets.

The main dataset we use to demonstrate Loon in this paper and in the
accompanying video and live demo is a breast cancer dataset. World-
wide, breast cancer is the most common cancer for women. Finding
the right treatment for breast cancer could help millions of women who
are diagnosed with breast cancer next year. In one experiment, the
Zangle Lab exposed breast cancer cells to five drugs at six concentra-
tions, as well as two control groups. This experiment used a multi-well
plate to image cells at 864 locations. Each location was imaged once
every 20 minutes for 24 hours, resulting in a total of 62,208 images
at a resolution of 1920x1200. For this experiment, they chose not to
segment individual cells but focus on cell clusters instead, as overall
growth can also be tracked by observing the growth of clusters, and the
segmentation is simplified. In total, this dataset contains 1,132,850 cell
clusters and 166,015 cell tracks.

The second example dataset we describe in a case study is provided
by the Judson-Torres Lab and is designed to investigate metastatic
melanoma — skin cancer that has spread to other parts of the body.
A tumor can contain subpopulations of cells that are either resistant
or sensitive to treatment by a particular drug. In this experiment, the
Judson-Torres Lab models this heterogeneity by combining two human
melanoma cell lines, one that is resistant to drugs, and one that is sensi-
tive. With this approach, the lab researchers can carefully control the
ratios of the two cell types. In their experiment, they used a multi-well
plate to separate four groups of cell mixture ratios (100%, 80%, 20%,
0% resistant cells). They exposed each group to the drug vemurafenib

at five concentrations, as well as a control group with no drug. These
conditions were imaged at 28 locations every 30 minutes for about
48 hours, resulting in a total of 2,716 images (at resolution 768x768),
439,699 segmented cells, and 111,151 cell tracks.

In general, these datasets contain thousands or tens of thousands
of images (with resolutions between 400x300 to 1920x1200) that are
assigned to conditions. Conditions are typically a combination of drug
types and their concentration, or controls. Each image contains dozens
or hundreds of cells. In a preprocessing step, our collaborators compute
segmentation labels and derived numerical attributes, such as the area
of a cell, the estimated mass of a cell, its position, attributes describing
morphology (“shape factors”), etc. The position and mass of the cells
are then used to track cells at the same location over time — resulting
in tracks — for which the change in attributes can be measured and
visualized. We supplement this data with derived data computed on the
fly at both the cell (normalized mass) and track level (growth rate).

5 COLLABORATION AND DOMAIN GOALS

Over the last 18 months, we collaborated with the Zangle Lab and the
Judson-Torres Lab that use the same imaging methodology, but have
slightly different focus areas; members of both labs are also coauthors
of this paper. Our primary collaborators are researchers in chemical
engineering; their objective is to develop and validate quantitative phase
imaging for the purpose of cancer drug screening. Their lab develops
custom hardware setups and analysis software for QPI data analysis.
Our secondary collaborators are researchers in a cancer center who use
commercial hardware and software to analyze their data and who are
primarily interested in the biomedical research questions that can be
answered with this technology.

Eliciting domain goals is a key challenge in application-oriented
work. Sedlmair et al. [33] discuss that “just talking to users [..] is
typically not sufficient”. We used two complementary methods to un-
derstand user needs: first, we used contextual design methods [17] to
develop an understanding of the domain and the analysis problems of
our collaborators. The first author of this paper embedded himself in
the research group by attending all lab meetings for over a year, and
by closely collaborating with the graduate students and the PIs. As
the project progressed, the first author regularly collaborated with the
domain experts to update their analysis code and aided them in unifying
their processes across experiments, in particular between the different
labs. Second, to jump-start our understanding of the domain problem,
we used a creative visualization opportunity workshop [20] with five
analysts for half a day. As a result of this workshop, we identified two
high-level needs for our collaboration. First, they wanted to improve
the quality control process of the lab, especially the segmenting and
tracking of cells, since it is a labor-intensive task shared across the lab.
The next high-level need we identified was comparing experimental
conditions, that is, identifying differences in cell behavior when ex-
posed to different drugs. Although not an explicit goal, the importance
of cell growth curves in their analysis also became apparent at this
workshop.

The outcome of this process is the codesign of the Loon visualization
tool, which we developed to address the main domain-specific analysis
goal, which is is to judge the effect of different drugs at different
concentrations on patient-specific tumor cell lines. Together with other
information, such as the clinical history of a patient and the side-effects
of drugs, this information is then used for making treatment decisions.
However, especially given that these systems are novel technology and
given the heterogeneity of experiments and cancer, quality control and
data preparation are also essential domain goals.

The quality control domain goals are concerned with validating
various aspects of the experiment and the preprocessing:

QC-1 Validate Segmentation: Given the heterogeneity of tumor tissue
samples and the variety of experiments, no two experiments are
quite alike. In addition to different cell sizes and morphologies,
our collaborators sometimes track clusters of cells, but sometimes
also individual cells. All segmentation algorithms require parame-
terization, and human checks are necessary. A rough validation is
possible just by looking at a few examples, but systematic errors



that occur in edge cases are more difficult to spot with traditional
methods, such as checking a sample of images. Hence, a key QC
goal is to validate segmentation for a representative and diverse
sample of images.

QC-2 Validate Cell Tracking: Based on segmentations of individual
cells, our collaborators compute tracks of cells (or cell clusters)
that follow a cell over time. This process can also lead to errors,
as the tracking can be lost if, e.g., the cell moves too much.
Again, different parameterizations can lead to different results,
in turn leading to the QC goal of validating cell tracking for
representative and diverse samples of cells.

QC-3 Validate Derived Attributes: Derived attributes, such as mass,
size, or location in the experiment, etc., can also serve to validate
all aspects of the experimental pipeline. To validate derived
attributes, our collaborators need to explore these attributes and
check for plausibility.

In addition to the quality control domain goals, we have identified
the following data analysis domain goals:

DA-1 Data Cleaning: As a preprocessing step in the analysis, the data
needs to be cleaned of data points that do not correspond to
cells that can be tracked. Common artefacts our collaborators
want to remove are dust specks or debris that are mistakenly
identified as small cells. Also, some tracks can be short, and
our collaborators want to remove these since calculating growth
rates is more accurate for longer tracks. Setting a minimum
track length also reduces errors due to counting cells more than
once in the subsequent analysis. However, these filters cannot be
done completely automatically but instead have to be individually
specified based on visual inspection.

DA-2 Selecting Conditions: A typical experiment will analyze control
conditions (no drug) and several drugs, resulting in dozens of
experiments. As a first step, analysts want to analyze growth rates
for all these conditions and pick the ones that look promising in
terms of inhibiting growth at low concentrations, for subsequent
detailed analysis.

DA-3 Analyze Cell Growth: The most important goal of the domain
experts is to analyze growth indicators of cells of the different
conditions. This analysis supports the ultimate goal to select
medications that inhibit cell growth at low drug concentrations.
Depending on the experiment, the experts might want to study
normalized or absolute mass or area over time, while comparing
different conditions. They also might analyze examples of fast-
growing or dying cells in each condition.

DA-4 Analyzing Heterogeneity: Cancer cells are known to be het-
erogeneous in their genetic makeup and their responsiveness to
therapy. A particular drug might be effective against one set of
cells, but not against another set of cells, both of which can be
found in the same tumor. To identify such cases, our collabora-
tors need to study cells that both grow and shrink over time with
respect to their attributes and their appearance.

DA-5 Communicating: Since our collaborators are evaluating the over-
all method, they also want to communicate their findings in papers
and presentations, including sharing plots of growth rates and im-
ages of exemplar cells.

6 LOON VISUALIZATION DESIGN

We designed Loon to address the domain-specific goals discussed in
the previous section. Ultimately, we can translate these goals into five
visualization tasks. First, analysts need an interface to select conditions
(Figure 1(a)) based on cell growth rates and contextual information
about the conditions, which directly maps to the selecting condition
requirement (DA-2).

Second, for quality control goals, including evaluating the quality of
segmentations (QC-1) and tracking (QC-2), we need to visualize the
images and cells (Figure 1(b, c, and e)). Visualizing cells is also essen-
tial for the analysis of heterogeneity (DA-4), and for communicating

the effect a drug has on cells (DA-5). The challenge with this task is
scale: we need methods to visualize good representative subsets of tens
of thousands of cells and images.

Third, we need the ability to visualize tracks (Figure 1(b and e)),
both for quality control of the tracking (QC-2) and to analyze cell
growth (DA-3). Since tracks are deeply connected to the imaging data,
visualizing both together is natural. Images of tracks are also difficult
to curate manually; hence, a visualization of tracks based on cells also
served the communication goal (DA-5).

Fourth, we need the ability to visualize cell growth rates (Fig-
ure 1(a)), such as mass over time, area over time, or growth rates, and
compare them between conditions in service of the main analysis goal:
analyze cell growth for selecting drugs (DA-3).

Finally, we need the ability to visualize distributions of and corre-
lations between derived data items (Figure 1 (d)), to enable quality
control for derived attributes (QC-3), and to serve as an interface to dy-
namically filter and select items, in service of the data-cleaning goal
(DA-1) and the ability to explore heterogeneity in cell lines (DA-4).

A deployed version of Loon can be accessed at http://loon.sci.
utah.edu/, including a publicly available demo dataset and an option
to log-in to access more datasets for our collaborators.

6.1 Selection View
Understanding the growth of cells under different conditions is a key
component of our collaborators’ workflow (DA-3). However, a typical
experiment consists of many conditions that turn out to be of little
value: of the dozens of conditions and controls, only a few will show
responses to the drug. As data for individual conditions cannot be
sensibly aggregated, filtering to conditions based on how promising
they are is useful since it allows analysts to focus on the relevant data
and alleviates scalability concerns (DA-2).

Figure 3 shows a compact overview of all possible conditions, using
a small-multiple grid view with area charts, inspired by Meyer et al.’s
curvemap [29].

Fig. 3: Condition Selection View. Small area charts show the growth
rate for individual conditions. The charts are arranged by drug (4HT,
lap, dox, fulv, and 5FU) or control (ethanol and DMSO) type vertically,
and by concentration horizontally. Drugs are color coded; controls
are shown in gray. Each condition can be selected individually, or
conditions can be selected in bulk by row or column.

The area charts themselves plot cell growth over time; the charts are
arranged in a matrix that plots drugs or control vs. concentrations so that
charts on the right correspond to experiments with high concentration.

http://loon.sci.utah.edu/
http://loon.sci.utah.edu/


Fig. 4: Comparison view showing frame ID, a proxy for time, plotted
against normalized mass for a selected subset of conditions.

We use color and vertical position to redundantly encode the type of
drug. The colors are used consistently throughout the tool.

This view serves two purposes: to give an overview of the effective-
ness of the drugs (a low or downward slope indicates inhibition) and to
select conditions for a detailed analysis in other views. Analysts want
to select conditions that inhibit growth at a low concentration, as these
drugs are likely to be effective. Conditions can be selected individually,
or in bulk by row or column.

We considered several alternatives to this view, including a line-chart
plotting all conditions in the same plot, because such a chart would
have a larger drawing area and would make comparisons between two
lines more precise. However, we found that even the 32 conditions in
our sample dataset lead to significant overplotting and that the structure
of drugs and concentrations is hard to understand.

6.2 Comparison View
Complementary to the selection view, we provide a comparison view
that can be used to plot various metrics, such as normalized mass,
mass, shape factors, area, intensity, etc., over time (or frame). These
metrics can be either aggregated (averaged) by conditions or plotted for
each track individually. Figure 4 shows an example of the normalized
mass plotted against frame ID inline charts, a key metric to address
the “analyze cell growth” goal (DA-3). We use the drug-specific color
scheme, and show labels for every line. Compared to the selection view,
this view enables a more detailed comparison between conditions, due
to the larger screen area and the overlaid lines. This approach, however,
comes at the cost of scalability and understanding the relationships
between the trends and conditions.

By default, we apply a median filter to smooth out the appearance of
the curves. Due to differences in focus settings, which are updated after
every frame, the derived metrics, such as mass, can fluctuate, although
this fluctuation is typically consistent between wells.

6.3 Image Viewer and Exemplars
A key component of Loon, and also our main technical contribution, is
an interface that supports the ability to view and navigate microscopy
images efficiently and to get an overview of representative cells for
different conditions. This view is in service of the segmentation and
tracking quality control goals (QC-1, QC-2) but also for the analysis
of cell heterogeneity (DA-4). The image analysis capabilities are made
of three tightly coupled components: the image selection interface, the
single image viewer, and the cell tracks display (Figure 1(b, c, and e)).

Image Selection. The image selection view, shown in Figure 5,
enables analysts to navigate images by frame and experimental condi-
tions. Each row displays the location ID and an array of ticks, where
each tick mark corresponds to an image recorded at that location. Click-
ing on the tick loads that image. The size of the bar on the left and the
size of the tick marks are scaled based on the number of cells at the
location or the image.

Fig. 5: The image selection view enables analysts to browse images
by condition (drug and concentration) and frame. It also displays the
number of cells in each frame, and visualizes track lengths for selected
cells.

Small circles above the tick marks indicate that an exemplar has
been extracted from that frame. A pair of larger circles above and below
a frame indicates the currently selected frame. As cells are extracted
into tracks, we show an arc from the first to the last time a cell appears
in a track for selected cells.

Image Viewer. The image viewer (Figure 6) shows the raw image
data of the cells along with color-coded segmentation boundaries. Red
boundaries indicate that a cell is part of the current selection, blue are
not. Green cells have been filtered out of the current dataset. Metadata
about a cell is shown in a tool-tip. The images can be inverted, as
illustrated in Figure 6 ––– which can result in better discriminability
between cells and background for certain datasets. Image frames can
be navigated with keyboard controls.

Fig. 6: The image viewer, showing a color-inverted image and segmen-
tation outlines. The segmentation outlines are color-coded by whether
they are selected or filtered out.

Visualizing Exemplars of Cells. The images can be accessed
via the selection view and analyzed in the image view, but doing so
is not scalable, neither for quality control nor for data analysis tasks.
To address this problem, we introduce exemplar cells that we sample
from the large set of cells based on user-chosen attributes. Exemplar
cells are extracted from the original image based on their cell region to
create thumbnails. Although exemplars of cells have been used before,
[12, 18], we are the first, to our knowledge, who sample exemplars
systematically based on a user-chosen attribute.

Figure 7 illustrates the process. Given cells that have been assigned
to tracks in a preprocessing step, we first group the tracks by condi-
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Fig. 7: The process of sampling exemplar cells based on a user-selected attribute. (a) Tracks with cells as extracted during preprocessing. (b) We
first group cells by conditions, indicated as colors. (c) Next, we sort within each group by a user-selected attribute. We use mass in this example,
but other attributes such as growth rate or a shape metric are equally useful. (d) We then sample tracks based on a user-specified rule. In this
example, we extract the median track, and the tracks at the 5th and 95th percentile according to the metric specified in the previous step. (e)
Optionally, tracks can also be sampled over time. (f) The sampling makes it possible to reduce tracks to a fixed number of cells, which results in a
compact layout. The “time-window” of the track is shown above the cells with a filled-in bar.
tion. Then we sort within each group by a user-specified attribute, e.g.,
the growth rate, or the average mass. Next, we sample the tracks, for
example, to show the median track and the tracks at the 5th and 95th per-
centile, thereby reducing all tracks for a group to a few representatives:
a typical example and two outliers, in this case. Finally, in an optional
step, we also sample exemplars over time, so that we always have the
same number of cells for each track, no matter how long the track is.
This approach results in a desirable compact view, but understanding
the length of a track is an important aspect of the analysis, and, hence,
we encode the time-frame over which the track is present in a bar on
top of the exemplars.

Figure 8 shows an example of how this concept is implemented in
Loon and introduces several complementary views. By default, seven
images are evenly sampled from the cell’s lifetime, although analysts
have the option to show all the cells in a track. The extent of a track’s
lifetime is visualized with the color-coded line above each track. On
the left, we show a histogram that visualizes the distribution of the
tracks with respect to the user-selected attribute (average mass in this
case). A set of pins indicates the position of the exemplars in that
histogram. Analysts can also retrieve exemplars at any location of that
histogram; an example for a very large cell group is shown in Figure 8,

Fig. 9: An early attempt to visualize tracks of cells without sampling.

indicated by the push-pin. This feature enables analysts to interactively
check tracks anywhere in the distribution, e.g., to analyze outlier cells
(DA-4), or to check the segmentation in edge cases (QC-1). Finally,
a line chart to the right of each group shows the average growth rate
for the condition and the growth rates of the exemplar cells. This view
enables analysts to judge which cells might be responsible for growth
or shrinkage. Analysts can also bookmark cells they encounter at any
point in their analysis, which are then shown as exemplars at the top.

We found that this condensed display of exemplar cell tracks is on
a sweet-spot with regard to spatial efficiency and supporting the goals
of our collaborators. In earlier iterations, we explored other ways to
present these cell tracks, which are still accessible in the interface and
may be useful in special cases. One alternate mode samples tracks but
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Fig. 8: Visualizing Exemplars. This exemplar view shows one bookmarked track (c), one manually selected exemplar (d), and three automatic
exemplar tracks (e), sampled from all tracks based on a user-defined attribute and sampling strategy. (a) This example is sampled by the growth
rate. (f) To the left of the exemplars, we show a histogram visualizing the distribution of tracks for the selected attribute (mass in this case). (e)
Pins indicate the position of the exemplar tracks in this distribution. (d) Analysts can also click the histogram to manually select an exemplar and
add it to the view. Such exemplars are shown as a push-pin in the histogram. (b) Colored bars on top of the exemplar tracks indicate the length
of the track. The line charts on the right shows the (h) average growth of the condition, and (g) the growth rates of the exemplars. (c) Finally,
any cell can be bookmarked. Bookmarked cells are shown as an exemplar on top, independent of their group/condition. Several cells here are
shrinking in mass. The pinned track (d), drawn from the extreme end of the distribution, shows an example of a cell cluster breaking apart, which
contributes to this extreme drop in mass (i). All other cancer cells seem to be shrinking naturally.



does not sample cells over time. We quickly found that the temporal
sampling rate is too fine-grained and that cells mostly do not change
much between two frames, and, hence, a view like this shows too much
detail for most analysis tasks. We also initially attempted to visualize
all cells in all tracks, aligned by absolute time, as shown in Figure 9.
This alignment leads to more whitespace and tedious scrolling, as well
as a significant slowdown with regard to the rendering performance.

6.4 Interaction and Metadata Views
Various domain tasks rely on the analysis of metadata, including qual-
ity control (QC-3), data cleaning (DA-1), and analysis (DA-3. Our
example datasets contain metrics for mass and size, as well as a shape
factor that describes the “circularity” of a cell, in addition to track-level
attributes such as growth.

Loon provides several standard statistical plots, such as scatter-plots,
histograms, kernel-density estimate plots, and dot plots with box plots
overlaid, along with a data selection interface, to visualize these data
dimensions (see Figure 10(a)). Loon also provides the ability to facet
each plot by condition. These types of plots can be used to visually
inspect if the derived attributes have a reasonable distribution (QC-3).

In cases where the data is showing unexpected values, these plots
serve as a selection and filtering interface to inspect those values more
closely. Using 1D and 2D brushes will update all other plots to indicate
the current selection. For example, Figure 10(a) shows a brush made
on the growth rate, which is also applied to the growth curves in Fig-
ure 10(b) as overlaid curves. At any point, a selection can be converted
into a more permanent filter. Filters completely remove data outside
the current selection. Importantly, this conversion will refer only to
selections at the track level. In other words, it will not filter out parts of
a track; tracks are either fully included or excluded.

Since interactions between multiple views are tightly coupled, we
currently show all windows (with the exception of the condition selec-
tor/growth curve). In the future, we plan on adding support for window
management, so that users can customize their layout.

7 IMPLEMENTATION

Loon is implemented as an open-source web-based tool. The source
code is available at https://github.com/visdesignlab/loon/.
Loon uses a Flask server as its backend. The various charts were
custom-built with the D3 JavaScript library [5].

Our collaborators store their processed data, including the images
and derived datasets, as MATLAB files on Google Drive, which pro-
vides free unlimited storage to educational organizations. Since a single
experiment can produce in excess of 500GB of data, and the goal is
to eventually run experiments daily, we were hesitant to duplicate this
data on a dedicated server. Instead, we decided to dynamically query
the data through the Google Drive API, but the performance of retriev-
ing images is problematic. To address this problem, we implemented
several strategies. First, we found that for visual representation, we
do not need the lossless image files. Slight downscaling and conver-
sion to JPG reduced the size by about 100-fold. Next, we introduced
three levels of caching. First, all metadata is cached on our webserver
and automatically updated it if the data on Google Drive has changed.
Second, the IndexedDB Web API is used to store data on a web client
for both image metadata and the images. To minimize the amount of
data transferred, this caching is done dynamically as data/images are
requested. A downside of this approach is that an initial load of the
page will take on the order of minutes, but a reload will be on the order
of seconds. Similarly, actions inside the tool that require more images
will be slower, but reloads with the same data are fast. The final level
of caching occurs in JavaScript memory for images. Since some image
processing/extraction happens on the fly, we use image Blob objects
and keep a set number in memory, which allows us to achieve frame
navigation at rates that appear to animate cell growth, for instance.

8 CASE STUDIES

To demonstrate the utility of our tool, we provide two case studies,
which were conducted by domain scientists and with real data and real
analysis problems [33]. Our collaborators were closely involved in

(a) Metadata Views

(b) Effect of Brushes.

Fig. 10: Metadata views and selections. (a) Histograms, dot plots, and
KDE plots visualize metadata. A brush on mass is reflected in all other
plots, including in (b) condition selection views’ growth curves. Here,
a new growth curve, only for the selected elements, is overlaid.

the design of Loon and are also coauthors of this paper. Given issues
with experimental demand characteristic effects that arise in close
collaborations [6], we refrain from reporting subjective assessments of
our collaborators and rather report factually on two analysis scenarios
and how they were conducted with Loon, and describe the difference
in capabilities relative to our collaborators’ previous process.

Our collaborators used successive iterations of Loon over 18 months
and codeveloped their analysis pipeline to both provide all the necessary
data items for Loon and address analysis problems that were discovered
when using Loon. For example, when visualizing the physical location
of cells, our collaborators found positions far outside the expected
bounds as well as points with a shape factor above one, when one
should be the maximum (QC-3). This problem turns out to be an error
in the data preprocessing and needs to be corrected in the pipeline.

8.1 Comparing Drug Effects on a Breast Cancer Case
We report here on an analysis of the breast cancer dataset that was
conducted by Dr. Zangle, while the first author observed remotely
and recorded the session. A detailed record of all stages of the case
study is shown in the supplementary material. Initially, Dr. Zangle
viewed the normalized mass growth curves in the condition selection
matrix (DA-3). There he identified a dramatic change for the drug
4HT between 2 and 20µM (see Fig 3). He commented that this change
appears to indicate that 4HT is cytotoxic at 20µM, but has little to
no effect at lower concentrations. However, the cells with negative
growth at concentration 20µM may not actually be dying, but instead
the problem may be one of segmentation or tracking problem (QC-1,
QC-2).

To explore this question. Dr. Zangle selected 4HT at concentration
20µM (DA-2). Looking first at the single image view, he identified

https://github.com/visdesignlab/loon/


cells that appeared to be dying. After bookmarking a particularly
interesting cell, he confirmed with the mass over time curve that the
cell was dying at the end of the track (DA-3), as shown in Figure 8.

Next, he changed the track attribute to view exemplars sampled from
the growth rate. Then, within the exemplar tracks view, he inspected
various cells with negative growth rates from the automatically selected
exemplars as well as by manually pinning other cells with negative
growth rates from the histogram. While Dr. Zangle inspected the
negative mass over time plot, he became curious to find out whether
the cell was dying. To answer this question required analyzing the
image data and segmentation. In one case, Dr. Zangle viewed the
segmentation of a cell cluster, shown in Figure 8, and noticed that one
cell drifted away from a cluster until it was no longer considered part
of the same region by the algorithm. He noted that this complication
in segmentation explained part of the dramatic cell mass decrease
(QC-1). Other cell clusters, however, showed clear segmentation and
negative growth rate, and the cell morphology clearly indicated cell
death. All of this combined does seem to indicate that 4HT is cytotoxic
at 20µM. When communicating this insight, for instance in a paper,
our collaborators would include selected exemplar images to illustrate
what is happening to cells exposed to that drug (DA-5).

Another question Dr. Zangle’s team frequently asked is what is
causing differences in the average growth rate between conditions. The
differences may be due to every cell growing more slowly, or from
a heterogeneous response, with some cells dying, while others are
unaffected (DA-4). Dr. Zangle was interested in this question for 4HT
at 2µM. Here we see a much more moderate decrease in average
growth rate (DA-3). To begin analyzing the heterogeneity, he selected
three conditions, 4HT at 2µM, 0.0016µM, and DMSO, the control for
this drug. Being interested in the effect of growth rate on the cells, he
chose growth rate as the attribute driving the sampling of exemplars. In
the exemplar tracks view, he first looked at the growth rate histograms
for each of these conditions (DA-4). He found no significant difference
among these three in the shape of this distribution. Next, he changed
the sampling strategy to include more exemplars per condition. These
exemplars, along with some manually pinned exemplars, provided a
small group of cells to inspect when looking for cell death. When trying
to identify dying cells, Dr. Zangle looked at the image characteristics as
well as the growth rate to determine if a cell was actually dying or not.
After inspection of exemplars from these three conditions, he found no
noticeable difference in the number of cells dying (DA-4). After this
analysis, he concluded that the likely explanation is that these three
conditions do not exhibit significant heterogeneity.

8.2 Refining The Tracking for a Melanoma Dataset
In recent years, great strides have been made in the treatment of
metastatic melanoma — the deadliest of skin cancers. These advances
include targeted therapies against common oncogenic mutations and
immunotherapies. Both therapies can be effective, but neither works
with 100% efficacy [3] due to the heterogeneous nature of these types
of cancer cell populations. Determining which therapy will ultimately
be most successful in preventing metastasis requires a better under-
standing of the effect drugs have on these different subpopulations of
cells. A functional precision medicine approach that predicts response
to targeted therapies could aid oncologists in this difficult and critical
decision. To answer these questions, Dr. Judson-Torres’ lab is running
QPI experiments on their commercial platforms.

They started a collaboration with Dr. Zangle’s lab to also integrate
their dataset with their analysis pipeline and with Loon. Since this is
a new dataset for our collaborators’ data processing workflow, a key
initial task is quality control. This case study describes a multiweek
process, where the lab analyzed the data, found deficiencies, refined it,
etc.

As a first data cleanup step in Loon, Dr. Zangle filtered to show
only longer tracks (DA-1). In the single image view, he noticed that
only a few cells were being tracked for a long duration, as indicated by
the color-coded outlines. Such short tracks are indicative of tracking
problems. He then selected a few locations with the image selection
view and compared tick sizes across all locations to ultimately conclude

Fig. 11: Loon showing tracking problems in the melanoma dataset.
The bookmarked short tracks are in reality a single cell that has not been
tracked adequately. This cell would be more accurately represented as
a single longer track.

that cells were commonly tracked only briefly (QC-2). To improve
tracking, our collaborators have many parameters they can adjust. For
instance, if a cell moves “too far”, or changes mass “too much” in a
single frame, it will not be tracked. This threshold of “too much” can be
adjusted for different experiments. The image view is useful here since
it shows the position and mass of these cell segments. Our collaborators
use this view to find cells that are not tracked and then adjust their
thresholds (DA-1). They use a similar threshold to distinguish between
debris that has been segmented in the image and actual small cells.

Adjusting these thresholds improved the tracking for this dataset, but
the improvement did run into an upper limit. When filtered to longer
tracks, Dr. Zangle noticed that the cells in these tracks did not move
much, whereas the cells that were not tracked well were more motile
(QC-2). This particular dataset is challenging due to the variety of cell
density and motility. He concluded that they would have to make larger
changes to their tracking algorithm, possibly by connecting tracks after
the first pass of the original algorithm.

For this QC task, our collaborators commented that the bookmarking
feature was especially useful for keeping track of shorter tracks and
comparing values of endpoints (QC-2). Figure 11 shows six tracks that
ideally should be connected into a single one.

8.3 Loon Feedback
We asked both labs to briefly explain how Loon changes their workflow.
Dr. Zangle responded:

Loon enables us to view cell segmentation and morphology
alongside mass over time tracks, which would be extremely
tedious with our previous approach. This capability im-
proves QC because we can quickly spot-check segmentation
and find errors and how they interact with cell mass mea-
surements. This also helps with interpreting data because
we can see how cell morphology and motility are related to
tracked parameters.

Dr. Judson Torres similarly commented:

The workflow we find most useful in Loon is the ability
to quickly visualize the mass, tracking information, and



exemplar images of object groups based upon feature fil-
ters. The dry mass, track length, and, of course, the actual
image of the segmented objects are all critical for conduct-
ing quality control — identifying which objects represent
cells or colonies of interest and which are artifact from the
segmentation. This process has previously been extremely
tedious with our existing approaches, so much so that we
had started to just accept a certain amount of noise in our
data due to segmentation artifacts. In addition, one of our
main uses of QPI approaches is to identify groups of phe-
notypically distinct cells within heterogeneous populations.
Our previous approaches first required analyses of feature-
level data to identify distinct groups of objects followed
by cross-referencing representatives of each group in the
images to determine whether the observed feature clusters
were real or artifact — a time-intensive process. The abil-
ity to select groups based upon features and, in real time,
visualize exemplars from each group enables us to rapidly
identify and verify distinct groups of cells.

9 LESSONS LEARNED AND REFLECTIONS

Transferable Contribution. Even though we present a design
study — a visualization tool that addresses the important but narrow
problem of aiding in selecting cancer drugs based on microscopy ex-
periments — we argue that our main technical contribution, sampling
exemplars along selected data dimensions, transfers to a broad range of
problems.

In general, we argue that visualizing through exemplars could poten-
tially be applicable once two criteria are met. First, the dataset has to be
large enough that it is infeasible to manually inspect every data point.
Second, the data items have to contain rich contextual information that
cannot be summarized. In our case, we consider our cell images as
these data points. However, the same basic idea could be applied to
many situations.

Obvious related applications that fulfill these criteria are in other
image segmentation and microscopy scenarios, such as in connectomics
or radiology, where both our patch-extraction and sampling could be
applied. Different examples include time-series data, where periodic
signals, such as heartbeats or electric data measured with an oscil-
loscope [25], are likely amenable to the same approach. Given the
right metrics, even the analysis of cliques or other structures in a large
network could benefit from exemplars [4]. Finally, avid bikers may
be interested in looking back at their rides over the past few years.
A traditional visualization approach would show distributions of ride
duration, distance, and speed. An exemplar-based approach would pull
out specific rides based on some criteria, such as distance traveled, and
then present entry points to inspect the entire ride. With the richer
context, our bikers are able to observe different aspects of the data —
like see a familiar bike route, or recall an exceptionally grueling ride.

Line Chart Design. Line charts are commonly considered a scal-
able solution for plotting multiple time series at the same time. How-
ever, we found that an overlaid line-chart was unsuitable when the goal
was to make a series of comparisons based on categorical information
associated with the lines, such as the drugs and concentrations, in our
case. Here, faceted small multiples were much more useful, especially
as the faceting can be done based on the categorical variables.

Codesign of Method and Visualization. This design study was
unique in that it contained strong aspects of codesign between the visu-
alization researchers and the domain experts. QPI for drug screening
is a novel method, and the Zangle lab is at the forefront of developing
this technology. As illustrated in the melanoma case study, the lab is
not treating the visualization as an end-point, but rather as a means to
understand their data and their process. Just as the visualization tool
developed over this 18-month collaboration, so too did the analysis
process. We found that the immersive approach we took over this time
was especially valuable.

10 DISCUSSION

Performance. Loon can be slow when a dataset is used for the first
time. Even though we implement various caching strategies (see Sec-
tion 7), a large amount of data needs to be transferred from a relatively
slow data source. To address this problem, we will likely have to aban-
don our initial design goal of retaining the data on our collaborator’s
Google Drive so that Loon integrates nicely with their workflow. Image-
pyramid-based approaches have been successfully used for microscopy
visualization [26], and combined with other precomputations and ef-
ficient data structures, we expect to achieve significantly improved
performance.

Sampling Strategies for Exemplars. Our current sampling strate-
gies for selecting exemplars are simple and thus easily understood and
explainable. However, we believe adding more sophisticated sampling
strategies would be valuable, based on multiple attributes at once, or
maybe using the depth measure from contour boxplots [35] to sample
based on growth functions. We could also use representative examples
based on clustering algorithms, or extreme examples based on archety-
pal analysis [10]. Also, we could explore sampling strategies that do
not rely on derived attributes of segmentations. These strategies could
be especially useful in scenarios where segmentations are invalid, but
have reasonable derived attributes.

Evaluation. We considered other evaluation strategies, in addi-
tion to our case studies, that demonstrate the value of our contribution.
However, we came to the conclusion that other approaches would be
problematic with respect to their validity, or test aspects that are not rel-
evant to our contribution. For example, whereas usability testing would
be useful to identify usability problems and bugs, it does not result in
generalizable knowledge about our contribution. A comparative evalua-
tion, either based on insights or quantitative measures, is infeasible with
a specialized tool, since the number of users is limited, and participants
will possibly be biased because they know the experimenter and the
desired outcome. A user satisfaction survey likely suffers from similar
biases. Hence, we chose case studies to demonstrate that our tool is
useful for the domain goals we claim and use careful arguments to jus-
tify our technical contribution. However, in the future, we believe that
an empirical evaluation of our main technical contribution (exemplars)
could be designed, but such a design would require carefully untangling
our approach to exemplars from the larger interface. We argue that case
studies are a good first approach to validate that the idea is compelling,
but that an empirical study of exemplars and alternatives is beyond
the scope of this work and should be conducted systematically by an
outside party [30].

11 CONCLUSION

In this paper, we have presented Loon, a visualization tool for analyzing
the effectiveness of cancer drugs on individual cell lines based on
QPI microscopy data. In addition to the tool, we also contribute the
concept of analyzing large datasets with complex item characteristics
by exemplars. We argue that our tool is a successful design study in a
high-impact area and that our technical contribution transfers to various
other scenarios.

We plan on continuing our collaboration with the domain scientists
to expand and refine Loon. One example of potential future directions
is the integration of lineage diagrams, which track cells that divide
over time [15]. Such diagrams would aid in identifying cell death and
heterogeneous growth.
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from cells to organisms. Nature Methods, 7(3):S26–S41, Mar. 2010. doi:
10.1038/nmeth.1431

[35] R. T. Whitaker, M. Mirzargar, and R. M. Kirby. Contour Boxplots: A
Method for Characterizing Uncertainty in Feature Sets from Simulation
Ensembles. IEEE Transactions on Visualization and Computer Graphics,
19(12):2713–2722, Dec. 2013. doi: 10.1109/TVCG.2013.143

[36] T. A. Zangle and M. A. Teitell. Live-cell mass profiling: An emerging
approach in quantitative biophysics. Nature Methods, 11(12):1221–1228,
Dec. 2014. doi: 10.1038/nmeth.3175

[37] H. Zeng, A. Jorapur, A. H. Shain, U. E. Lang, R. Torres, Y. Zhang, A. S.



McNeal, T. Botton, J. Lin, M. Donne, I. N. Bastian, R. Yu, J. P. North,
L. Pincus, B. S. Ruben, N. M. Joseph, I. Yeh, B. C. Bastian, and R. L.
Judson. Bi-allelic Loss of CDKN2A Initiates Melanoma Invasion via
BRN2 Activation. Cancer Cell, 34(1):56–68.e9, July 2018. doi: 10.1016/j
.ccell.2018.05.014


	Introduction
	Related Work
	Cell Microscopy Data Visualization
	Exemplars in Different Contexts

	Biological Background
	Dataset Description
	Collaboration and Domain Goals
	Loon Visualization Design
	Selection View
	Comparison View
	Image Viewer and Exemplars
	Interaction and Metadata Views

	Implementation
	Case Studies
	Comparing Drug Effects on a Breast Cancer Case
	Refining The Tracking for a Melanoma Dataset
	Loon Feedback

	Lessons Learned and Reflections
	Discussion
	Conclusion

