Eurographics Conference on Visualization (EuroVis) 2024 COMPUTER GRAPHICS forum
W. Aigner, D. Archambault, and R. Bujack Volume 43 (2024), Number 3
(Guest Editors)

Persist: Persistent and Reusable Interactions in Computational
Notebooks

K. Gadhave' ,Z. Cutler! LA Lex! s

]University of Utah, USA

(0) Interactive Plot with Persist Tracking (Output)

(d) Persist Toolbar
(@) Code cell
Intial plot Remove selections Assign category vit Seleot 3 points
- (@) code cell
Y & 4 & v 8
df = pd.read_csv(“cars.csv”) engine engiro
-——} © o ®nn © ©un
PersistChart(scatterplot(df) (X3 oo v ee v _} df5.head()
0y, © 0g, © 0g, ©
© @ @
df .head() o ¢ o ° ees ¢ ¢ !
aee o aee .
LR o ¢

¢ ©
@ P4 @ i
¥ ¥ ¥

* ? Name | MPG iCylinders} origin | Engine | is_selected
Name | MPG iCylinders | origin
‘ ford 18 8 USA NA FALSE
ford 18 8 UsA
© ssleot 3 voints dodge 15 8 USA NA FALSE
dodge 15 8 USA §
@ remove selected vaints volkswagen| 22 4 Europe | V4 FALSE
datsun 37 4 Japan [} i) o - o
amc
IR U S © st 2 oot P o000 0mOe T S ——
30 rows x 7 columns (@] hssign oafegory vi 1o dfs
‘ selection
(b) Pandas Dataframe (Output) 45 © ssleot 3 voints () Transformed Dataframe (Output)
ndas m UTpI N B
andas baratrame () Interactions Manipulate
() Persist Interaction Provenance Dataframe

Figure 1: Persist captures interaction provenance for visualizations embedded in computational notebooks and applies these interactions to
data structures. The code cell in (a) shows that an analyst loaded a table, created a Persist-enabled scatterplot, and (b) printed the head of the
dataframe. (c) The second output of the cell is an interactive scatterplot instrumented with Persist. Persist tracks the interaction provenance
and supplements operations, such as filters, labeling, or categorization. Using interactions available on the Persist toolbar (d), an analyst
filtered three items, assigned a new category to two items, and currently has three items selected. (e) A provenance graph tracks interactions.
(f) Persist manipulates the underlying dataframe by translating the interaction provenance to dataframe operations. The updated dataframe,
dfs, is then fed back into the scatterplot and is available in subsequent code cells (g). (h) The manipulated dataframe contains a new
categorical column (Engine) and a new Boolean column capturing selections. Three items were removed (cf. 27 vs 30 rows in (b)).

Abstract

Computational notebooks, such as Jupyter, support rich data visualization. However, even when visualizations in notebooks are
interactive, they are a dead end: Interactive data manipulations, such as selections, applying labels, filters, categorizations, or
fixes to column or cell values, could be efficiently applied in interactive visual components, but interactive components typically
cannot manipulate Python data structures. Furthermore, actions performed in interactive plots are lost as soon as the cell is
re-run, prohibiting reusability and reproducibility. To remedy this problem, we introduce Persist, a family of techniques to (a)
capture interaction provenance, enabling the persistence of interactions, and (b) map interactions to data manipulations that
can be applied to dataframes. We implement our approach as a JupyterLab extension that supports tracking interactions in Vega-
Altair plots and in a data table view. Persist can re-execute interaction provenance when a notebook or a cell is re-executed,
enabling reproducibility and re-use. We evaluate Persist in a user study targeting data manipulations with 11 participants skilled
in Python and Pandas, comparing it to traditional code-based approaches. Participants were consistently faster and were able
to correctly complete more tasks with Persist.

CCS Concepts
* Human-centered computing — Visualization;

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0000-0001-6916-2583
https://orcid.org/0000-0002-2656-3413
https://orcid.org/0000-0001-6930-5468

20f 12 K. Gadhave, Z. Cutler and A. Lex / Persist

1. Introduction

Computational notebooks allow for narrative data analysis com-
bining code, data visualizations, text, figures, etc., in the spirit of
literate programming [Knu84] proposed by Knuth. Data visualiza-
tions in computational notebooks are treated as outputs, similar to
text or data tables. As notebooks are code-based, they are (con-
ceptually) reproducible and reusable [KRP*16]. The downside of
notebook-based approaches is that they require programming skills
to use and that data wrangling operations can be time-consuming
to get right and may require consulting reference material even for
experienced programmers. On a spectrum from usability to com-
plexity, programming is complex, yet it can be applied in generic
contexts. On the other side of the spectrum are specialized inter-
active visualization tools. Interactive analysis tools can make ad-
vanced operations simple, but they lack generality: they are good at
specific tasks but lack other desirable characteristics, such as broad
applicability, reusability of analysis processes, reproducibility, etc.

It is unlikely that there are data analysis solutions that are simple
and as expressive as programming languages; yet certain data oper-
ations are much easier to achieve in interactive and visual interfaces
than they are in code. We postulate that hybrid, well-integrated so-
lutions can be a significant improvement over the current, mostly
isolated state of programming vs. interactive visualization. A hy-
brid solution would allow skilled data analysts to use simple and
effective interactive approaches when appropriate and fall back to
expressive code-based operations for tasks that cannot be efficiently
completed with interactive tools.

Recent developments in computational notebooks have led to
increased support for interactive outputs in notebooks. However,
these new approaches to integrating visualizations with code are
typically one-way streets: plots are generated to inform the ana-
lysts and tell a story, but they cannot be leveraged to manipulate
the data. Libraries such as Vega-Altair [VGH" 18], Plotly [Plo15],
bokeh [Bok18], and IPython widgets [IPy15] can be used to create
interactive visualizations as outputs, but typically do not support
data manipulation. The code cells cannot access interactions such
as selections and filters. Analysts can use interactions to explore
the data but must write code to manipulate the data. Furthermore,
there is a mismatch between the persistence of code-cells and ac-
tions taken in interactive outputs. Changes to code cells are per-
sistent across notebook saves, and the cells can be re-executed to
get the same results. However, interactions taken in visualizations
are transient and are not saved even across cell re-executions. To
make insights based on interactive analysis permanent, extensive
documentation of the interactions themselves is required, which is
a burden to analysts [RTH18].

Recently, systems such as B2 [WHS20] and Mage [KRH*20]
have introduced solutions to address the barrier between interac-
tions and code by generating code in response to interactions. As
our primary contribution, we introduce a new principle for integrat-
ing interactions with code based on provenance data. As illustrated
in Figure 1, Persist tracks actions taken in interactive visualizations
that are specified in code and applies them to a dataset. This dataset
can then be used in subsequent analysis. Actions tracked with Per-
sist are fully reproducible and reusable. When re-running a note-
book, all actions are applied. Even updating a dataset or the visual-

ization itself is possible, as long as the actions are meaningful in the
new context. Compared to generating code, using provenance as-
sociated with the visualization has several advantages: first, unlike
for code, there is no “gap” between the actions taken in a visual-
ization and the injected code that is located in another cell. Second,
manual changes to generated code pose challenges to keeping the
visualization and the code in sync. Third, excessive generated code
can lead to clutter, and finally, provenance enables easy branching
and iteration, which is important when exploring data interactively.

We implement Persist as a minimal layer on top of existing in-
teractive visualizations. As a proof of concept, we instrument ar-
bitrary Vega-Altair plots. Except for a single line invoking Persist,
no changes to the plots are necessary. We inject a suite of useful
data operations (such as filters, labeling, categorization, changing
data types, changing values) that can be triggered with direct ma-
nipulation, a toolbar, or a combination thereof. We also provide
a custom interactive data table that enables a range of manipula-
tions that can be tedious to achieve in code but are natural in an
interactive system. Persist is an open-source JupyterLab extension.
The source code for the extension and the supplemental materi-
als including the study notebooks and analysis can be accessed at
https://github.com/visdesignlab/persist.

We evaluate the efficacy of Persist by comparing it to the tra-
ditional code-based approach in a user study with 11 participants
skilled in Python and Pandas. The study focused on data clean-
ing and manipulation operations. The results show that participants
were consistently faster, could complete the tasks more often when
using Persist, and rated their perceived workload as lower. Partic-
ipants also expressed a preference for Persist over code-based ap-
proaches for all tested operations.

2. Persist Walk-Through

To demonstrate how data analysis with Persist works, we describe
an analysis session following an analyst as they work on a Utah
avalanche dataset [Cen23]. This analysis session is also available in
the supplemental materials. The dataset contains reported instances
of avalanches in the Utah mountains. After loading the data, the an-
alyst starts by creating a Persist-enabled Vega-Altair scatterplot of
the Elevation_feet (the altitude at which the avalanche oc-
curred) vs. Vertical_inches (the thickness of the avalanche)
columns of the dataset. This visualization helps the analyst iden-
tify the general data distribution and potential outliers. The analyst
notices that some records show elevations below 2,000 and above
15,000 ft, which are outside Utah’s elevation range (2,300-13,500
ft) and concludes that these must be erroneous entries (see Fig-
ure 2a). Using a brush, the analyst selects these points and uses
the Remove Selection button in the Persist toolbar to remove the
selected points (Figure 2b). Persist tracks all the interactions in a
provenance graph (Figure 2¢) and automatically creates a variable
that holds the resulting dataframe.

Next, the analyst uses the updated data to explore monthly
avalanche trends by creating a composite Vega-Altair plot contain-
ing a bar chart for avalanches aggregated by month and the scatter-
plot from the previous analysis (Figure 2d). The bar chart reveals a
seasonal pattern, with avalanches peaking in February. The analyst

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://github.com/visdesignlab/persist

K. Gadhave, Z. Cutler and A. Lex / Persist 3o0f 12

PR.plot.scatterplot(df, "Elevation_feet:Q","Vertical_ inches:Q", df_name="df_outlier_removed")
© o G 8 88 Qe W Reset Trrack Delet

fo Track 8Z Summary

Removed selected items

om0 Removed selected items

Dataframes:
dt_outier_remo!

Root
$ Selected Elevation_feet (0o ...

+ Selected Elevation_feet (139...

selector = alt.sele

Assign Avalanche Season (Mi
Selected Month (4 10 6)

Dataframes:
st

Figure 2: Examples of how Persist is used for data manipulation. (a) An analyst creates an interactive Vega-Altair scatterplot showing
elevation and depth of avalanches. They notice the outliers in the elevation and proceed to select the outliers and remove them (b). (c) The
interactions are tracked in the provenance graph and Persist creates a dataframe containing the updated data. (d) In a follow-up cell, the
analyst uses the cleaned data to create a composite Vega-Altair chart with an interactive bar chart showing avalanche records aggregated
by month next to the scatterplot of elevation vs. depth. Using the Persist Ul, the analyst wants to categorize avalanches by season. The colors
indicating categories were added without modification to the visualization code, and again all steps are tracked and applied to the dataframe.

creates a new category called Avalanche Season with three options,
Start, Middle, and End using the Add Category button on the Per-
sist toolbar. They now brush ranges in the bar chart and assign them
to one of the avalanche season phases using the Assign Category
button from the toolbar. The chart’s color-encoding automatically
updates to show the new data. In the dataset, Persist automatically
created a new column in the dataframe that reflects the interactions
applied in the bar chart.

To examine the data in a tabular format, the analyst employs the
PersistTable (see Figure 3). The table reveals data artifacts, like
stray semicolons in column headers. The analyst corrects these ar-
tifacts in the table by directly editing the affected column header.

3. Related Work

We will review prior work related to computational notebooks, in-
teractive data analysis, and interactive visualization in notebooks.

3.1. Computational Notebooks

Computational notebooks are popular tools for data exploration and
analysis. They fulfill Knuth’s [Knu84] vision of literate program-
ming by blending together code, text, figures, and data to develop
a narrative data analysis. Jupyter [KRP*16] is one of the most pop-
ular literate programming tools and has support for a wide variety
of data analysis and visualization libraries.

The data analysis process is iterative. The linear structure of
a notebook serves well for narrating the data analysis process.
Jupyter notebooks support iterations during the analysis process;
however, analysts report ending up with a ‘messy’ notebook hav-
ing ‘ugly’ or ‘hacky’ code [RTH18]. To iterate over different ap-
proaches, analysts copy code and run cells out of order, reducing
the notebook’s reproducibility [RTH18, HHB*19].

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

3.2. Interactive Data Analysis

Interactive data analysis environments such as Tableau [Tabl5],
Power BI [Inc19], or bespoke custom tools are popular because
they support direct manipulation of data. Certain tasks, such as re-
moving outliers or assigning labels, are easier to perform directly
with an interactive plot. However, interactive analysis has limited
reproducibility and reusability [GGC*21]. Replicating the interac-
tive analysis on updated datasets is also difficult. These tools also
have limited support for transitioning to other tools directly. Usu-
ally, analysts have to export the results as a data file and then load
it in the next tool. Our previous work [GCL22] introduced methods
of extracting workflows developed in an interactive visualization
system and reusing them, e.g., on new datasets. We also demon-
strated exporting workflows so that they can be used in a compu-
tational notebook. In this work, we are building on this founda-
tion to instrument interactive visualizations directly in notebooks.
Kandel et al. [KPHH11] introduced an interactive system for data
transformations called Wrangler. Wrangler allows direct manipu-
lation of visualized data, offers an interactive history for review
and refinement, and can export wrangling steps to code. Guo et
al. [GKHH11] extended the Wrangler system to enable proactive
suggestions for data analysis based on inputs from the analyst. MS
VS Code has an extension called Data Wrangler [mic23], described
as a code-centric data cleaning tool. The extension allows for inter-
active data cleaning and simultaneously generates Python/Pandas
code that corresponds to the cleaning operations.

In contrast to these approaches, operations executed in Persist
do not directly generate code but rather contribute to a history of
transformation steps that can be re-executed just like code, enabling
a close integration of the actions with the visualization, as well as
advanced features such as branching states.

3.3. Interactive Analysis in Notebooks

In many scenarios, analysts have to switch between interactive
and computational tools [WLH19]. However, transitioning between

4 0f 12 K. Gadhave, Z. Cutler and A. Lex / Persist

tools in different environments is not straightforward and often re-
quires repetition of analysis steps when moving from code to GUI
and vice versa [CPH*20]. Therefore, despite the advantages of in-
teractive visualization, analysts frequently stick to code environ-
ments to avoid the extra work involved with switching between
tools [WLH19]. Batch and Elmqvist discuss the need for interactive
visual analysis systems that can export the interactive action per-
formed in them [BE18]. Alspaugh et al. [AZL"19] propose devel-
oping tools that combine the expressiveness of code environments
with direct manipulation available in interactive visualizations.

Support for interactive outputs in notebooks is becoming more
common. Wrex [DBG*20] is a Jupyter Notebook extension that im-
plements the programming-by-example principle. Wrex allows an-
alysts to work on samples of a dataframe and use an interactive grid
that provides data transformation examples. Wrex synthesizes code
from these interactions, which the analyst can modify and use sub-
sequently. Wrex does not persist the interactions beyond the gener-
ated code. Jupyter Notebooks can be used to create interactive out-
puts with libraries such as JuptyerWidgets [IPy15], Bokeh [Bok18]
and Streamlit [Tea]. However, interactive data analysis is still rarely
seen in notebooks. Schmidt and Ortner [SO20] cite limited interac-
tion capabilities native to the environment as one of the reasons for
the lack of interactive data analysis. Native visualization libraries,
such as Matplotlib [Hun07], have basic interactive capabilities and
cannot feed back actions from visualizations to code. Complex vi-
sualizations, such as custom tools embedded in Jupyter notebooks,
typically cannot manipulate data in the notebooks. Libraries such
as Vega-Altair [VGH™ 18] support interactive visualizations, but the
interactions primarily serve the purpose of coordinating multiple
views and do not manipulate data.

Wu et al. [WHS20] introduce the B2 system, which attempts
to address the gaps between code and interactions. B2 uses data
queries or selections as the shared abstraction between the code and
interactive visualizations. The B2 approach expresses the interac-
tions as selections of data or query predicates. Persist also employs
the idea of using a shared abstraction to bridge between code and
interactions. Persist supports capturing and replaying complex in-
teractions such as categorization by capturing the interaction prove-
nance instead of data queries. Results of interactions in Persist can
be accessed directly as Pandas dataframes, which are kept in sync
with the interaction provenance.

The Mage API extension for notebooks [KRH*20] also aims
to support fluid movement between code and interactive outputs.
Mage detects the interactions in the output, maps them to equiva-
lent code using code templates, and injects the code into the cell.
Code templates offer more flexibility compared to the B2 approach
of using selections in the data. Mage achieves the persistence of
interactions by injecting the filled-in code templates in the cell. B2
adopts a similar approach of injecting selection predicates in the
code cell to persist the interactions. Both these approaches risk clut-
tering the code cells with unused code snippets. Keeping track of
nonlinear analysis using code snippets can become complex. Per-
sist directly saves the interaction provenance to the notebook and
replays it when required. Persist does not rely on code generation
to track the interactions, preventing the cell input area from being
cluttered with generated code snippets. The interaction provenance

is part of the cell and not just the input code, allowing analysts to
update input dataframes or visualizations without losing the inter-
action history.

4. Persist Principles

Persist can be used with any supported interactive output in Jupyter
with minimal changes to code. It does so by wrapping interac-
tive components in a layer that (a) tracks interaction provenance,
(b) makes data operations available through a GUI, and (c) ap-
plies these operations to the data structures, as shown in Figure 1c.
Next, we lay out the implementation-independent design principles
of Persist before discussing concrete design and implementation in
the next section

Injecting Operations. Persist listens to native operations of a
component, such as selection, and injects operations into the com-
ponent, as illustrated in Figure 1d, where a toolbar was added to the
native Vega-Altair chart. Persist can also listen to keyboard events
or direct manipulation events if the component supports them.

Tracking Provenance. Persist captures the interaction events
from the interactive component it observes and translates the events
into meaningful operations that Persist can track and operate on
where necessary. It also injects a provenance visualization widget
into the notebook, as illustrated in Figure le and shown in Fig-
ure 2¢c. The provenance graph documents all the steps taken and
can be used to navigate back in history and to create branches.

Transforming Data. Based on the provenance information, Per-
sist applies the operations to a dataframe in sequence, as illustrated
in Figure 1f. Different operations map to different dataset manipu-
lations. For example, selections create a new Boolean column indi-
cating whether an item is selected; other operations might change
values, delete rows, re-order columns, etc. Persist maintains one
dynamic dataframe that represents the active state of the user inter-
face. That means that this dataframe is updated every time a new
operation is added, but also if the history is used to navigate to a
previous state or a different branch. This dataframe can then be
used in subsequent code cells, as shown in Figure 1g, with the
changes being illustrated in Figure 1h. Persist also enables users
to explicitly create a static dataframe for every provenance state.
In this way, one interactive component could be used, e.g., create
two separate dataframes with different subsets of rows that both can
then be used in the notebook.

Updating Interactive Components Operations can change how
data are best displayed in the interactive components, illustrated by
the arrow connecting Figure 1f to the scatterplots. For example, a
chart should update after a filter is applied (removing or graying out
the data points) or after a category is assigned (changing its color
or shape). We distinguish between two scenarios: (1) The change is
to the data, but no additional “channel” has to be encoded, which
is the case, for example, when filtering. In this case, we can just
use the original chart specification and re-render with the new data.
(2) The change in the data has created an additional “channel” that
should be encoded. For example, when a category is assigned to
a data point, that category could be shown with color. The label

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

K. Gadhave, Z. Cutler and A. Lex / Persist 5of12

(@) Persist Toolbar

. @ 0« | 89 28 T 2| B | resettock veletecatasets (e) Column Operations
(b) Persist Table
) Yo Trrack 8 summary
(P ediavlecell =
- # Date Place Trigger Weak Layer / Depth_inches ;Aspect Elevation_feet Root
e Rename column ;Weak Lay...
_23- ch: lumn ‘Trigger' data t > N
2338 3-23-2023 Dry Creek Natural ange column 'Trigger' data type West 8000 Rename column ;Trigger to...
s . [Drop column Comment...
955 1-19-2014 Whitney Basin Snowmobiler B Drop column 'Trigger East { 10500 D e is colL t
| Updated column 'Depth_i...
1028 2-21-2014 Chalk Creek Natural & Rename column 'Trigger' Northeast 10600 Updated column 'Depth_i...
Updated Co\umn"DeD(h_L“
= y Finishe g nul vai
1024 2-17-2014 Upper Weber Canyon Natural =t Sort by Trigger ascending Northeast 10400 Changed eolumn Dept... A
=l Sortby Tr d di (Sort (descending) by 'Dep...
998 2-12-2014 Upper Weber Canyon Natural 4 Sort by Trigger descending Northeast 10400] (ing) by ‘Dep.
- Drop column Coordinates
938 1-14-2014 Upper Weber Canyon Explosive 1 Pinto left East 10300 Selected 1 point
Selected 2 points
1299 1-26-2016 Currant Creek Peak Snowmobiler & Pintoright Southwest 9500 >~ Selected 3 points
Drop column ;Region
1044 2-28-2014 Chalk Creek Natural Northeast 10600 I .
| Drop column Width_inches
2348 3-30-2023 Bunnels Natural Northeast 10800 Prop column Vertical inch...
. Dataframes:
1977 4-6-2021 Blue Ice Natural & Hide Trigger column Northeast 10400 # current_af DS
3 of 2392 row(s) selected ows per page 10 1-10 of 2,392 > Dl
(d) Provenance History
(0) Dataframe Manager
current_df © &) (removed_nulls_df @& B @) (no_coordinates_df DSB @) (finaldt OSG @

Figure 3: The PersistTable is an interactive data table that can be used for manipulating dataframes. (a) The Persist toolbar that is also
injected into Vega-Altair charts. (b) The paginated table. Analysts can interact with the (e) headers, rows, or (f) individual cells. (c) The
Dataframe Manager serves as the interface between the dataframes maintained by Persist and subsequent code. (d) The Provenance History
view enables browsing the history, branching, annotating states, creating dataframes for specific states, etc. A summary view (not shown)

gives a textual description of active operations.

should be displayed in the chart when a data point is labeled. We
label the point by updating the chart specification to encode these
additional attributes, either as a visual channel or as a tooltip.

Re-Execution. When a Persist-enabled cell is re-executed, Persist
reapplies the interactions from the beginning to restore the interac-
tive analysis done by the analyst. Therefore, Persist fills the tempo-
ral gap by making the interactions persistent as well as supporting
revisiting previous interactions. The interaction provenance saved
by Persist is output and data agnostic. Every entry in the prove-
nance can be thought of as a line of Python code. If the Persist-
enabled cell is re-run with updated data, or even changes to the
visualization code, Persist will still attempt to apply the interac-
tions to the new output and dataframe. In this manner, analysts can,
for example, update their styling or even change their visual encod-
ing choices while retaining their interactive workflow. Persist inter-
faces with the output visualization to track interactions and update
it in response. Therefore, the types of interactions and complexity
of interactions Persist can handle are limited by the visualization
and the interface it provides. However, in some scenarios the op-
erations may not be compatible with the changed data or changed
visualization. If either of them is incompatible, Persist will raise an
error similar to Python. If, e.g., an interaction deletes the column
that the updated Vega-Altair chart uses, the chart breaks and may
be unusable. An analyst can use the interaction history to undo such
an action.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

5. Persist Design

The previous section described the principles behind Persist. Here,
we describe our concrete implementation of these ideas in the
Persist prototype, including a description of the supported opera-
tions, the interactive components we provide, and the UI choices
we made. To demonstrate the flexibility of the Persist library, we
implement two visualization options: (1) an interface to arbitrary
Vega-Altair charts and (2) an interactive table that can be used to
view and manipulate dataframes directly.

As part of the Vega-Altair integration, we inject the Persist
toolbar, shown in Figure 3a. Selection is natively supported by
Vega-Altair charts. The toolbar adds options to rename columns,
remove columns, label items, filter items, and categorize items. It
also provides an interface to general Persist operations, such as
undo/redo (traversing the provenance graph), resetting all opera-
tions, and deleting all dynamic datasets.

The Persist Table, shown in Figure 3, uses the same toolbar and
hence supports all the same operations as Vega-Altair charts. In
addition, the table enables operations through direct manipulation
by either interacting with the column headers (Figure 3e) or with
individual cells (Figure 3f). These actions include sorting items,
renaming columns, editing values, and reordering columns. Addi-
tional operations could be easily added, such as find and replace.

Persist also adds a dataframe manager at the bottom of all
Persist-enabled views (Figure 3c). Here, analysts can view exist-
ing dataframes (including the dynamic dataframe discussed before)
and create new dataframes based on the current state of the visual-
ization. The manager also provides buttons to copy the dataframe

60f 12 K. Gadhave, Z. Cutler and A. Lex / Persist

name and inject a new code cell that prints the dataframe into the
notebook. Based on this interface, analysts can easily transition be-
tween Persist-enabled visualizations and Python code that uses the
created dataframes.

All Persist-enabled components are also accompanied with a
provenance visualization, rendered as a tree (Figure 3d). Any in-
teraction in the toolbar or the visualization creates a new node in
the graph. Analysts may revisit any captured step in the graph, up-
dating the visualization. Any existing dataframes associated with
the current step are visible, and their name can be copied or in-
serted into a new cell. Analysts can bookmark steps they deem im-
portant or add annotations. Additionally, a separate tab displays a
summary of interactions leading to the current state instead of the
entire provenance graph, if desired.

6. Implementation

Persist is a JupyterLab extension designed to work with Jupyter-
Lab 4 and Jupyter Notebook 7 interfaces. Persist uses the Note-
book API to access the cell metadata for persistence. Since Persist
saves the interaction provenance directly in the notebook, the in-
teractive analysis can be shared along with the notebook. Persist
uses the Trrack [CGL20] provenance tracking library, which we de-
veloped previously. Persist can be installed with pip install
persist_ext. Persist is developed using Python, JupyterWid-
gets [[Py15], anywidget [Man23], TypeScript, and React.

7. Evaluation

We evaluate Persist by comparing it with traditional Pandas-based
data analysis in Jupyter in an empirical, lab-based study. Our goal
was to find out if using the Persist extension made the data analysis
faster and more accurate and reproducible, and to collect prefer-
ences and opinions from participants with experience in data anal-
ysis. Our hypotheses were:

e H1-Speed: That participants would perform the tasks faster in
the Persist condition.

o H2-Correctness: That most participants would be able to com-
plete most tasks but Persist would result in fewer incorrect solu-
tions.

o H3-Completeness: That using Persist would result in fewer
skipped tasks.

e H4-Reproducibility: That using Persist would result in more
reproducible notebooks.

o HS-Workload: That participants would have lower subjective
workload using Persist.

o Hé6-Helpfulness: That participants would find Persist helpful.

An overview of the study tasks, design, analysis, and results is
given in Figure 4. We recruited 11 participants who have experience
in data analysis using Jupyter notebooks and Pandas (4 identified
as women, 7 as men). We recruited from our local student pool: un-
dergraduate (2) and graduate students (4 PhD and 5 Masters). The
self-reported experience on a 5-point Likert scale for Python was
3.6 (0 = 1.12), for Pandas was 3 (¢ = 1.26), and for data wrangling
was 3.18 (o = 0.87). Seven participants had experience using data
analysis in research or an industry setting. The study was deemed
exempt from full review by the University of Utah IRB (00167331).

7.1. Procedure

The study employed a within-subject design using two datasets:
records about avalanches from the Utah Avalanche Cen-
ter [Cen23] and Video Games sales data from the Corgis Dataset
Project [KWR*23]. The tasks involved data cleaning and data ma-
nipulation, such as (la) removing columns not required for anal-
ysis, (1b) fixing column names to remove stray characters, (1c)
changing the data type of a column, (2a) removing outlier records,
(2b) removing records within a range, (3a) deriving a categorical
column based on a numerical column, and a final task (3b) for
which participants looked at a plot with the new derived column
to answer a question. Participants were given a prepared Jupyter
notebook for each condition that contained instructions about each
task and included boilerplate code, such as imports and data load-
ing. Also, all visualization code (for both conditions) was given,
so that participants only had to execute data manipulation steps.
See the supplemental material for the notebooks used. Each partic-
ipant completed these tasks under both the Persist and traditional
Pandas conditions. Tasks were matched between the datasets but
varied slightly to fit each dataset. The order and dataset assignment
was randomized using a Latin square to counterbalance any effects
of datasets and order of conditions.

The study began with an introduction that included disclosures
that the screens and room audio were recorded and the partici-
pant’s notebook would be analyzed, after which we obtained their
consent. This introduction was followed by a survey in which par-
ticipants reported their experiences with Python, Pandas, and data
wrangling. Following the survey, participants performed the main
data analysis tasks under each condition. For the Persist condi-
tion, the participants were first given a 15-minute tutorial about
Persist followed by a hands-on session in the tutorial notebook.
For the Pandas condition, participants were permitted to use any
resource to find help, including using their own laptops to use
search engines, consult documentation, or employ LLMs such as
ChatGPT for help. Participants could skip any task if they felt
they could not proceed; if a participant skipped, the experimenter
loaded a prepared dataset so that they could proceed with subse-
quent tasks. After each condition, the participants completed the
NASA TLX [HS88] questionnaire to assess their subjective work-
load. Upon completing the tasks, participants filled out a post-study
survey and completed a semi-structured interview to discuss their
experiences with Persist. A session lasted approximately 1 hour and
45 minutes. Participants were compensated with a $30 gift card.

7.1.1. Measures

We measured time to completion for each task (using post hoc
video analysis), task correctness (correct, partially correct, skipped,
wrong), reproducibility of the notebooks by attempting to re-
execute them after the session, and subjective performance (using
NASA TLX [HS88]). We also recorded preferences and feedback
in a survey and a semi-structured interview.

7.1.2. Pilots, Analysis, and Experiment Planning

We conducted four pilots to evaluate tasks, different conditions and
datasets, experimental setup, and our procedure. Due to the limita-
tions of null hypothesis significance testing, we base our analysis

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

| MOTIVATION

K. Gadhave, Z. Cutler and A. Lex / Persist

1]l STUDY DESIGN

WE RECRUITED ELEVEN PARTICIPANTS FOR THE STUDY. PARTICIPANTS ALL HAD
PRIOR EXPERIENCE WITH PYTHON AND PANDAS.

| FuLL FACTORIAL DESIGN

| | THE ORDER OF CONDITIONS WAS RAN- \
‘ 20pTASETS Y 2 CONDITIONS X FOR EACH CONDITION, DATASETS

| | pomLy AssianeD, |
‘ &
<0
WERE RANDOMLY ASSIGNED. PAR- .

TICIPANTS NEVER SAW THE SAME |

7of 12

IV ANALYSIS % RESULTS

“so much easier than manually coding.”
- My

“easier as compared to the code and ev-
erything was visivle ... and it didn*+take
much time.”

THE QUESTIONS ARE.. — STUDY METRICS

ARE DATA ANALYSTS MORE ACCURATE AND/OR FASTER
IN THEIR ANALYSIS WITH PERSIST?

DO DATA ANALYSTS FIND THE PERSIST WORKFLOW
HELPFUL?

TASKS AND CONDITIONS

— TASKS
PARTICIPANTS MADE THE FOLLOWING CHANGES TO A DATASET

FRE T

REMOVE COLUMNS RENAME COLUMNS CHANGE DATA TyPE
) EB) ACTIVE TRAINING
- S ED) PersisTTASKS
EDIT VALUES FILTER DATA ADD CATEGORICAL
COLUMN
— CONDITIONS —

PANDAS CODING

HELPFUL?
bb
?
SEEFIG 8]
— DATASETS B 5 % % "
o1 o0
VIDED GAMES MALANCHES WELPFUL FOR FILTERS? SUBTECTNVE PERFORMANE 1 % &
10 20 30 %0 50

N HELPFUL FOR SORTING? -
e HELPFUL FOR SORTING - j% % On a scale of | (not helpful) 1o 5 (ery help

\ POST STUDY SURVEY

TIMI

[7V S

SUBJECTIVE PERFORMANCE

E

@) PrE STUDY Survey

EXPERIENCE IN PYTHON?
pce 10 20 80 4O 50O
EXPERIENCE IN PANDAS?

10 20 30 40 5O

&
DETERMINE ORDER (3L

DATASET TwICE |

-M2
“Changing the category type, or adding
new categories or rémoving anomalies
from data, they were very much easier in
[Persist] than coding.”

-M7
“The thing | really liked about is version
gontrol, which shows the history of all op-
erations [...] and also saves the changes
[..Jinto a data frame.”

ERROR REPRODUCIBILITY

- Miy

ARE DATA ANALYSTS MORE ACCURATE AND/OR
FASTER IN THEIR ANALYSIS WITH PERSIST?
SEEFIG.5] i
TIME
We observed less mistakes
or skipped tasks with Per-

SEEFIG 6] W sist
Y, PERSIST 2

ERROR It
PANDAS

Tasks done with Persist
were ~3 times faster than
the equivalent task in

@) PanDAS TASKS

Mistakes/partial answers/skipped tasks

DO DATA ANALYSTS FIND THE PERSIST WORKFLOW

ful), participants labeled 70 of 77tasks as a

INTERVIEW J

Figure 4: lllustration of study tasks and conditions, design, analysis, and results.

on best practices for fair statistical communication in HCI [Dral6]
by reporting confidence intervals and effect sizes. We compute
95% confidence intervals and effect sizes using Cohen’s d to in-
dicate a standardized difference between two means. We also sup-
plement our analysis for the time values by including p-values from
Wilcoxon signed-rank tests (given the non-normal distributions of
our data and the within-subjects design). We use a Bonferroni-
corrected significance threshold of p = 0.0071. We do not compute
statistical tests for correctness, as we expected most participants to
be able to complete all tasks given the well-defined objectives based
on common data manipulation patterns, our participant inclusion
criteria (experience in data wrangling), and the ability of partici-
pants to use arbitrary reference materials. We also do not perform
statistical tests on our perceived workload measures and other sur-
vey responses due to the complexity of analyzing subjective scores
and our relatively low number of participants.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

7.2. Quantitative Results

Each participant attempted 14 tasks in this study, equally dis-
tributed between two conditions. Task 3b, which involved inter-
pretation from a pre-generated plot, was identical between the two
conditions, so we expected results to be consistent between con-
ditions and excluded the task from condition-specific discussions
below.

Figure 5a shows the time participants require for the tasks,
means, 95% confidence intervals, and statistical information. Par-
ticipants completed all tasks more quickly using Persist; with
means being about 3x lower in the Persist condition, confirming
H1-Speed. For all tasks that were different in the conditions, we
observe a significant relationship, with a very large to huge effect
size [Saw09]. Moreover, the data shown in Figure 5b indicate that
the Persist condition resulted in fewer errors (albeit overall cor-
rectness was high). Of the 77 tasks undertaken with Persist, only
one was partially wrong and another was incorrect. No tasks were

8of 12

Delete Columns (1a)

(a)

n=11 W=0.00 p=0.001 d=-2.549
61.34 — 80.64 — 99.94

K. Gadhave, Z. Cutler and A. Lex / Persist

Rename Columns (1b)

n=11 W=0.00 p=0.001 d=-3.393
51.12 — 66.18 — 81.25

Change Column Type (1¢c)

n=11 W=1.00 p=0.002 d=-2.803
132.67 — 200.64 — 268.61

Persist ;\- o EoR
217.18 — 294.55 — 371.91 ’ 185.91 — 228.91 — 271.91 556.80 — 718.73 — 880.66
Pandas g g5 ————l
" ; ; ; ; o ; ; ; o ; ; ; ; !
0 400 800 1,200 0 400 800 1,200 0 400 800 1,200
Filter Outliers (2a) Filter Ranges (2b)
n=11 W=0.00 p=0.001 d=-1.778 n=11 W=0.00 p=0.001 d=-1.776
. 96.59 — 141.91 — 187.22 - 54.93 — 91.18 — 127.43 (b) Correctness
Persist: o2 °® Condition
Correct 75
323.35 — 520.55 — 717.74 163.07 — 224.45 — 285.84 ® Porsist
Pandas _— L 72 Partial] 1 ® Pandas
- E Skipped
0 400 800 1,200 O 400 800 1,200 Wrong-| 1
Assign Categories (3a) Analysis (3b) Correct o
n=11 W=0.00 p=0.001 d=-1.841 n=11 W=32.00 p=0.966 d=-0.004 2 a1
133.87 — 157.18 — 180.50 100.83 — 131.55 — 162.26 3
=) il
Persist o - S skipped| 8
| 431.66 — 722.36 — 1013.07 103.07 — 131.73 — 160.38 Wrong] 2
pre) 0 20 40 60 80
Pandas > # of tasks
0 400 800 1,200 0 400 800 1,200

Figure 5: Time and Correctness Results (a) Overview of task completion times for both conditions in seconds. Raw values are shown in
Jjittered dot plots; the solid dot and lines show the mean and the 95% confidence intervals. The colored numbers show the lower and upper
bounds of the confidence interval and the mean respectively. The plot is clamped at 20 minutes (1200 seconds); data points exceeding 1200
seconds are shown as triangles. Statistical information is provided above the plots in gray. Persist was at least three times faster in all tasks
Sfor which it was used (note that Task 3b—Analysis was a visual analysis task identical in both conditions). All the differences are statistically
significant with “very large” to “huge” effect sizes [Saw09]. (b) Overview of task correctness across conditions. In the Persist condition,
75 of 77 tasks were completed correctly, 1 was partially correct, and 1 was wrong. In the Pandas condition, 66 of 77 tasks were completed
correctly, 1 was partially correct, 2 were wrong. In 8 cases, participants could not come up with a solution and skipped the task.

Effort Frustration Mental Demand Performance Temporal Demand
10 Condition
@ Persist
8 ® Pandas

[}

o

]

0 20 40 60 80100 O
Score

20 40 60 80100 O 20 40 60 80100 O 20 40 60 80100 O 20 40 60 80100

Score Score Score Score
Figure 6: Subjective workload as measured by the NASA TLX shown as an empirical cumulative distribution function (eCDF), where the
index of participants is on the y-axis, and the score is on the x axis. Low values are “good” in all cases (low effort, low frustration, etc.) For
performance, a low value is on the scale “Good (0)” to “Poor (100)”. Averages for both conditions are shown with a lighter line. The Persist
condition was rated “better” across all dimensions, mostly with margins of about 50 points on average. The exception is performance, where
participants rated their performance with Persist by about 30 points better than with Pandas.

HAename Columng Delete Columns

Change Golumn Data Type Interactive Selections Filter Selections Assign Categories Histary
10
5
o [| [| [| . [| - [| [|
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Figure 7: Histograms of ratings for helpfulness of Persist for tasks on a 5-point Likert scale, where 1 corresponds to “not helpful”, and 5
corresponds to “very helpful”. Participants find Persist helpful or very helpful across tasks. For filters, one user expressed a preference for
entering precise queries and rated Persist lower.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

K. Gadhave, Z. Cutler and A. Lex / Persist

skipped. Conversely, in the Pandas condition, two were incorrect,
one was partially correct, and eight tasks were skipped, lending
some support to H2-Correctness and H3-Completeness.

Upon revisiting the notebooks after the study for re-execution,
we found four from the Pandas condition that could not be en-
tirely executed due to errors; manually bypassing some cells was
necessary to complete the run. However, most of these cases also
coincided with skipped tasks. Additionally, re-executing one note-
book revealed an incorrect dataset state, despite the answer being
correct during the study. In this case, it was necessary to execute
a specific cell twice to get the correct results. In contrast, all 11
notebooks associated with tasks conducted using the Persist exten-
sion demonstrated seamless functionality, exhibiting no errors upon
re-execution, making the participant sessions more consistently re-
producible and lending support to H4-Reproducibility.

The results of the subjective workload assessment are shown in
Figure 6. We omitted the physical demand metric from these re-
sults as it was not relevant to our study context. Figure 6 presents
the empirical CDF plot for both conditions, revealing consistently
higher levels of effort, mental demand, temporal demand, frus-
tration, and lower performance associated with the Pandas con-
dition. These findings suggest that participants felt more efficient
and less burdened while performing tasks with Persist, confirm-
ing H5-Workload. In the poststudy survey, participants assessed the
helpfulness of Persist in completing various tasks such as renaming
columns; deleting columns; changing column data types and inter-
active selections; and filtering, categorizing, and navigating to prior
states in the interaction provenance (history). On a 5-point Likert
scale, where five denotes ‘very helpful’ and one signifies ‘not help-
ful,’ all participants consistently rated the helpfulness of Persist as
either 4 or 5 for every task, with a single exception, as shown in
Figure 7, lending support to H6-Helpfulness.

7.3. Qualitative Results

Here we report on the follow-up interviews, summarizing and pro-
viding quotes for context. Quotes are edited for grammar; for full
transcripts, refer to the supplemental material. During the debrief
interview, participants were asked about the learning curve of the
extension given the short time they had to familiarize themselves
with Persist. Participants expressed that Persist was easy to learn
and the icons and tooltips helped them discover the feature required
for a particular task. P4 recalled, “I couldn’t remember what button
it was, but it only took me one second to find it”.

Participants were asked about their preference between Persist
and Pandas. They expressed that they preferred using Persist for
most tasks because of the ease of using interactions. P8 described
their experience with Persist as “what you think—you can just do it
right away”. P1 skipped Task 3a in the Pandas notebook but com-
pleted it with Persist. They said, “That was kind of hard for me to
write in code. By using the interactive tool, it was super easy.” P6
was one of the most experienced participants who also performed
the Pandas tasks the fastest. When discussing the preference be-
tween Persist and Pandas, they said, “[With Pandas] I know what
I want to do, but I still get stuck, because of the [...] syntax. But
with Persist, I don’t have to write anything.” All participants pre-
ferred Persist for most of the tasks, but some had concerns with

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

9of 12

interactive selections. These concerns stem from the task instruc-
tions giving precise numbers, and hence participants were required
to accurately select certain points with a mouse; whereas in code
they could put in exact values. P6 said, “...I’m just not comfort-
able with visual selections. Because, as you know, there are edge
cases with human errors.” P11 (who had worked as data scientist in
industry) commented, “the selections part—I felt it’s rough around
the edges. [...] if there are many cluttered points [...], I can’t nail
the selection exactly.” However, they later added, “apart from that
point, if there are anomalies or outliers, it’s extremely helpful.”

Our goal with Persist is to enable seamless switching between
code and interactions, allowing the analyst to use the best tool for
the job. Therefore, we asked participants about their thoughts on
switching between Persist and Pandas. P2 responded, “maybe there
are some features which are not present in this, and we might want
to use the code. So, it is helpful to have both things”. We also asked
participants if they would like to use Persist in their own data anal-
ysis. All participants showed interest in adopting Persist. P6 said,
“I actually really find it helpful and I'm planning to use it on my
own research.” P3 responded “I would definitely use it, because 1
felt it’s really intuitive” Participants also brought up the interaction
provenance and ability to traverse between the states. P11 said, “the
thing I really liked about is version control, which shows the history
of all operations [...] and also saves the changes [...] into a data
frame.” P8 described in detail their struggle with creating multi-
ple temporary variables, copies of notebooks, and out-of-order cells
that happen as part of exploratory analysis, “I do want to say that
when you are working on a larger project, you tend to create so
many variables [...]. So instead of that, I would definitely want
to highlight how you don’t have to [create new named variables]
for every small change that you make [in Persist], you just have to
[create a name] for the one that you wish to retain.”

7.4. Study Discussion

Our results unambiguously demonstrate that participants were,
on average, significantly faster using Persist than using standard
dataframe operations, validating H1-Speed. We also have some
evidence to support H2-Correctness, H3-Completeness, and H4-
Reproducibility, although the overall low number of errors, skipped
tasks, and not-reproducible notebooks indicate that a more pow-
erful study is necessary to make definite statements on these hy-
potheses. We have not conducted statistical tests to evaluate H5-
Workload, we think the evidence from the NASA-TLX survey and
the interviews unambiguously supports that participants do have
lower subjective workload using Persist than using dataframe op-
erations. Similarly, our survey data and the qualitative interviews
validate H6-Helpfulness. Looking closer at the data for comple-
tion times, the Pandas condition has a higher variance in comple-
tion times, while the Persist condition has minimal variation. This
difference could indicate that Persist is easy to learn and can be
consistently applied, whereas the ease of using Pandas operations
depends on the analysts’ experience. Almost all participants had
to look up syntax for most Pandas operations. However, even the
more proficient participants in our study said they found Persist
helpful. We conclude that a tool like Persist can significantly speed
up the workflow of most somewhat proficient data scientists, while

10of 12

COMPLEXITY

PROGRAMMING

GENERAL PURPOSE
VISUALIZATION SYSTEMS A

SPECIFICITY

GENERALITY

PERSIST INTERACTIONS
USABILITY

Figure 8: Conceptual trade-offs of data analysis systems.

still being an appreciated tool for experts, thereby contributing to
making computational data analysis accessible to a wider audience.

In a comparison of the completion time of the two filter tasks
(2a and 2b), the difference in the Persist condition is negligible, but
the difference in the Pandas condition is large: cutting the average
from 520 seconds to 224 seconds. We observed that this speed-up
is because participants copied the code they had written for Task
2a when completing Task 2b. This observation makes us consider
whether we should provide functionality to copy workflows created
with Persist [GCL22].

One critique of our study design could be that we tested tasks
and operations that we expected would perform well with Persist,
but did not test tasks that cannot be completed with Persist alone,
and that, hence, the benefits of Persist shown in the study are not
surprising. We counter this by stating that we did test a represen-
tative set of operations, but also acknowledge some operations are
just easier to execute in code, such as when using regular expres-
sions, or when applying complicated conditional data transforma-
tions. Yet the point of Persist is that it allows a seamless transition
between interactivity and code, allowing analysts to use the right
tool for the job without incurring the costs usually associated with
switching between analysis modalities. Hence, we believe that our
study demonstrates that Persists is an overall valuable addition to
the data science tool-Kkit.

8. Discussion and Limitations

Most data analysis systems are either useful in a narrow context
(specific) and easy to use (such as simple interactive charts, or sys-
tems designed for a specific workflow) or are general and complex
(such as programming languages). This relationship is illustrated in
Figure 8. Most visualization systems fall somewhere in the middle
between these tools: it takes effort to learn to use a general-purpose
visualization tool, yet it can be used for many things. The complex-
specific quadrant is undesirable, whereas the easy-to-use general
quadrant is likely impossible to populate. We believe that Persist
fills a unique niche by seamlessly bridging between the usability—
specificity and the complexity—generality quadrants. Therefore al-
lowing some operations that would usually be in the domain of
programming languages to be executed with easy-to-use interac-

K. Gadhave, Z. Cutler and A. Lex / Persist

tive systems, without reducing the overall generality of the data
analysis approach.

However, we recognize that Persist has limitations. Whereas data
operations on pandas and similar tools are scalable to large datasets
with millions of rows, Persist is limited with respect to scalabil-
ity by what can be plotted in a reasonable way. While scalable vi-
sualization solutions for large amount of data are available, they
are not implemented in our prototype. Scalability of the interac-
tion provenance is also a concern. Long iterative analysis can re-
sult in unwieldy provenance graphs. We can develop more sophisti-
cated approaches for managing large interaction provenance, such
as query-based retrieval of states of interest [SGP*19], automati-
cally chunking multiple interactions as a higher-level interaction,
or features such as undo-as-delete [HMSAOS] to avoid short stray
branches when recovering from mistakes. Persist is currently lim-
ited to our custom table and Vega-Altair charts. However, since the
ecosystem for interactive visualizations in Python is small, we ex-
pect it to be feasible to extend our approach to libraries such as
Bokeh and Plotly. Similarly, Persist is currently limited to pan-
das dataframes and does not yet implement all reasonable opera-
tions for dataframes. We believe an abstraction to SQL would open
up compatibility with other data structures such as DuckDB and
other databases. Whereas poststudy interviews indicate that Persist
is easy to pick up after just a short tutorial, we cannot discount the
possibilities of non-experts facing certain hurdles. Interactive anal-
ysis is not yet common in notebooks, so an interface like Persist
can add to the learning curve of notebooks for novice analysts.

9. Conclusion and Future Work

We have introduced Persist, an approach for bringing data oper-
ations to interactive visualizations in notebooks and seamlessly
bridging the gap between interactive visualizations and code. While
we believe that Persist is useful right now in day-to-day data analy-
sis, there are several immediate extensions we want to implement.
Low-hanging fruit would be to include other operations, or to im-
prove how Persist views are shown in “preview” mode, e.g., when a
notebook is rendered in static form on GitHub. Also, Persist is cur-
rently limited to Jupyter, and cannot be used, for example, in Visual
Studio code. One aspect that Persist does not simplify is chart cre-
ation. Combining Persist with the chart creation technology shown
by others [WHS20,EGMP23] would be desirable. Also, the Persist
principles could be used for changing the visualizations, e.g., by
removing or changing titles, visual encodings, etc. In that case, op-
erations would have to be applied to the input visualization instead
of the dataframe. Finally, we have compared Persist to traditional
analysis, we are interested in comparing Persist to alternative code-
generating approaches, such as B2, so that we can develop a better
understanding of the trade-offs of both approaches.

10. Acknowledgements

We thank Jake Wagoner for helping with engineering aspects and
the Visualization Design Lab for fruitful discussions and feed-
back. We gratefully acknowledge funding from the National Sci-
ence Foundation (IIS 1751238, CNS 213756, and CNS-2313998).

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

K. Gadhave, Z. Cutler and A. Lex / Persist

References

[AZL*19] ALSPAUGH S., ZOKAEIN., L1U A., JIN C., HEARST M. A.:
Futzing and Moseying: Interviews with Professional Data Analysts
on Exploration Practices. IEEE Transactions on Visualization and

Computer Graphics 25, 1 (2019), 22-31. doi:10.1109/TVCG.
2018.2865040. 4

[BE18] BATCH A., ELMQVIST N.: The Interactive Visualization Gap in
Initial Exploratory Data Analysis. IEEE Transactions on Visualization

and Computer Graphics 24 (2018), 278-287. doi:10.1109/TVCG.
2017.2743990. 4

[Bok18] BOKEH DEVELOPMENT TEAM: Bokeh:
Python library for interactive visualization.
https://docs.bokeh.org/en/1.0.1/docs/citation.html, 2018. 2, 4

[Cen23] CENTER U. A Utah Avalanche Center.

https://utahavalanchecenter.org/observations, 2023. 2, 6

[CGL20] CuUTLER Z. T., GADHAVE K., LEX A.. Trrack: A Li-
brary for Provenance Tracking in Web-Based Visualizations. In
IEEE Visualization Conference (VIS) (2020), pp. 116-120. doi:10.
1109/VIS47514.2020.00030. 6

[CPH*20] CHATTOPADHYAY S., PRASAD 1., HENLEY A. Z., SARMA
A., BARIK T.: What’s Wrong with Computational Notebooks? Pain
Points, Needs, and Design Opportunities. In Proceedings of the 2020

CHI Conference on Human Factors in Computing Systems (New York,
USA, 2020), CHI °20, Association for Computing Machinery, pp. 1-12.
doi:10.1145/3313831.3376729.4

[DBG*20] DRosOSs I., BARIK T., Guo P. J., DELINE R., GULWANI
S.: Wrex: A Unified Programming-by-Example Interaction for Synthe-
sizing Readable Code for Data Scientists. In Proceedings of the 2020

CHI Conference on Human Factors in Computing Systems (New York,
NY, USA, Apr. 2020), CHI ’20, Association for Computing Machinery,
pp. 1-12. doi:10.1145/3313831.3376442. 4

[Dral6] DRAGICEVIC P.: Fair Statistical Communication in HCI. In
Modern Statistical Methods for HCI, Robertson J., Kaptein M., (Eds.).
Springer International Publishing, Cham, 2016, pp. 291-330. doi:10.
1007/978-3-319-26633-6_13.7

[EGMP23] EPPERSON W., GORANTLA V., MORITZ D., PERER A.:
Dead or Alive: Continuous Data Profiling for Interactive Data Science.
arXiv preprint arXiv:2308.03964 (2023). arXiv:2308.03964. 10

[GCL22] GADHAVE K., CUTLER Z., LEX A.: Reusing Interactive Anal-
ysis Workflows. Computer Graphics Forum 41, 3 (2022), 133-144.
doi:10.1111/cgf.14528. 3,10

[GGC*21] GADHAVE K., GORTLER J., CUTLER Z., NOBRE C.,
DEUSSEN O., MEYER M., PHILLIPS J. M., LEX A.: Predicting intent
behind selections in scatterplot visualizations. Information Visualization
20, 4 (Oct. 2021),207-228. doi:10.1177/14738716211038604.
3

[GKHH11] Guo P. J., KANDEL S., HELLERSTEIN J. M., HEER J.:
Proactive wrangling: Mixed-initiative end-user programming of data
transformation scripts. In Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology (New York,
NY, USA, Oct. 2011), UIST ’11, Association for Computing Machin-
ery, pp. 65-74. do1:10.1145/2047196.2047205. 3

[HHB*19] HEAD A., HOHMAN F., BARIK T., DRUCKER S. M.,
DELINE R.: Managing Messes in Computational Notebooks.
In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (New York, USA, 2019), CHI ’19, Association
for Computing Machinery, pp. 1-12. doi:10.1145/3290605.
3300500. 3

[HMSAO8] HEER J., MACKINLAY J., STOLTE C., AGRAWALA M.:
Graphical Histories for Visualization: Supporting Analysis, Communica-
tion, and Evaluation. IEEE Transactions on Visualization and Computer
Graphics (InfoVis ’08) 14, 6 (2008), 1189-1196. doi:10.1109/
TVCG.2008.137. 10

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

11of 12

[HS88] HART S. G., STAVELAND L. E.: Development of NASA-TLX
(Task Load Index): Results of Empirical and Theoretical Research. In
Advances in Psychology, Hancock P. A., Meshkati N., (Eds.), vol. 52
of Human Mental Workload. North-Holland, Jan. 1988, pp. 139-183.
doi:10.1016/50166-4115(08)62386-9.6

[Hun07] HUNTER J. D.: Matplotlib: A 2D Graphics Environment.
Computing in Science Engineering 9, 3 (May 2007), 90-95. doi:
10.1109/MCSE.2007.55. 4

[Inc19] INC M.: Microsoft Power BI. https://powerbi.microsoft.com/de-
de/, 2019. 3

[IPy15] IPYTHON WIDGET TEAM: Jupyter Widgets — Jupyter Widgets
8.1.1 documentation. https://ipywidgets.readthedocs.io/en/stable/, 2015.
2,4,6

[Knu84] KNUTH D. E.: Literate Programming. The Computer Journal
27,2(1984),97-111. doi:10.1093/comjnl/27.2.97.2,3

[KPHH11] KANDEL S., PAEPCKE A., HELLERSTEIN J., HEER J.:
Wrangler: Interactive Visual Specification of Data Transformation
Scripts. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (New York, NY, USA, 2011), CHI ’11, ACM,
pp- 3363-3372. doi:10.1145/1978942.1979444.3

[KRH*20] KERY M. B., REN D., HOHMAN F., MORITZ D., WONG-
SUPHASAWAT K., PATEL K.: Mage: Fluid Moves Between Code
and Graphical Work in Computational Notebooks. Proceedings of
the 33rd Annual ACM Symposium on User Interface Software and
Technology (Oct. 2020), 140-151. arXiv:2009.10643, doi:10.
1145/3379337.3415842. 2,4

[KRP*16] KLUYVER T., RAGAN-KELLEY B., PEREZ F., GRANGER
B., BUSSONNIER M., FREDERIC J., KELLEY K., HAMRICK J.,
GROUT J., CORLAY S., IVANOV P., AVILA D., ABDALLA S., WILL-
ING C., JUPYTER DEVELOPMENT TEAM: Jupyter Notebooks — a
publishing format for reproducible computational workflows. In 20th
International Conference on_Electronic Publishing (01/01/16) (2016),
Loizides F., Semidt B., (Eds.), IOS Press, pp. 87-90. doi:10.3233/
978-1-61499-649-1-87.2,3

[KWR*23] KAFURA A. C. B., WHITCOMB R., RIDDLE J., SALEEM
O., TiLEVICH D. E., DR. CLIFFORD, SHAFFER A., DR. DENNIS:
CORGIS Datasets Project. https://corgis-edu.github.io/corgis/, 2023. 6

[Man23] MANz, T: doi:10.5281/zenodo.
10078842. 6

Anywidget.

[mic23] MICROSOFT: Data Wrangler Extension for Visual Studio Code.
Microsoft, Nov. 2023. 3

[Plo15] PLoOTLY T. I.: Collaborative data science, 2015. URL: https:
//plot.ly.?2

[RTH18] RULE A., TABARD A., HOLLAN J. D.: Exploration and
Explanation in Computational Notebooks. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems (Mon-
treal, Canada, 2018), ACM, pp. 1-12. doi:10.1145/3173574.
3173606. 2,3

[Saw09] SAWILOWSKY S.: New Effect Size Rules of Thumb. Journal
of Modern Applied Statistical Methods 8, 2 (Nov. 2009). doi:10.
22237/9masm/1257035100. 7, 8

[SGP*19] STITZ H., GRATZL S., PIRINGER H., ZICHNER T., STREIT
M.: KnowledgePearls: Provenance-Based Visualization Retrieval. IEEE
Transactions on Visualization and Computer Graphics (VAST ’18) 25, 1
(2019), 120-130. doi:10.1109/TVCG.2018.2865024. 10

[SO20] ScHMIDT J., ORTNER T.: Visualization in Notebook-
Style Interfaces. In Proceedings of the Workshop on the Gap
between Visualization Research and Visualization Software (VisGap)
(May 2020). doi1:10.2312/visgap.20201104. 4

[Tabl5] TABLEAU SOFTWARE: Tableau
http://www.tableau.com/, Dec. 2015. 3

[Tea] TEAM S.: Streamlit * a faster way to build and share data apps.
https://streamlit.io/. (Accessed on 02/28/2024). 4

Software.

https://doi.org/10.1109/TVCG.2018.2865040
https://doi.org/10.1109/TVCG.2018.2865040
https://doi.org/10.1109/TVCG.2017.2743990
https://doi.org/10.1109/TVCG.2017.2743990
https://doi.org/10.1109/VIS47514.2020.00030
https://doi.org/10.1109/VIS47514.2020.00030
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1007/978-3-319-26633-6_13
https://doi.org/10.1007/978-3-319-26633-6_13
http://arxiv.org/abs/2308.03964
https://doi.org/10.1111/cgf.14528
https://doi.org/10.1177/14738716211038604
https://doi.org/10.1145/2047196.2047205
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1109/TVCG.2008.137
https://doi.org/10.1109/TVCG.2008.137
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1145/1978942.1979444
http://arxiv.org/abs/2009.10643
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.5281/zenodo.10078842
https://doi.org/10.5281/zenodo.10078842
https://plot.ly
https://plot.ly
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.22237/jmasm/1257035100
https://doi.org/10.22237/jmasm/1257035100
https://doi.org/10.1109/TVCG.2018.2865024
https://doi.org/10.2312/visgap.20201104
https://streamlit.io/

12 of 12 K. Gadhave, Z. Cutler and A. Lex / Persist

[VGH*18] VANDERPLAS J., GRANGER B. E., HEER J., MORITZ D.,
WONGSUPHASAWAT K., SATYANARAYAN A., LEES E., TIMOFEEV 1.,
WELSH B., SIEVERT S.: Altair: Interactive Statistical Visualizations
for Python. Journal of Open Source Software 3, 32 (Dec. 2018), 1057.
doi:10.21105/joss.01057. 2,4

[WHS20] WU Y., HELLERSTEIN J. M., SATYANARAYAN A.: B2:
Bridging Code and Interactive Visualization in Computational Note-
books. In Proceedings of the 33rd Annual ACM Symposium on

User Interface Software and Technology (New York, NY, USA, Oct.
2020), UIST °20, Association for Computing Machinery, pp. 152-165.
doi:10.1145/3379337.3415851. 2,4,10

[WLH19] WONGSUPHASAWAT K., LIU Y., HEER J.: Goals, Process,
and Challenges of Exploratory Data Analysis: An Interview Study.
ArXiv (2019). 3,4

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.21105/joss.01057
https://doi.org/10.1145/3379337.3415851

