Reusing Interactive Analysis Workflows

Kiran **Gadhave**, Zach **Cutler**, Alexander **Lex** University of Utah

Interactive Visual Analysis

Interactive Visual Analysis

• Uses human perceptual capabilities

Interactive Visual Analysis

• Uses human perceptual capabilities

Interactive Visual Analysis

 Need to redo the analysis when the datasets update

Computational Analysis

Have to know how to program

Computational Analysis

Have to know how to program

• Time consuming

Certain tasks are easier with interactive visualizations

Certain tasks are easier with interactive visualizations

Labeling

Aggregation

Filtering

Categorization

In a computational notebook

In a computational notebook

sel = dataframe[:, ...]

In a computational notebook

In a computational notebook

In a computational notebook

Depending on the query predicate, this can get real complex

whereas with an interactive visualization

whereas with an interactive visualization

whereas with an interactive visualization

But what if we want to reuse our analysis?

But what if we want to reuse our analysis?

Functions can be parameterized and reused

def add_category(dataframe, col):
 selection = dataframe[:, ...]
 selection.add_column(col)

But what if we want to reuse our analysis?

Functions can be parameterized and reused

def add_category(dataframe, col): selection = dataframe[:, ...] selection.add_column(col)

Interactions need to be repeated

Can we make visual analysis reusable?

Contribution

Capture analysis provenance

Contribution

Capture analysis provenance

and curate reusable workflows

Contribution

Reusable Workflows

Reapply the workflows on updated datasets

Get the desired workflow wf = project.get_workflow("1638475878304")

```
# Description of the options in the workflow
wf.describe()
```

```
Categorize outliers
| Root
+--| Adding scatterplot for new_cases_per_million-new_deaths_per_million
    +--| Apply Outlier selection
        +--| Filter In
             +--| Add Brush
                 +--| Categorize Selections
                     +--| Add Brush
                         +--| Update Brush
                             +--| Categorize Selections
                                 +--| Add Brush
                                     +--| Categorize Selections
```

Apply the workflow in a different environment

Workflows

Workflows

Sequence of tasks

gapminder %>% filter(country == 'India')

Workflows

Computational Environment

select(country, lifeExp, gdpPercap) %>%

Workflows

Interactive Visualizations

?

Workflow Creation

Workflow Creation

Explicit Modeling

Process-based

Similar to programming

Explicit Modeling

Does not support rapid exploration

VisTrails

[Bavoil et. al., 2005]

Explicit Modeling

VisFlow

[Yu and Silva, 2017]

Process-based

Captured analysis

Curated workflow

Explore the data

After finding: Leverage analysis provenance to curate a workflow

Process-based

[Gratzl et. al., 2016]

Vistories

Process-based

Freeform unencumbered exploration

Easy & Natural

Capturing Workflows

Captured Analysis

Capturing Workflows

Captured Analysis

Filter Outliers Workflow

Such workflows enable reproducibility

Such workflows enable reproducibility

Such workflows enable reproducibility

But what if the dataset changes?

Capturing Workflows

Captured Analysis

Filter Outliers Workflow

Apply workflow

Capturing Workflows

Captured Analysis

Filter Outliers Workflow

Apply workflow

The way selections are captured in the provenance

ID Based Selection: Selected Elements: 7, 9, 13, 18, 22

ID Based Selection: Selected Elements: 7, 9, 13, 18, 22

Range Based Selection:

Rectangular area from (1,2) to (5,7)

ID Based Selection: Selected Elements: 7, 9, 13, 18, 22

Range Based Selection: Rectangular area from (1,2) to (5,7)

Semantic Selection:

Elements in K-Means cluster centered at [2, 3]

ID Based Selection: Selected Elements: 7, 9, 13, 18, 22

Range Based Selection: Rectangular area from (1,2) to (5,7)

Semantic Selection:

Elements in K-Means cluster centered at [2, 3]

Meaningful, higher level concept: improves reproducibility

ID Based Selection: Selected Elements: 7, 9, 13, 18, 22

Range Based Selection: Rectangular area from (1,2) to (5,7)

Semantic Selection:

Elements in K-Means cluster centered at [2, 3]

Meaningful, higher level concept: improves reproducibility

Robust to changes and updates in dataset: enables re-usability

Article

Predicting intent behind selections in scatterplot visualizations

Kiran Gadhave¹, Jochen Görtler², Zach Cutler¹, Carolina Nobre³, Oliver Deussen², Miriah Meyer¹, Jeff M. Phillips¹ and Alexander Lex¹

Abstract

Predicting and capturing an analyst's intent behind a selection in a data visualization is valuable in two scenarios: First, a successful prediction of a pattern an analyst intended to select can be used to auto-complete a partial selection which, in turn, can improve the correctness of the selection. Second, knowing the intent behind a selection can be used to improve recall and reproducibility. In this paper, we introduce methods to infer analyst's intents behind selections in data visualizations, such as scatterplots. We describe intents based on patterns in the data, and identify algorithms that can capture these patterns. Upon an interactive selection, we compare the selected items with the results of a large set of computed patterns, and use various ranking approaches to identify the best pattern for an analyst's selection. We store annotations and the metadata to reconstruct a selection, such as the type of algorithm and its parameterization, in a provenance graph. We present a prototype system that implements these methods for tabular data and scatterplots. Analysts can select a prediction to auto-complete partial selections and to seamlessly log their intents. We discuss implications of our approach for reproducibility and reuse of analysis workflows. We evaluate our approach in a crowd-sourced study, where we show that auto-completing selection improves accuracy, and that we can accurately capture pattern-based intent.

Keywords

Provenance, reproducibility, intent, brushing, selections

Introduction are distinct from higher level intents in that they are free of context and based solely on the data. They are When experts interact with a visual analysis system, also distinct from low-level intents, such as hovering they are frequently guided by a domain-specific analyover an item to read its label. In this paper, we introsis question, such as identifying a gene that could be a duce methods to infer these pattern-based intents for drug target. To answer this question, they execute a brushes in scatterplots. We define pattern-based intents as series of intermediate tasks, such as selecting a set of the reasoning behind selections based on statistical patterns correlated items for detailed analysis. In contrast to the high-level goal of answering a domain-specific question these intermediate tests are based on nottorne in

journals.sagepub.com/home/ivi (\$)SAGE

Capturing Intent

Selection

Capturing Intent

Selection

Predictions

K-Means DBScan Regression **Outlier Detection** Skyline **Decision Trees / Ranges** Categories

Capturing Intent

Selection

Predictions

K-Means DBScan Regression Outlier Detection Skyline Decision Trees / Ranges Categories

1. Range

- **2.** Cluster
 - 3. Outlier

Ranking Jaccard Distance Naive Bayes Classifier Heuristic Measures

Capturing Intent

Selection

Predictions

K-Means DBScan Regression **Outlier Detection** Skyline **Decision Trees / Ranges** Categories

1. Range 2. Cluster 3. Outlier

Ranking Jaccard Distance **Naive Bayes** Classifier **Heuristic Measures**

Capturing Intent

Selection

Predictions

K-Means DBScan Regression **Outlier Detection** Skyline **Decision Trees / Ranges** Categories

1. Range 2. Cluster I think this cluster... 3. Outlier

Confirming Intent & Annotation

Ranking Jaccard Distance **Naive Bayes** Classifier **Heuristic Measures**

Capturing Reusable Workflow

Capturing Reusable Workflow

Add Scatterplot

Select Points

Refine Selection to Select Outliers

Filter Out Selection

Captured Analysis

Capturing Reusable Workflow

Captured Analysis

Capturing Reusable Workflow

Captured Analysis

Semantic Filter Outlier Workflow

Add Scatterplot

Select Outliers

Filter Out Selection

Capturing Reusable Workflow

Captured Analysis

Semantic Filter Outlier Workflow

Add Scatterplot

Select Outliers

Filter Out Selection

Updated Dataset

Capturing Reusable Workflow

Captured Analysis

Semantic Filter Outlier Workflow

Apply Semantic Workflow

Example: Selecting a cluster

Example: Selecting a cluster

Dataset updates

Comparing the selections

Final selection after automatic reapplication

Reviewing applied workflows

Original cluster selection

Reviewing applied workflows

cluster_simple_v1

cluster_simple_v1

Broken cluster

Reviewing applied workflows

Luster_simple_v1

cluster_simple_v1

cluster_simple_v1

Broken cluster

cluster_simple_v3

CLUSTER (1.000)	ſ	•
CLUSTER (0.984)	ſ	0
CLUSTER (0.984)	ſ	0
CLUSTER (0.968)	ſ	•
CLUSTER (0.968)	1	0
CLUSTER (0.934)	1	0
OUTLIER (0.923)	ſ	0
CLUSTER (0.918)	ſ	0
CLUSTER (0.754)	ſ	0
CLUSTER (0.672)	1	•
CLUSTER (0.574)	1	•
CLUSTER (0.492)	ſ	•
CLUSTER (0.419)	ſ	0
POLYNOMIAL REGRES	1	0
CLUSTER (0.295)	ſ	0

CLUSTER (0.423)	ſ	0
CLUSTER (0.400)	ſ	0
POLYNOMIAL REGRESSION (0.391)	ſ	0
POLYNOMIAL REGRESSION (0.381)	C.	0
CLUSTER (0.333)	ſ	0
POLYNOMIAL REGRESSION (0.323)	ſ	0
OUTLIER (0.308)	ſ	0
OUTLIER (0.270)	ſ	0
OUTLIER (0.250)	ſ	0
CLUSTER (0.238)	ſ	0
OUTLIER (0.236)	ſ	0
OUTLIER (0.236)	C.	0
OUTLIER (0.226)	C	0
MULTIVARIATE OPTIMIZATION (0.221)	ſ	0
MULTIVARIATE OPTIMIZATION (0.215)	ſ	0
OUTLIER (0.212)	C.	0
LINEAR REGRESSION (0.211)	C	0
OUTLIER (0.209)	ſ	0
OUTLIER (0.207)	C.	0

🗲 Graph 📕	Bookmarks/Annotatio			
'O Undo	C ^I Redo			
O Root				
gapminder_1990				

T

Data analysis rarely takes place in a single tool

Bridging between environments

Wrangling

Tableau/PowerBl

Exploratory analysis

Reporting

Jupyter/R notebooks

Spreadsheets

Bridging between environments

Exporting the transformed data is difficult

Bridging between environments

Exporting the transformed data is difficult

Need to redo parts of analysis when switching tools

Contribution

Reuse workflows in a different environment

Reusing workflows in Jupyter

Captured analysis

Reusing workflows in Jupyter

Captured analysis

Curated workflow

Reusing workflows in Jupyter

Reusing workflows in Jupyter

Jupyter Notebook

import workflow

apply workflow

further analysis

Reapply Library

Reapply Library

Python Library

Reapply Library

Python Library

Workflow			
₽ ₽ ₽ ₽	G+G+G+⊟	l ⊒ I	

Load workflows

Reapply Library

Python Library

Load workflows

Reapply Library

Python Library

Load workflows

ļЩ. pandas

Apply to pandas dataframe

Reapply Library

Python Library

Load workflows

Apply to pandas dataframe

Proof-of-concept

This module exposes the Reapply class from reapply_workflows import Reapply

Demo

Demo

This module exposes the Reapply class from reapply_workflows import Reapply

Demo

Initialize the Reapply library reapply = Reapply()

Load the Covid Dataset project project = reapply.load("Covid OWID") project.list_workflows()

Categorize outliers - 1638475878304

Demo

This module exposes the Reapply class from reapply_workflows import Reapply

```
# Initialize the Reapply library
reapply = Reapply()
```

```
# Load the Covid Dataset project
project = reapply.load("Covid OWID")
project.list_workflows()
```

Categorize outliers - 1638475878304

Demo

```
# Get the desired workflow
wf = project.get_workflow("1638475878304")
# Description of the options in the workflow
wf.describe()
Categorize outliers
 Root
 +--| Adding scatterplot for new_cases_per_million-new_deaths_per_million
     +--| Apply Outlier selection
         +--| Filter In
             +--| Add Brush
                 +--| Categorize Selections
                     +--| Add Brush
                         +--| Update Brush
                             +--| Categorize Selections
                                 +--| Add Brush
                                     +--| Categorize Selections
```



```
# Get the desired workflow
wf = project.get_workflow("1638475878304")
# Description of the options in the workflow
wf.describe()
Categorize outliers
| Root
+--| Adding scatterplot for new_cases_per_million-new_deaths_per_million
    +--| Apply Outlier selection
        +--| Filter In
            +--| Add Brush
                 +--| Categorize Selections
                     +--| Add Brush
                         +--| Update Brush
                             +--| Categorize Selections
                                 +--| Add Brush
                                     +--| Categorize Selections
```

Demo

 \times 20 -٠ • D | New Deaths (per million) 15 -٠ 10 5 800 200 600 1K 400 C | New Cases (per million)


```
# Get the desired workflow
wf = project.get_workflow("1638475878304")
# Description of the options in the workflow
wf.describe()
Categorize outliers
| Root
+--| Adding scatterplot for new_cases_per_million-new_deaths_per_million
    +--| Apply Outlier selection
         +--| Filter In
            +--| Add Brush
                 +--| Categorize Selections
                     +--| Add Brush
                         +--| Update Brush
                             +--| Categorize Selections
                                 +--| Add Brush
                                     +--| Categorize Selections
```

Demo

Demo

This module exposes the Reapply class from reapply_workflows import Reapply

```
# Initialize the Reapply library
reapply = Reapply()
```

```
# Load the Covid Dataset project
project = reapply.load("Covid OWID")
project.list_workflows()
```

Categorize outliers - 1638475878304

```
# Get the desired workflow
wf = project.get_workflow("1638475878304")
```

```
# Description of the options in the workflow
wf.describe()
```

```
Categorize outliers
 Root
+--| Adding scatterplot for new_cases_per_million-new_deaths_per_million
    +--| Apply Outlier selection
        +--| Filter In
            +--| Add Brush
                +--| Categorize Selections
                     +--| Add Brush
                        +--| Update Brush
                            +--| Categorize Selections
                                +--| Add Brush
                                     +--| Categorize Selections
```


Demo

Apply the workflow to three versions of the dataset results_jan_2021 = wf.apply(jan_2021, "location") results_dec_2020 = wf.apply(dec_2020, "location") results_june_2021 = wf.apply(june_2021, "location")

Demo

This module exposes the Reapply class from reapply_workflows import Reapply

```
# Initialize the Reapply library
reapply = Reapply()
```

```
# Load the Covid Dataset project
project = reapply.load("Covid OWID")
project.list_workflows()
```

Categorize outliers - 1638475878304

```
# Get the desired workflow
wf = project.get_workflow("1638475878304")
```

```
# Description of the options in the workflow
wf.describe()
```

```
Categorize outliers
 Root
+--| Adding scatterplot for new_cases_per_million-new_deaths_per_million
     +--| Apply Outlier selection
        +--| Filter In
             +--| Add Brush
                 +--| Categorize Selections
                     +--| Add Brush
                         +--| Update Brush
                             +--| Categorize Selections
                                 +--| Add Brush
                                     +--| Categorize Selections
```

```
# Apply the workflow to three versions of the dataset
results_jan_2021 = wf.apply(jan_2021, "location")
results_dec_2020 = wf.apply(dec_2020, "location")
results_june_2021 = wf.apply(june_2021, "location")
```


Demo

This module exposes the Reapply class from reapply_workflows import Reapply

```
# Initialize the Reapply library
reapply = Reapply()
```

```
# Load the Covid Dataset project
project = reapply.load("Covid OWID")
project.list_workflows()
```

Categorize outliers - 1638475878304

```
# Get the desired workflow
wf = project.get_workflow("1638475878304")
```

```
# Description of the options in the workflow
wf.describe()
```

```
Categorize outliers
 Root
 +--| Adding scatterplot for new_cases_per_million-new_deaths_per_million
     +--| Apply Outlier selection
         +--| Filter In
             +--| Add Brush
                 +--| Categorize Selections
                     +--| Add Brush
                         +--| Update Brush
                             +--| Categorize Selections
                                 +--| Add Brush
                                     +--| Categorize Selections
```

Apply the workflow to three versions of the dataset results_jan_2021 = wf.apply(jan_2021, "location") results_dec_2020 = wf.apply(dec_2020, "location") results_june_2021 = wf.apply(june_2021, "location")

Evaluation

Evaluation

Usage Scenarios

Evaluation

Covid - Our World in Data

Usage Scenarios

Evaluation

Usage Scenarios

Covid - Our World in Data

Gapminder Public Health

Evaluation

Expert Feedback

data practitioners

Evaluation

Expert Feedback

Interview

Introduction to the techniques

Feedback

Evaluation

About curating workflows from provenance I like this, because it's much more natural.

About reusing the workflows on updated datasets can see this to be helpful

About reusing the workflows in a computational environment all code, you know, to that would select the 53 points.

- Expert Feedback
- I definitely think it will be applicable because most of the time, we actually don't inherently change the method itself ... so I definitely

Great to be able to click on the Select 53 points, and then see the

Future Work

Future Work

Workflows as templates

Future Work

Workflows as templates

Reapplying captured workflows on unrelated datasets

Future Work

Workflows as templates

Reapplying captured workflows on unrelated datasets

Automate repetitive data preprocessing steps

Future Work

Workflows as templates

Reapplying captured workflows on unrelated datasets

Automate repetitive data preprocessing steps

Training using workflows curated by experts

Future Work

Integration with interactive visualizations in the notebook environment

Future Work

Integration with interactive visualizations in the notebook environment

Libraries like Altair support interactive visualizations in notebook environment.

Typically the interactions cannot manipulate the data

Future Work

Integration with interactive visualizations in the notebook environment

B2 — introduces techniques to coordinate interactive visualizations and code cells.

Data queries (or selections) act as the bridge between interactive visualizations and the code.

[Wu et. al., 2020]

Future Work

Integration with interactive visualizations in the notebook environment

Integrate interactive visualizations with the notebook

Semantic analysis provenance as a shared abstraction

Twitter: @kbgadhave

Email: <u>kirangadhave2@gmail.com</u>

Thank You Questions

We thank Derya Akbaba and Jack Wilburn from VDL for help with the expert interviews Supported by National Science Foundation (IIS 1751238)

Paper Website: https://tinyurl.com/yvw3xmw4

