REUSING INTERACTIVE ANALYSIS WORKFLOWS

PREPRINT

Kiran Gadhave
University of Utah
kirangadhave2@gmail.com

Zach Cutler
University of Utah
zach.t.cutler@gmail.com

Alexander Lex
University of Utah
alex@sci.utah.edu

ABSTRACT
Interactive visual analysis has many advantages, but an important disadvantage is that analysis
processes and workflows cannot be easily stored and reused. This is in contrast to code-based
analysis workflows, which can simply be run on updated datasets, and adapted when necessary.
In this paper, we introduce methods to capture workflows in interactive visualization systems for
different interactions such as selections, filters, categorizing/grouping, labeling, and aggregation.
These workflows can then be applied to updated datasets, making interactive visualization sessions
reusable. We demonstrate this specification using an interactive visualization system that tracks
interaction provenance, and allows generating workflows from the recorded actions. The system
can then be used to compare different versions of datasets and apply workflows to them. Finally,
we introduce a Python library that can load workflows and apply it to updated datasets directly
in a computational notebook, providing a seamless bridge between computational workflows and

interactive visualization tools.

1 Introduction

Data visualization enables analysts to leverage the pow-
erful human visual system to identify patterns and draw
conclusions. When data visualizations are made interac-
tive with selections and data transformations such as filters,
labels, and aggregation, they can be used for a variety of
analysis, cleanup, and processing tasks. One significant
drawback of interactive visual data analysis, however, is
that analysis processes remain ad hoc: when a dataset is
updated or changed, the analysis has to be redone. Up-
dating datasets, however, is very common. For example,
businesses add new sales data regularly, scientists expand
or correct their datasets as errors are discovered or new
samples come in, and economists get updated data about
various countries’ indicators every year. Data visualization
tools typically do not have the ability to reapply actions,
such as filters, to new versions of a dataset. This lack of
reusability in an interactive visual analysis is in sharp con-

This is the authors’ preprint version of this paper. License:
CC-By Attribution 4.0 International. Please cite the follow-
ing reference:

Kiran Gadhave, Zach Cutler, Alexander Lex. Reusing In-
teractive Analysis Workflows. Computer Graphics Forum
(EuroVis), 2022.

trast to computational analysis workflows: A function that
filters a dataset based on parameters can be reapplied to
an updated dataset. This application comes with the usual
drawbacks of computational approaches: analysts should
know how to program, they are hard to write, and they
cannot leverage the benefits of graphical perception.

In this paper, we propose methods to capture and reuse
workflows in an interactive visualization system. Our work-
flows are based on series of interactions made in interactive
data visualizations, such as choosing data dimensions and
selecting, filtering, labelling, categorizing, or aggregating
items. We introduce methods to capture these workflows
in a semantically meaningful way, making them robust to
changes in the datasets, as shown in Figure E}

When reapplying a workflow, human review and poten-
tially updates are required to ensure that the actions in a
workflow still achieve the analysis goal. To address this,
we introduce a review interface that visualizes changes in
the dataset, the consequences of the actions in a workflow,
and enables corrections, if necessary.

Finally, in addition to making workflows available for reuse
within our interactive prototype, we also expose the work-
flows so that they can be used directly in code. This ap-
proach makes it possible to bridge between interactive
visualization systems and scripted data analysis processes.
For example, an analyst could do some preprocessing in

https://orcid.org/0000-0001-6916-2583
https://orcid.org/0000-0002-2656-3413
https://orcid.org/0000-0001-6930-5468

Reusing Interactive Analysis Workflows

PREPRINT

Visualization Tool Provenance Graph

. Add a scatterplot
I
PY . Add a rectangular brush
o I
: ° oo @ O sccci2p0ints
*% ||
® [} . . Select all outliers
I
. Filter outliers

Workflow

Updated Dataset

Visualization
Tool

Filter Outliers

. Add a rectangular brush

. Select all outliers

‘ Filter outliers

Computational
Environment

n
>

Capture analysis session

Curate a workflow

n
>

v

Reuse the captured workflow

Figure 1: The process of reusing workflows created in interactive visualizations. Interactions, such as brushes, filters, or
selections based on higher level patterns (outliers in this example), are applied on a dataset. A series of actions can be
extracted into a workflow. This workflow can then be applied to an updated dataset either in an interactive visualization

system or in a computational environment.

a Jupyter notebook, launch an interactive visualization
system from the notebook to execute a series of complex
selections and data transformations that are more easily
achieved in a visualization system, and then return to the
notebook to apply, e.g., an algorithm to the transformed
dataset. Because we now have reusable visualization work-
flows, all parts of such an analysis can then be reapplied to
an updated dataset.

We demonstrate these capabilities in a prototype visualiza-
tion system that captures interaction provenance, from
which analysts can extract workflows. We show that
these workflows can be reapplied to updating or chang-
ing datasets with some examples. We also introduce a
Python library to bridge between the visualization system
and Python code, and provide examples for these work-
flows.

In summary, our contribution is a method to capture work-
flows in interactive visualization systems that can then be
reapplied to a new dataset. To ensure the accuracy of the
reapply process, we introduce visualizations of changes,
and review and update capabilities for these workflows. Fi-
nally, we introduce methods to use these workflows as part
of computational workflows. We believe that our methods
will make it possible to use interactive visualizations even
for analyzing datasets that are being updated. We also push
the limits of what is possible with regard to integration be-
tween computational and interactive workflows, thereby
enabling analysts to leverage the best tool for each part of
a job.

2 Related Work

Our work is related to creating reusable workflows in inter-
active systems and integration between interactive visual
analysis and computational analysis, which we discuss in
the following section.

2.1 Workflows

We define workflows in the context of data analysis as a
sequence of steps that are executed to achieve some data
transformation or analysis goal. We distinguish between
two types of workflows: those that are based on a series
of interactions in an interactive system, and those that are
explicitly modeled.

Explicit modeling of workflows is common in scientific
data analysis [8]. Representative examples are systems
such as Galaxy [11]] for biomolecular data, SCIRun [23]
and Kepler [1] for scientific/simulation data, and KN-
IME [4] in a machine learning context. Workflow ap-
proaches are also common for scientific visualizations ap-
plications such as volume rendering. Here, VisTrails [2] is
a prolific example. Notable workflow-based systems for
abstract data visualization include GraphTrail [9], where
each node in the workflow shows an aspect of a multi-
variate network, and VisFlow [32], which is tailored to
tabular data. GEM-NI [33] is a system that presents a
workflow-based approach for generative design. The GEM-
NI approach demonstrates the use of explicit workflows
for parallel exploration of alternative designs. Explicitly
modeled workflows are designed to be easily reused. At
the same time, the definition of these workflows is similar
to explicit code-based specification of visualizations, and
thus the associated interaction cost [[19] is high, and the
spontaneity and rapid exploration that is associated with
interaction patterns such as direct manipulation [26] is lost.
They are easier to learn than writing code, but they have a
steeper learning curve compared to interactive systems.

An alternative approach to explicit workflow modeling is
tracking user actions provenance [22} |31]] and using this
information to later extract workflows. Although several
visualization systems track provenance [14} |18l 127, 28| and
a few dedicated libraries to making tracking provenance
easier to implement exist [[7]], most tools do not explicitly
curate workflows based on provenance. A notable excep-
tion is the Vistories tool [[12], which enables analysts to

Reusing Interactive Analysis Workflows

PREPRINT

curate interaction steps into data stories. However, these
data stories cannot be reused on different datasets. Chen
et al. proposed a parametric symbolic approach to support
analytic provenance in their CZSaw system [6]]. CZSaw en-
ables analysts to reuse parts of the analysis process based
on a previously created parametric model. The system
does not support autodetection and application of patterns,
and the analysis has to be done in the same system.

2.2 Interactive Visualization in Computational
Environments

Computational notebook-based environments are better
for narrative data analysis, combining data visualizations,
narration, figures, etc. with analysis code, thereby fulfilling
Knuth’s vision of literate programming [17)]. However, a
limitation of notebooks is that interactive visualizations
can typically not be used to manipulate data. Schmidt
and Ortner [25] discuss reasons for the lack of interac-
tive data analysis in notebook-style environments and cite,
among others, limited interaction capabilities native to
the environment. Native visualization libraries, such as
Matplotlib [16], have only basic interactive capabilities,
and cannot feed back actions from visualizations to code.
Complex visualizations, such as custom tools or Tableau
views, can be embedded in Jupyter notebooks, but typically
cannot manipulate data in the notebooks. Libraries such
as Altair [29] support interactive visualizations, but the
interactions primarily serve the purpose of coordinating
between multiple views, not for data transformation. Ob-
servable notebooks provide a platform for implementing
complex interactive visualizations, including native manip-
ulation of data by visualizations, however, they lack the
ability to create workflows based on user interactions and
reuse them.

An interesting approach for preserving workflows gener-
ated through an interactive visualization is B2 [30]], which
is a set of techniques that treat the data queries as a shared
abstraction between code and visualizations. The shared
abstraction in B2 uses the notebook cells to track the in-
teractions as query predicates, which depend on expres-
siveness of the language. We discuss B2 and other related
techniques in more detail in Section 5]

3 Capturing and Reusing Workflows

We propose an approach by which analysts curate their
workflow from the provenance of their analysis sessions,
rather than explicitly modelling the analysis workflow ei-
ther in a graphical workflow editor or in code. This way, an-
alysts can freely work and explore until they have achieved
a result that they think is worth saving in a workflow. Only
when an interesting state is reached, can they extract the
relevant steps to preserve it as a workflow, thereby minimiz-
ing the required overhead to the analyst and encouraging
open exploration. In the rest of this section, we describe
how we can capture provenance in a reusable manner and
use it to curate reusable workflows.

3.1 Capturing Interaction Provenance

Usually, capturing analytic provenance involves tracking
the low-level mouse, pointer, or keyboard events by the
analyst. Such events are well-suited for implementing
features like undo/redo or logging the analysts’ activity.
However, such low-level events lack the information nec-
essary to recreate the interaction. We propose capturing
the interactions as an abstraction rather than as events. The
abstraction captures all the information that is necessary
to recreate the interaction. In our specification, we cap-
ture the interactions that are relevant for data manipulation,
namely view specification, selections, and various types of
data transformations [15]].

View specification interactions are concerned with choos-
ing the subset of dimensions. An example is to show two
dimensions of a dataset in a scatterplot: here, the view
specification entails both the choice of dimensions and the
choice of visualization technique.

Selections are a basic but very important interaction avail-
able in visualizations. Selections cannot only be used to
highlight items of interest, but also form the basis for fur-
ther data transformation on selected subsets of the data.
For our specification, we break down types of selections
by the level of semantics they capture:

The simplest form of selection is ID-based selection, which
directly stores the IDs of the selected items. ID-based
selection has the lowest level of semantics and is the least
useful when reusing a selection. When items are added in
a new version of a dataset, they are not considered, even if
they clearly fall into a selected pattern.

Next, we specify the range selection that stores ranges
over dimensions, capturing a set of rules for a selection,
similar to e.g., an SQL query predicate. Range selections
are usually specified using rectangular brushes [3}120] in
scatterplots, or a series of brushes along an axis in parallel
coordinates. They are reusable for updates in the data as
long as the updates happen within the extent of the range
selection. For example, if an updated version of the dataset
has three new points within a rectangular brush area, these
points will be selected automatically.

The next level of selection is semantic selection as intro-
duced in our previous work [10]. This approach captures
higher level semantics behind the selection that are appar-
ent when the data is visualized. A pattern-based selec-
tion recognizes, for example, that an analyst selected all
outliers, or a cluster centered at a specific location. By
selecting based on higher level patterns in the data, such
selections are robust to changes in the data. For example,
when outliers are selected in a dataset, similar outliers can
be selected in an updated dataset, even if the outliers ap-
pear in new locations. We could also use other approaches,
such as query relaxation proposed by Heer et al. [13]. The
aim of semantic selection is to capture complex selection
patterns rather than a list of IDs or simple rules. Such se-
lections are the most reusable selections, as they are robust
to fairly complex updates to the dataset.

Reusing Interactive Analysis Workflows

PREPRINT

cluster_simple.v2 cluster_simple_v3 cluster_simple_v4 Compare Datasets

) Dat

© Matches
Not Selected
° Not Predicted
OO,]
S
5. 0% ¢ o
o &
o ®

. ®

) V lizatic
Figure 2: A dataset exhibiting clusters is

< Graph M Bookmarks

CLUSTER (0.920) 31 0

'O Undo C'Redo

CLUSTER (0.902) 1 0

O Root

S i 0 Jp——
_ Add Plot

CLUSTER (0.885) 3 O
OUTLIER (0.868) 32 0

e evt
CLUSTER (0.809) 3 0 _ Filter: Out
CLUSTER (0.583) 32 0
CLUSTER (0.542) 3 0
CLUSTER (0.458) 3 0
CLUSTER (0.447) 3 0
CLUSTER (0.360) 3 0

CLUSTER (0.319) 3 0

POLYNOMIAL REGRESSION (02§ @

LINEAR REGRESSION (0.286) 31 0

shown in a scatterplot (a). (e) A rectanglﬂar brush selection is used to compute

predictions for patterns to capture the semantics of the selection. (b) A ranked list of these predictions is shown to the
right of the scatterplot. The analyst selects the top prediction, which is a cluster, and the system shows an overlay (f) to
visualize the boundary of the cluster. (c) The provenance graph on the right shows the captured interactions.

Our specification supports four data transformation ac-
tions: Filter actions track whether certain items are filtered-
in or filtered-out of the dataset. Filters are useful for fo-
cusing on a select group of items by filtering them in or
for removing irrelevant data items by filtering them out.
Labeling sets of items in a dataset is useful for annotating
or tagging items with metadata or observations. Catego-
rize actions are used to classify items, or assign them to
categories, from a set of dynamically defined categories.
Usually, each point is assigned to a unique category. Cat-
egorization is useful for dividing the dataset into distinct
subsets that can then be compared or used separately in
subsequent analysis steps. Deriving new data items by
aggregating groups of existing ones is an important data
transformation, as is evident from the popularity of pivot
tables in Excel. An aggregate item can replace the items it
was derived from, simplifying the data. Aggregation also
allows analysts to compare groups with shared characteris-
tics effectively. Aggregation is done by grouping multiple
data items into a new item. Attributes are aggregated
based on a mathematical function (often called an “ap-
ply” function in programming libraries). These functions
usually summarize multiple values into a single represen-
tative value like the mean, median, sum, min, or max of
the item’s attribute, but custom functions are also common.
In a dataset on metrics about countries, for example, it
might be useful to aggregate all European countries into
a single “Europe” item, and compare it to an “Asia” item.
For this aggregation, we have to define “the population” of
Europe as the sum of the population of all the countries in
it. A column like “life expectancy”, however, would need
a different, more sophisticated function for meaningful
aggregation.

We have chosen these interactions as they allow us to
demonstrate our approach, yet other operations, such as de-
riving attributes, or manipulation, such as moving around
items, could be supported by our methods. Together, these
view specification, selection, and data transformation ac-
tions make up a powerful set of tools that benefit strongly
from being available in an interactive visualization inter-
face and are commonly used in data science tasks.

3.2 Capturing Analysis Process

We propose capturing the analysis session in a provenance
graph where each node in the graph represents an inter-
action. A provenance graph records the interactions in
the sequence they were performed, allowing us to infer
the dependency of the interactions on each other. Prove-
nance graphs are typically directed acyclic graphs. Down-
stream interactions can depend only on upstream interac-
tions. Data transformations are derived from selections:
to categorize a group of points, for example, they are first
selected and then assigned to a category. The robustness
of the transformation depends on the type of selections
used, as described previously. For example, if an analyst
selects 15 items individually and assigns them to a cate-
gory, and the category is associated with just those items.
However, if the items were selected using a range selec-
tion, the category is associated with the range rather than
individual items. When the dataset is updated, items ap-
pearing in the region of the range selection are categorized
as well. Using semantic selections further improves the
robustness of subsequent actions. An analyst can use the
pattern-based selection to refine the initial selection of 15
items as a cluster. The category is then associated with
the cluster rather than the original selection. Updating the

Reusing Interactive Analysis Workflows

PREPRINT

dataset by adding or removing items automatically updates
the categorization as well. If the groups of items were to
move, the semantic selection would still accurately track
the items, in contrast to a range selection, which would
loose items that move outside the range.

Analysis sessions are rarely linear, and usually involve trial
and error. Multiple attempts can be achieved in the form of
analyst going back a few steps in the analysis provenance
by undoing actions and starting a different analysis flow.
Alternatively, an analyst might decide to clear all their
current interactions and go back to an initial state, before
trying something else. A graph representation allows us to
capture the former type of iterations as parallel branches
in the provenance, whereas the latter are in a sequence.

An analyst can also add metadata to each node in the
provenance graph. The metadata can be be in form of
annotations, where the analyst tries to externalize their
knowledge such as assumptions about the data, known
errors in the data, etc. which are typically not possible
to capture automatically. In large analysis provenances,
especially ones with long analysis sequences and multiple
branching analysis, the analyst can also bookmark certain
nodes as points of interest. Using annotations and book-
mark simplifies extracting workflow after an analysis goal
is achieved.

Capturing the abstract interactions enables editing of the
analysis session to curate workflows as well as reuse the
sessions on the same dataset or, more interestingly, on an
updated dataset. We capture the analysis process as an
abstraction of the interactions, which makes the captured
analysis agnostic to the environment.

3.3 Curating Workflows

As we discussed in the previous section, the captured anal-
ysis provenance can be cluttered by the iterative nature
of the analysis process. Hence, extracting and cleaning a
particular analysis branch or a subsequence of the analysis
as a reusable workflow is desirable.

We previously introduced different levels of selections that
can be captured. These different types of selections can —
and commonly are — combined. An analyst can start with
a rough selection of points either by specifying the points
directly or specifying a range. They can modify this selec-
tion and add or remove points to it. They can then decide
to use semantic selection to refine their existing selection.
A provenance graph will be populated with multiple nodes
as the analyst iterates over different points before settling
on a pattern. While curating the workflow, an analyst can
easily remove superfluous selection attempts, keeping only
the most informative selection to drive downstream inter-
actions (see[Figure T)), thereby creating a succinct reusable
workflow.

It is also possible to automatically prune workflows, to
remove actions that do not have an impact on the eventual
result. For example, when a “clear selection” action is

detected as part of a filter sequence, all previous selections
and the clear selection operation could be automatically
removed.

3.4 Reusing Workflows

Capturing the analysis sessions and workflows in a
reusable manner makes it easy for an analyst to rerun
the analysis on the same dataset (for reproducibility) and,
more importantly, apply the analysis to an updated version
of the dataset (for reusability).

Tabular datasets can change in a limited number of ways:
attributes associated with rows can change, and rows can
be added or removed. Also, dimensions or rows (items) can
be added, removed, or reordered [21]]. For our purposes,
we limit ourselves to changes of existing attributes, adding
or removing items, and updating attribute values, as order
is relevant only for certain representations and adding or
removing of dimensions is beyond the scope of our work.

We have different approaches to reapply selections, which
is straightforward for IDs and ranges. The method for reap-
plying semantically captured selections varies by the type
of selection. If we capture pattern-based intent [10], we
can rerun the appropriate algorithm along with captured
parameters to recreate the selection. Of these three types of
selections, the ID-based selections are the least useful for
reusing a workflow on an updated datasets. Range-based
selection perform better; however, they fail to capture up-
dates to the dataset that happen outside the range. Semantic
selections have the potential to be robust to updates in the
dataset.

However, even with semantic selections, automatically
reapplying the analysis session or a workflow to an updated
dataset might not always make sense. The dataset changes
might be drastic enough that a previous analysis session
is not appropriate anymore. Hence, it is important to give
analysts the ability to review the captured sessions for
different version of dataset and mark whether different
interactions are valid for those versions.

3.5 Bridging between Environments

The environment-agnostic nature of our approach allows
us to integrate workflows with computational analysis sys-
tems and re-execute a workflow on an updated dataset
just like a function. The abstract representation of the
analysis can be expressed in any of commonly used data
interchange formats like JSON, YAML, etc. We can build
visual analysis tools that can capture the analysis sessions
in one of the formats, and companion libraries to use the
captured analysis sessions in other environments like note-
books.

4 Reusing Workflows Prototype

To demonstrate the feasibility of our approach for cap-
turing and reapplying workflows, we developed pro-

Reusing Interactive Analysis Workflows PREPRINT

a b C
Figure 3: Comparing two éa%tasets and reapplying a workﬂcgvz/. (a) The comparison mode exi)iicitly shows the differences
between two selected versions of a dataset. The scatterplot encodes newly added items in the updated dataset as blue
triangles V¥, removed items are shown as red crosses ¢, and items that have shifted positions show a comet-like trail
®from their ariainal ta their naw pogition. (b) The selection madae an tha ariainal dataset moves down to the new

Cluster a (a) d iteme rarrectlys (0 Th' (b)

O Root O Root

" _ Add Plot
_ Add Plot ot
. Added brush to: X-Y

. Cluster Selection

. Added brush to: X-Y
|:2°, Cluster Selection
x L7

ol . 7 Filter:Out ,"3»:

Figure 4: Reviewing and updating workflows that were applied to an updated dataset. Continuing the analysis from
Figure[2] the analyst loaded a new version of the dataset where a part of a cluster broke off and moved down. (a) By
default, the system considers these two clusters to be one larger cluster as the previously selected larger cluster biases
the outcome toward a single cluster. The review interface indicates that certain actions have not been reviewed for this
version of the dataset, by showing a question mark (?) next to the node. To select just the upper cluster, the analyst first

confirms the “Add Plot” and “Added Brush” actions, which are then shown as approved with a check-mark (¥). (b)

The analyst then rejects the “Cluster Selection” action and picks a new cluster prediction that captures their intent.

totype tooling to demonstrate all aspects of the ap-
proach. In an interactive visualization tool, we demon-
strate how we can capture the analysis process and reap-
ply to updated datasets in the same tool. The prototype

is available at https://reapply-workflows.github!

io/reapply-workflows/. We also implemented a
Python library that can load captured workflows and that
can be used in computational environments like Jupyter
notebooks.

4.1 Interactive Visualization Tool

The interactive visualization tool allows analysts to create
projects and upload different versions of a dataset. Ana-
lysts may select dimensions of the tabular dataset to visu-
alize in one or multiple scatterplot(s) (Figure [2(a)). We
provide rectangular and free-form “paint-brushes” of three
sizes for selection. Analysts may also add a parallel co-
ordinate plot to visualize multiple dimensions at once,
which supports brushing on the axis. Please see Supple-
mentary Section 3 for a screenshot of the complete proto-

type.

To capture the analyst interactions, we use the Trrack li-
brary [7] we previously developed and store the actions
in a directed acyclic provenance graph. Each node in the
provenance graph is the abstract representation of a cor-

responding interaction the analyst makes. We visualize
the provenance graph in a tree-like layout (Figure 2(c)),
where each action is described and can be annotated by the
user. Analysts can go back in the provenance graph to a
previous step and start off a new branch, which supports
the iterative nature of visual analysis process.

We use techniques from our previous work [10] to cap-
ture semantically rich pattern-based intents. Our prototype
monitors user-selections in any plot and compares them
to a large set of patterns computed for a given dataset
using various algorithms and parameterizations. The dif-
ferent patterns are ranked based on the Jaccard Similarity
between the selection and the prediction, as shown in Fig-
ure[2[b). In Figure[2] we see a rectangular selection that
partially covers a cluster, and the system ranks a clustering
pattern as a good match. When an analyst hovers over the
cluster prediction, the extent of the cluster is shown as a
polygon, and the items that are not part of the selection
are highlighted. When an analyst chooses to confirm this
prediction as the intended pattern, our system stores the
details of this pattern.

We predict five different patterns: clusters, inliers and out-
liers, correlations, multivariate optimization, and ranges.
For each of these patterns, we store the information nec-
essary to recreate the pattern in an updated dataset. For

https://reapply-workflows.github.io/reapply-workflows/
https://reapply-workflows.github.io/reapply-workflows/

Reusing Interactive Analysis Workflows

PREPRINT

example, for clustering, we store which type of algorithm
was used (e.g., KMenas or DBScan) with which param-
eters, in addition to attributes about the specific cluster
that is selected, such as its centroid. Figure [2] shows an
example where an analyst first added a plot of a dataset
that exhibits clusters. The analyst then continued with a
crude rectangular selection. The system recommends a
cluster as a match in the prediction interface. Hovering
over that cluster prediction reveals the cluster’s properties.
The analyst decides this is a good match for the intended
selection and confirms the prediction. Finally, the analyst
filters out the selected items. Each of these steps is then
reflected in the provenance graph. The analyst could now
go on and continue with subsequent analysis steps and only
create a robust workflow based on these steps at a later
time.

4.1.1 Comparing and Updating Datasets

Our systems explicitly visualizes differences between dif-
ferent versions of a dataset and how a current analysis
would be applied to different versions. Figure 3| shows a
comparison between the dataset shown in Figure |2 and an
updated dataset, and a subsequent successful application
of a cluster-based selection. We see in Figure [3[a) how
the dataset changed compared to the one in Figure 2] Fig-
ure[3(b) shows how the selected cluster changed between
the datasets; the hulls of both clusters are shown. Fig-
ure [3{c) shows the cluster selection in the updated dataset.
If the initial selection had been captured using range selec-
tion, i.e., not using a semantic pattern, the items that shift
outside the range would not have been captured.

Figure E] shows another version of the dataset, where the
selected and subsequently filtered cluster broke apart into
two clusters. Depending on the intent of the analyst, sev-
eral options are plausible: remove both clusters, remove
only the top or bottom cluster, or remove none of the clus-
ters. Here, an automatic determination is impossible, as
the right action depends on the analyst’s higher level intent.
Hence, the analyst has to review this situation and make
a decision on how to proceed, as illustrated in Figure
By default, the system assumes that one large cluster is
the best match (Figure[d{(a)), as it best corresponds to the
previously selected cluster overall. Assuming that the an-
alyst intends to select only the top, smaller cluster, they
can reject the “Clusters Selection” node in the provenance
graph, and replace it with a better matching cluster, as
shown in Figure f[b).

4.1.2 Curating Workflows

Finally, the analysts can curate a reusable workflow based
on the provenance data (see [Figure 5)). After switching
to the appropriate analysis branch, the analyst can open
the workflow editor, and create a new workflow from the
current branch. Doing so loads the current branch as an ed-
itable workflow. The analyst can remove individual nodes,
name the workflow, and sync it to the workflow database.
While theoretically possible, our current implementation

LABEL COUNTRIES

*D Undo
X ® Root
Root
dec_2020
. Adding scatterplot f.. % @ Adding scatterplot for
excess_mortality-
dec_2020 . gdp_per_capita
. Select 5 points
X @ Apply Outlier selection
dec_2020
. Select 5 points
dec_2020 . ® Filterin
_ Apply Outlier select.. X
aec,zt-:cl
Filter In
v X @® Update Brush
dec_2020
. Add Brush
dbe 2020 X @ Assign label High GDP
. Update Brush
dec_2020 i
. Assign label High GD.. % @ AddBrush
dec_2020
. Add Brush
X @ Assign label Low GDP

dec_2020
© , Assign label Low GDP

Figure 5: The workflow editor. An analyst can create a
new workflow from the interaction history captured in (a),
the provenance graph, and curate it in (b), the workflow

editor interface by removing unnecessary actions.
does not support automatic pruning. The workflows stored

in the workflow database are available for reuse in the tool

as well as the Python library (see[subsection 4.2)).

4.2 Bridging to Computational Notebooks

At the heart of our suite of tools is the Reapply Workflows
library that performs all the predictions and the matching
of actions between updated datasets. The library is used
in our prototype tool but can equally be used by third par-
ties, e.g., to load workflows in notebooks. The piece that
connects the visualization tool and the computational en-
vironment is a workflow database. An analyst can work
in the visualization tool to perform a visual analysis and
capture workflows, as discussed before. Whenever a work-
flow is created or modified, it is also stored in the workflow
database. The workflows can then be loaded by the library
from the database to a computational environment, such as
a Jupyter notebook.

Figure[6|shows the process of loading and using a workflow
in a notebook. The library interfaces with the workflow
database to provide convenient access, printing descrip-
tions, and an inspection of the steps in a workflow. Ulti-
mately, workflows can be applied to a pandas dataframe.
The output of applying the workflow depends on the ac-
tions in the workflow. If the workflow results in a selection,
the output dataframe has an extra boolean column isS-
elected that denotes the selected items. More complex
workflows with data transformation make modifications

Reusing Interactive Analysis Workflows

PREPRINT

Our workflow was created for cluster_simple_vl dataset
here we are loading v5 of the dataset reapply = Reapply(
target = pd.read_csv("cluster_simple_v5.csv")
target

Here we initialize reapply library

We load the Cluster Simple project and
list all the workflows available

Extract output, which is the

final processed version of the dataset
output = results.output()

output

cluster_project = reapply.load("Cluster Simple")

Label x \

Delete Cluster - 1631239856899

P207 2563335 6.644830

P31 2536504 7.286949

P48 3.504073 7.303193

0
1
2
3 P52 6583511 7.287960 wf.describe()
4 P244 2766934 5493677 Delete Cluster

| Root

+——| Adding scatterplot for X-Y

145 P71 5907920 3.706334 +-—| Add Brush

146 P152 2273500 6.894662 +—| Apply

cluster_project.list_workflows()

We load the workflow
wf = cluster_project.get_workflow("1631239856899")
Description of the workflow

Label x Y

P52 658351 7.28796

P171 477421 417980

P199 8.34966 0.09550

P183 8.42670 1.80299

s o N 2 o

P61 4.29760 2.99981

P138 7.35179 7.05215

Cluster selection P46 662171 827311

+—] Filter Out

147 P2 7185936 8521383

148 P28 4109720 6.170589

Apply the worklfow

149 P9 1947442 6.089432

print the preview of dataset for each interaction

P54 7.45748 219756

P71 590792 3.70633

to a dataset and

7.18594 8.52138

results = wf.apply(target, "Label"

150 rows x 3 columns
Apply Cluster select

o " Label X Y

P207 256334 6.64483

253650 7.28695

3.50407 7.30319

0
1
2
3 658351 7.28796
4 P2da

276693 5.49368

4 Filter Out

Label x Y

P207 256334 6.64483

P31 253650 7.28695

0
1
2 P48 350407 7.30319
3 P52

658351 7.28796

results.pretty_print()

108 rows x 3 columns
ion

isSelected o
True N
True)
True
False

True

isFiltered
True 2
True
True

False o 1z 3 & 5 & 1 & 3

Figure 6: Executing a cmﬁ%utational workflow defined in th&visualization tool in a compi?tational environment. (a)
We first load the dataset. (b) We load the workflow library and the workflow we are interested in. We then apply the
workflow to the dataset. The tool plots a preview of the actions. Note that new isSelected and isFiltered Boolean
column are introduced when a brush and filter are added in the preview. (c) After the filter is applied, the number of
rows is reduced from 150 to 108. A visualization of the result shows the cluster was removed. Visit the the notebook.

to the output dataframe, e.g., filters return a subset of
the original dataset after executing the filter, labeling and
categorization operations result in an extra column with
the relevant label or category assignment, and aggregation
workflows add a new row to the dataset with the aggregated
values. Section 2 in the supplementary material shows the
flow of information between our prototype, the library, and
the workflow database graphically.

4.3 Implementation

The prototype is a web-based application developed with
React and TypeScript. The backend is a Flask server
that leverages the Reapply workflow library for compu-
tations and workflow-related features. The source code
can be found athttps://github.com/visdesignlab/
reusing-intent. The library is written in Python and
uses scikit-learn to run the prediction algorithms. The li-
brary is available on the TestPyPi package index by the
name reapply-workflows. We show our computational de-
mos in Google Colab notebooks, which are equivalent to
Jupyter notebooks but can be collaboratively edited and
are hosted by Google.

We store datasets in a SQL database. Different versions of
the dataset are tracked with a separate record table. The
changes between the dataset are computed on the fly, and
hence no additional storage is needed for keeping track
of diffs. We pre-compute patterns used by the prediction
system for pairs of dimensions to help speed up the initial
predictions. We switch to on-the-fly computations when

any data transformation changes the dataset. The analysis
sessions and the curated workflows are stored in Google
Firebase Realtime database as JSON.

5 Comparison with Alternative
Approaches

In this section, we compare our approach with Tableau
Prep, B2 [30] and VisFlow [32]. All these systems have
in common that they capture workflows, yet they all use
different approaches.

Tableau Prep and VisFlow use explicit modeling of work-
flows. Tableau Prep provides a graphical workflow edi-
tor, where analysts can drag and drop nodes as steps of
a workflow. The visualizations in Tableau Prep are lim-
ited to distributions although data can be imported into
Tableau subsequently, which limits the possibility of open
exploration before workflow generation. VisFlow is a
graphical workflow editor similar to Tableau Prep, but sup-
ports adding visualizations as a part of workflow nodes.
Both VisFlow and Tableau Prep do not support exporting
the generated workflows outside their environments. The
workflows in Tableau Prep and VisFlow do not support
semantic interactions and rely on rules for selecting the
data. Further, both tools include the dataset as part of their
workflow, making reapplying workflows difficult. A down-
side of such explicit workflow modeling systems is that
they are more akin to graphical programming than to open
exploration and refinement of datasets, which comes with

https://colab.research.google.com/drive/1vAYM6xOG57dRNomBWOdC60ybQw9_Ohd1?usp=sharing
https://github.com/visdesignlab/reusing-intent
https://github.com/visdesignlab/reusing-intent

Reusing Interactive Analysis Workflows

PREPRINT

Outliers Selected Category Assignments

January 2021

o > won - +
0 200 40 60 80 1K o 20 a0

(@ 1 NewCases e mlon) (b)

June 2021
“

Figure 7: Categorization of countries in a COVID-19
dataset. (a) A scatterplot for January 2021 shows the num-
ber of new cases vs. the number of deaths. We selected
outliers, capturing countries with many cases, many deaths,
or both. (b) We filter out all countries except the selected
outliers, and categorize the countries. (c) We switch to
an updated dataset for June 2021 and see that the num-
ber of cases and deaths have gone down across the world,
but the pattern-based selection has correctly selected the
outliers. (d) The system automatically applies the range-
based categorization to the countries that fall within the
previous ranges. (e) A subsequent analysis in a notebook
reveals that the worst of the pandemic has shifted to South
America. [Interactive Figure], [Notebook].

the usual burdens of programming: high complexity and a
steep learning curve.

B2 [30] is a Jupyter extension that aims to bridge the gap
between interactive visualizations and computational en-
vironments. The strength of the B2 approach is that it
integrates the interactive visualizations directly in the note-
book and provides tight coupling between code blocks and
the visualizations. B2 currently supports selections; any
further data transforms require coding. Further, the selec-
tions are limited to brushing and do not capture semantics
behind the selection. B2 supports limited provenance track-
ing for interactive selections by generating code snippets
to reflect the visual selection. The code snippets are time-
stamped to keep track of the order. Older snippets are
automatically commented-out, which adds clutter to the
code blocks. The lack of explicit tracking makes it difficult
to maintain parallel data analysis approaches. It would
be possible to combine our approach of semantically cap-
turing selections and provenance tracking with B2’s tight
integration of code and interactive visualization.

6 Validation

We use three strategies to validate our approach: usage
scenarios, demonstrating the usefulness of our techniques
in a realistic scenario (see the following section and Sup-
plementary Section 2); synthetic datasets to demonstrate
the robustness of reusing analysis workflows (see Supple-
mentary Section 1); and interviews with professional data
analysts (Section[6.2).

6.1 Usage Scenario: Outlier Countries for
COVID-19

We analyze outlier countries with respect to COVID-19
metrics. The dataset [24] includes various COVID-19
related metrics for multiple countries across the world.
COVID-19 data attributes change frequently and are a
good way to demonstrate our approach, since selections
and conclusions must be robust to updates in data. Let us
look at a scenario for which we want to investigate coun-
tries that have an aberrant trend in the number of new cases
and number of new deaths related to COVID-19. We start
with data for January 2021 and load a scatterplot for new
monthly cases vs new monthly deaths. We immediately
see that many countries are far away from the cluster of
countries close to the origin. We then select a few of these
countries using a paint brush selection. The system com-
putes predictions and suggests an outlier-based selection
(see Figure [7[a)). We use this suggestion to refine our
selection. We switch to different months of the dataset to
see if the selection is applied correctly. We are happy with
the selection, so we filter-in these items to focus on these
outliers.

We then categorize the outliers. We select all the countries
with high monthly cases and high monthly deaths with a
rectangular brush and categorize them as countries with
“High Deaths—High Cases”. We then select countries with
low monthly cases but high monthly dates and categorize
them as countries with “High Deaths—Low Cases”, and
proceed to “Low Death—High Cases” (Figure [/(b). We
switch to different datasets and verify that the categoriza-
tion is applied correctly. When we are satisfied with the
result, we approve the interactions in the provenance his-
tory. Figure[7(c) shows an extreme example, June 2021,
where cases and deaths in most countries are much lower,
clustering close to the origin of the chart. Applying the
categories (Figure d)) results in several outliers being
unassigned, hinting at the fact that even moderate COVID
activity is an outlier in that version of the dataset.

After curating the provenance history in a Categorize Out-
liers workflow, we store it to the workflow database. We
then move to a Jupyter notebook to load this workflow
and analyze these newly categorized countries. We can
create a histogram of the categorized countries stacked by
the region to get an idea about how different regions were
affected by COVID-19, where we see that high deaths have
shifted to South American countries in June, which were
barely affected in January, and that South American coun-

https://reapply-workflows.github.io/reapply-workflows/#/explore?workflow=1631260396517
https://colab.research.google.com/drive/1EpNqN1JuicsauzixhGAv_s9mjP5qijLj?usp=sharing

Reusing Interactive Analysis Workflows

PREPRINT

tries are predominantly in the High-Deaths—Low-Cases
category.

6.2 Feedback Session with Data Practitioners

We evaluated our method through interviews with four
data practitioners from different domains — nursing (P1),
public health (P2), surgery (P3), and chemical engineering
(P4) — who regularly do data analysis. We first inter-
viewed them about their current data analysis process. We
then introduced the participants to the principles of our
technique and gave them a live demo of the prototype tool
and the Colab notebook, after which the participants were
asked to give feedback on the techniques and speculate
how they could be applied in their work. We have analyzed
the transcript of the interviews and grouped the responses
into themes, which we describe below. The interview
questions and transcripts of the interviews are available as
supplementary material.

Provenance Tracking Our participants used different
tools to analyze their data, but all participants reported that
they frequently explore alternative analysis approaches.
Participants who use scripts report that they use comments
and code blocks to keep track of the different analyses
they do. One participant who used Tableau mentioned
the limited utility of the undo/redo stack in keeping track
of diversions in the analysis process. The participants
particularly liked the provenance-tracking approach we
demonstrate in our prototype tool. P1 said that “I do like
the, the branching piece from here, because it’s visually a
lot easier than to click the back button, or forward button,
because it also is telling me a little label of what changed
with that.” and P3 said that “I definitely liked the way it
branches. I think that’s a super cool aspect of it. And then
being able to kind of settle on one sort of branch analysis
I’d be able to explore like, that is really powerful.”

Capturing Semantics Our participants expressed vary-
ing sentiments with regard to the semantic selection ap-
proach [10]] we leverage in this paper. P3 said that “Yeah,
1 think that’s super smart. ...they’re saying, here’s what
1 think is a cluster and then the program is saying, ‘okay,
looks like this is what you're trying to define. Is that cor-
rect? That would be really helpful.”. Although all partici-
pants acknowledged the usefulness of semantic selections,
two participants, who have a strong statistics background,
mentioned their hesitation in relying on the predictions
without detailed information about the algorithms and the
parameters used in the prediction — information our sys-
tem captures but does not currently provide easy access to.
P2 said that “... I wanted to understand what was happen-
ing in the background”. P4, whose data analysis relies on
segmentation of microscopy images, wanted the ability to
add domain specific models to the prediction system.

Visual Data Wrangling Participants expressed interest
in using a visualization to directly interact with the data for
selection, creating groups, and labelling. P1, for example,

said that “...you do regrouping in python, but then you
always forget your variable name. And then you're always
looking through your data frame for what is it type of thing,
where Tableau, it’s easy to do the groupings, and it just
kind of makes a new variable right underneath it.”

Workflows All participants agreed that reusable work-
flows would be useful in their analysis. P4, for example,
said “I definitely think it will be applicable because most
of the time, we actually don’t inherently change the method
itself. ... So I definitely can see this to be helpful.” When
asked about whether they would like to explicitly create
workflows, or curate workflows after an analysis, the par-
ticipants noted that their data analysis sessions often start
with open-ended exploration of data to detect interesting
patterns. P3 described their analysis process as “definitely
more exploratory.” Participants liked the ability to curate
their workflows from an existing analysis session: “I like
this, because it’s much more natural” (P1).

Bridging Between Tools Participants were excited
about the potential of using the workflows as a bridge
between different tools they use. P1, who switches be-
tween different tools frequently, mentioned the need to
repeat certain steps as they switch: “... replicating essen-
tially a lot of the filters and the sorting ... ”. The current
approach of this participant usually involves modifying the
data in one tool and then loading the modified data in a
different tool. On demonstrating the use of workflows in
the Python notebook, P1 said, “great to be able to click on
the Select 53 points, and then see the all code, you know,
to that would do the 53 points.”

Collaboration with Domain Experts P2 and P3 work
with clinicians and were interested in the applicability of
our technique as a means for collaboration. They work in
R and SAS heavily, whereas their clinical collaborators
have no familiarity with scripting tools. P3 said that “
work with a lot of clinicians, a lot of doctors, and they are
interested in research, but they don’t have much research
background, right. And this would be something that I
think would be really, really beneficial for them, because
they are going to be, they’re going to want to do a lot more
kind of looking at the data and sort of touching the data,
and it’s going to be really important that they have that
log where they can come back, give me data to just sort
of reflect on.” and “If they were able to show me their
workflow, and I was able to go through and see, how it
progressed, I think that would be really helpful”.

Overall, our participants expressed positive sentiments re-
garding our techniques to capture reusable workflows and
thought that the techniques would be useful in their current
analysis environment. P1 said that, “I think it’s great. 1
would love love to see how you would implement this in
Tableau”. They were most excited about the provenance
tracking and the ability to bridge between interactive visual
analysis tools and computational environments.

10

Reusing Interactive Analysis Workflows

PREPRINT

7 Discussion

Generalization to Other Visualization Techniques and
Data Types. Our technique is based on capturing inter-
action provenance as an abstraction that contains the infor-
mation required to recreate the interaction (as opposed to a
stream of mouse/keyboard events). We demonstrate what
the abstraction looks like for common interactions such as
selections, filtering, labeling, categorizing and aggregation.
Our methods are transferable between different visualiza-
tion techniques if they support equivalent interactions and
datatypes. For example, to add a parallel coordinates plot,
we did not have to modify our library developed initially
with scatterplots. The interactions we describe are meant
to be examples. Other types (e.g., selecting a neighbor-
hood in a network or sorting a table) can be included if
they are captured in the provenance graph and the library
is extended to handle the type of operations and data. Our
current implementation and our choice of algorithms are
specific to tabular data. However, our general approach
is applicable to network data, image data, or volumetric
data, provided we can identify suitable methods for robust
selections.

Certainty of Fit for Reuse. When we apply a selection
to a new dataset, we currently assume that an analyst will
review the update selection. Although a review is certainly
necessary if the data changed significantly, minor changes
might not require a manual review. We could conceivably
compute metrics about how “sure” we are about a specific
operation, as it is applied to a new dataset. If, for example,
all points are in the same selection and have moved little,
we might not need a review. If, in contrast, the dataset
has changed significantly and the selection is affected, we
could print a warning, emphasizing the need for a review.

Interaction Directly in Notebooks. Visualization li-
braries such as Altair [29] and B2 [30] have made interac-
tive selections in visualizations within a Jupyter notebook
possible. Papers like B2 [30] explore this approach thor-
oughly. Conceptually, our technique can support actions
in embedded visualizations; hence, we plan on extending
our library, so that selections made within a notebook can
also be autocompleted and extracted into a workflow. Al-
though we expect that other aspects, such as compound
actions and reviewing of workflows, are infeasible to in-
tegrate natively within a notebook, robust, pattern-based
selections would enhance an analyst’s ability to leverage
the interactive capabilities of such simple visualizations.
Having the interactive visualizations directly integrated in
the notebooks would reduce friction of switching between
multiple environments, while limiting the complexity of
visualization approaches that are suitable.

Reapplying to Unrelated Datasets. Our methods for
transferring actions to updated datasets are robust up to
a point. The clustering case in Figure 4| shows situations
in which the automatic transfer does not succeed: when a
pattern changes so much that a different interpretation is

11

possible. While we remedy these situations through our
review process, it would be worthwhile to automatically
make alternative suggestions on which actions could be
taken. Our current technique of capturing the workflow
relies on tracking view specifications and downstream se-
lections and transforms. Applying the dataset to unrelated
dataset will almost always result in incorrect results. How-
ever, we see potential in using workflows as templates for
recurring tasks, such as data cleanup on datasets generated
by the same instrument although for different experiments.
Here, a human analyst could update the parameters of a
selection, or supplement it, but reuse a subsequent data
transformation.

Alternate Ranking Strategies Our prototype uses the
Jaccard similarity to rank different predictions. Jaccard
similarity is sensitive to size of data and can be distorted if
there is large variation between the sets being compared.
Our technique can be extended to support alternative rank-
ings, and we can potentially add a custom ranking approach
tailored to a type of dataset. For example, we can mod-
ify the Jaccard metric by adding a regularizing parameter
based on the size of the dataset to reduce the penalty for
uneven set sizes.

8 Conclusion

We have introduced a method to capture interactive actions
taken in a visualization in a semantically meaningful way
and to reuse sequences of actions (workflows) on updated
datasets. In this way, we make actions taken in a visualiza-
tion just as robust to changes as if they were implemented
in a function in code. We introduce methods that match
up selections between updated datasets that go beyond just
reapplying a simple rule, instead leveraging various pattern-
detection algorithms and knowledge about the properties
of a prior selection. We introduce a mechanism to review
changes and update workflows if necessary. Finally, we
have demonstrated that this approach also allows us to
bridge between an interactive visualization system and a
computational workflow.

Whereas robust workflows could be implemented in code
or using graphical workflow modeling tools, we argue
that our approach is easier to execute and allows for an
unencumbered exploration process. Our prototype and our
examples show that our approach works for a range of
patterns and for datasets that change in significant ways.
We believe that our approach could also be transferred to
many other types of data and types of visualizations.

9 Acknowledgements

We wish to thank the reviewers for their feedback on our
submission. We would also like to thank Derya Akbaba
and Jack Wilburn from Visualization Design Lab for their
help with feedback interviews. We gratefully acknowledge
funding by the National Science Foundation (IIS 1751238).

Reusing Interactive Analysis Workflows

PREPRINT

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Lu-
dascher, and S. Mock. Kepler: An extensible system
for design and execution of scientific workflows.
In Proceedings. 16th International Conference on
Scientific and Statistical Database Management,
2004., pages 423424, June 2004.

L. Bavoil, S. P. Callahan, C. Scheidegger, H. T.
Vo, P. Crossno, C. T. Silva, and J. Freire. Vis-
Trails: Enabling Interactive Multiple-View Visual-
izations. In Proceedings of the IEEE Conference on
Visualization (VIS ’05), pages 135-142, 2005.

R. A. Becker and W. S. Cleveland. Brushing Scatter-
plots. Technometrics, 29(2):127-142, 1987.

M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel,
T. Kotter, T. Meinl, P. Ohl, K. Thiel, and B. Wiswedel.
KNIME - the Konstanz Information Miner: Version
2.0 and Beyond. SIGKDD Explor. Newsl., 11(1):26—
31, Nov. 2009.

A. Camisetty, C. Chandurkar, M. Sun, and
D. Koop. Enhancing Web-based Analytics Appli-
cations through Provenance. IEEE Transactions on
Visualization and Computer Graphics, 25(1):131—
141, Jan. 2019.

Y. V. Chen, Z. C. Qian, R. Woodbury, J. Dill, and
C. D. Shaw. Employing a Parametric Model for Ana-
Iytic Provenance. ACM Transactions on Interactive
Intelligent Systems, 4(1):6:1-6:32, Apr. 2014.

Z. T. Cutler, K. Gadhave, and A. Lex. Trrack: A
Library for Provenance Tracking in Web-Based Visu-
alizations. In IEEE Visualization Conference (VIS),
pages 116-120, Salt Lake City, UT, USA, 2020.
IEEE.

E. Deelman, D. Gannon, M. Shields, and I. Taylor.
Workflows and e-Science: An overview of workflow
system features and capabilities. Future Generation
Computer Systems, 25(5):528-540, May 2009.

C. Dunne, N. Henry Riche, B. Lee, R. Metoyer,
and G. Robertson. GraphTrail: Analyzing Large
Multivariate, Heterogeneous Networks While Sup-
porting Exploration History. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’12), pages 1663-1672.
ACM, 2012.

K. Gadhave, J. Gortler, Z. Cutler, C. Nobre,
O. Deussen, M. Meyer, J. M. Phillips, and A. Lex.
Predicting intent behind selections in scatterplot vi-
sualizations. Information Visualization, 20(4):207—
228, Oct. 2021.

J. Goecks, A. Nekrutenko, J. Taylor, and T. G. Team.
Galaxy: A comprehensive approach for supporting
accessible, reproducible, and transparent computa-
tional research in the life sciences. Genome Biol,
11(8):R86, 2010.

12

[12]

[13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

S. Gratzl, A. Lex, N. Gehlenborg, N. Cosgrove,
and M. Streit. From Visual Exploration to Story-
telling and Back Again. Computer Graphics Forum
(EuroVis 16), 35(3):491-500, 2016.

J. Heer, M. Agrawala, and W. Willett. = Gen-
eralized Selection via Interactive Query Relax-
ation. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI 08,
pages 959-968, New York, NY, USA, 2008. ACM.

J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala.
Graphical Histories for Visualization: Support-
ing Analysis, Communication, and Evaluation.
IEEE Transactions on Visualization and Computer
Graphics (InfoVis *08), 14(6):1189-1196, 2008.

J. Heer and B. Shneiderman. Interactive dynamics
for visual analysis. Communications of the ACM,
55(4):45-54, 2012.

J. D. Hunter. Matplotlib: A 2D Graphics Environ-
ment. Computing in Science Engineering, 9(3):90—
95, May 2007.

D. E. Knuth. Literate Programming. The Computer
Journal, 27(2):97-111, Jan. 1984.

M. Kreuseler, T. Nocke, and H. Schumann.
A History Mechanism for Visual Data Min-
ing. In Proceedings of the IEEE Symposium on
Information Visualization (InfoVis ’04), pages 49—
56, 2004.

H. Lam. A Framework of Interaction Costs in
Information Visualization. IEEE Transactions on
Visualization and Computer Graphics, 14(6):1149—
1156, Nov. 2008.

A. R. Martin and M. O. Ward. High Dimensional
Brushing for Interactive Exploration of Multivari-
ate Data. In Proceedings of the IEEE Conference on
Visualization (Vis ’95), pages 271-278. IEEE Com-
puter Society Press, 1995.

C. Niederer, H. Stitz, R. Hourieh, F. Grassinger,
W. Aigner, and M. Streit. TACO: Visualizing
Changes in Tables Over Time. IEEE Transactions on
Visualization and Computer Graphics (InfoVis ’17),
24(1):677-686, 2017.

C. North, R. Chang, A. Endert, W. Dou,
R. May, B. Pike, and G. Fink. Analytic
Provenance: Process+Interaction+Insight. In
CHI ’11 Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’11, pages 33-36,
2011.

S. G. Parker and C. R. Johnson. SCIRun: A Scientific
Programming Environment for Computational Steer-
ing. In Proceedings of the ACM/IEEE Conference
on Supercomputing (SC ’95), page 52. ACM, 1995.

H. Ritchie, E. Mathieu, L. Rodés-Guirao, C. Appel,
C. Giattino, E. Ortiz-Ospina, J. Hasell, B. Macdonald,
D. Beltekian, and M. Roser. Coronavirus Pandemic
(COVID-19). Our World in Data, Mar. 2020.

Reusing Interactive Analysis Workflows

PREPRINT

[25] J. Schmidt and T. Ortner. Visualization in Notebook-
Style Interfaces. In Proceedings of the Workshop
on the Gap between Visualization Research and
Visualization Software (VisGap), May 2020.

[26] B. Shneiderman. Direct Manipulation: A Step Be-
yond Programming Languages. Computer, 16(8):57—
69, Aug. 1983.

[27] Y. B. Shrinivasan and J. J. van Wijk. Supporting the
analytical reasoning process in information visual-
ization. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI 08,
pages 1237-1246, 2008.

[28] S. van den Elzen and J. J. van Wijk. Small Multiples,
Large Singles: A New Approach for Visual Data
Exploration. Computer Graphics Forum (EuroVis
’13), 32(3pt2):191-200, 2013.

[29] J. VanderPlas, B. E. Granger, J. Heer, D. Moritz,
K. Wongsuphasawat, A. Satyanarayan, E. Lees,
I. Timofeev, B. Welsh, and S. Sievert. Altair: In-
teractive statistical visualizations for Python. Journal
of open source software, 3(32):1057, 2018.

[30] Y. Wu, J. M. Hellerstein, and A. Satyanarayan. B2:
Bridging code and interactive visualization in compu-

tational notebooks. In ACM User Interface Software
& Technology (UIST), 2020.

[31] K. Xu, A. Ottley, C. Walchshofer, M. Streit, R. Chang,
and J. Wenskovitch. Survey on the Analysis of User
Interactions and Visualization Provenance. Computer
Graphics Forum, 39(3):757-783, 2020.

[32] B. Yu and C. T. Silva. VisFlow - Web-based Visu-
alization Framework for Tabular Data with a Subset
Flow Model. IEEE Transactions on Visualization
and Computer Graphics (InfoVis ’16), 23(1):251—
260, 2017.

[33] L. Zaman, W. Stuerzlinger, C. Neugebauer, R. Wood-
bury, M. Elkhaldi, N. I. Shireen, and M. A. Terry.
GEM-NI: A System for Creating and Managing Al-
ternatives In Generative Design. CHI, 2015.

13

	Introduction
	Related Work
	Workflows
	Interactive Visualization in Computational Environments

	Capturing and Reusing Workflows
	Capturing Interaction Provenance
	Capturing Analysis Process
	Curating Workflows
	Reusing Workflows
	Bridging between Environments

	Reusing Workflows Prototype
	Interactive Visualization Tool
	Comparing and Updating Datasets
	Curating Workflows

	Bridging to Computational Notebooks
	Implementation

	Comparison with Alternative Approaches
	Validation
	Usage Scenario: Outlier Countries for COVID-19
	Feedback Session with Data Practitioners

	Discussion
	Conclusion
	Acknowledgements

