
PERSIST: PERSISTENT AND REUSABLE INTERACTIONS IN
COMPUTATIONAL NOTEBOOKS

A PREPRINT

Kiran Gadhave
University of Utah

kirangadhave2@gmail.com

Zach Cutler
University of Utah

zach.t.cutler@gmail.com

Alexander Lex
University of Utah

alex@sci.utah.edu

ABSTRACT
Computational notebooks, such as Jupyter, support rich data visualization. However, even when
visualizations in notebooks are interactive, they still are a dead end: Interactive data manipulations,
such as selections, applying labels, filters, categorizations, or fixes to column or cell values, could
be efficiently apply in interactive visual components, but interactive components typically cannot
manipulate Python data structures. Furthermore, actions performed in interactive plots are volatile,
i.e., they are lost as soon as the cell is re-run, prohibiting reusability and reproducibility. To remedy
this, we introduce Persist, a family of techniques to capture and apply interaction provenance to
enable persistence of interactions. When interactions manipulate data, we make the transformed data
available in dataframes that can be accessed in downstream code cells. We implement our approach
as a JupyterLab extension that supports tracking interactions in Vega-Altair plots and in a data table
view. Persist can re-execute the interaction provenance when a notebook or a cell is re-executed
enabling reproducibility and re-use.
We evaluated Persist in a user study targeting data manipulations with 11 participants skilled in
Python and Pandas, comparing it to traditional code-based approaches. Participants were consistently
faster with Persist, were able to correctly complete more tasks, and expressed a strong preference for
Persist.

1 Introduction

Computational notebooks allow for narrative data analysis
combining code, data visualizations, text, figures, etc.,
in the spirit of literate programming [20] proposed by
Knuth. Data visualizations in computational notebooks are
treated as outputs, similar to text or data tables. As note-
books are code-based, they are (conceptually) reproducible
and reusable [19]. The downside of notebook-based ap-
proaches is that they require programming skills to use,
and that data wrangling operations can be time consuming
to get right and may require consulting reference material
even for experienced programmers. On a spectrum from

This is the authors’ preprint version of this paper. License:
CC-By Attribution 4.0 International. Please cite the follow-
ing reference:
Kiran Gadhave, Zach Cutler, Alexander Lex. Persist: Persis-
tent and Reusable Interactions in Computational Notebooks,
2023.

usability to complexity, programming is complex, yet it
can be applied in generic contexts.

On the other side of the spectrum are specialized interac-
tive visualization tools. Interactive analysis tools can make
advanced operations simple, but lack generality: they are
good at specific tasks, but lack other desirable character-
istics, such as broad applicability, re-usability of analysis
processes, reproducibility, etc.

It is unlikely that there are data analysis solutions that are
simple yet equally expressive as programming languages;
yet certain data operations are much easier to achieve in
interactive and visual interfaces than they are in code. We
postulate that hybrid, well-integrated solutions can be a
significant improvement over the current, mostly isolated
state of programming vs interactive visualization. A hybrid
solution would allow skilled data analysts to use simple
and effective interactive approaches when appropriate, and
fall back to expressive code-based operation for tasks that
cannot be efficiently completed with interactive tools.

https://orcid.org/0000-0001-6916-2583
https://orcid.org/0000-0002-2656-3413
https://orcid.org/0000-0001-6930-5468

Persist PREPRINT

Figure 1: Persist captures interaction provenance for visualizations embedded in computational notebooks and applies
them to data structures. The code cell in (a) shows that an analyst loaded a table, created a Persist-enabled scatterplot,
and printed the head of the dataframe (b). The second output of the cell is an interactive scatterplot instrumented
with Persist (c). Persist tracks the interaction provenance and supplements operations, such as filters, labeling, or
categorization. Using interactions available on the Persist toolbar (d) an analyst has filtered three points, assigned
a new category to two points and currently has three points selected. (e) A provenance graph where the analysts
interactions are tracked. (f) Persist manipulates the underlying dataframe by translating the interaction provenance to
dataframe operations. The updated dataframe, df5, is then fed back into scatterplot, but is also available in subsequent
code cells (g). (h) The manipulated dataframe contains a new categorical column (Engine) and a new Boolean column
capturing selections. 3 items were removed (cf. 27 vs 30 rows in (b)).

Current approaches to integrate visualizations with code
are typically one-way streets: plots are generated to in-
form the analysts and may tell a story, but they cannot be
leveraged to manipulate the data. Recent developments
in computational notebooks have led to increased support
for interactive outputs in notebooks. Libraries like Vega-
Altair [27], Plotly, bokeh [3], and IPython widgets [15]
can be used to create complex interactive visualizations
as outputs, but typically do not support data manipulation.
Interactions such as selections and filters cannot be ac-
cessed in the code cells. Analysts can use the interactions
to explore the data using multiple linked views but must
write code to manipulate the data, making it less efficient
and more difficult.

Furthermore, there is a mismatch between the persis-
tence of code-cells and actions taken in interactive outputs.
Changes to code cells are persistent across notebook saves,
and the cells can be re-executed to get the same results.
However, the interactions taken in visualizations are tran-
sient and are not saved even across cell re-executions. To
make the insights made by interactive analysis in such
outputs permanent, extensive documentation of the inter-
actions themselves is required, which is a burden to an-
alyst [23]. Hence, interaction is rarely used in practice
hampering its adoption.

To remedy this, we introduce a new principle for integrat-
ing interaction with code in Persist, our primary contri-
bution. As illustrated in Figure 1, Persist tracks actions
taken in interactive visualizations that are specified in code
and applies them to a dataset. This dataset can then be

used in subsequent analysis. Actions tracked with persist
are fully reproducible and reusable: when re-running a
notebook, all actions are applied. Even updating a dataset
or the visualization itself is possible, as long as the actions
are meaningful in the new context.

We implement Persist as a minimal layer on top of exist-
ing interactive visualizations. As a proof of concept, we
instrument arbitrary Vega-Altair plots: except for a single
line invoking Persist, no changes to the plots are necessary.
We inject a suite of useful data operations (such as filters,
labeling, categorization, changing data types, changing val-
ues) that can be triggered either with direct manipulation,
a toolbar, or a combination thereof.

We also provide a custom interactive data table that enables
a range of manipulations that can be tedious to achieve in
code but are natural in an interactive system.

Persist is an open-source JupyterLab extension. The
source code is available at https://github.com/
visdesignlab/persist. Persist can be installed from
PyPi https://pypi.org/project/persist_ext) us-
ing any Python package manager.

We evaluate the efficacy of Persist by comparing it to
the traditional code-based approach in a user study with
eleven participants skilled in Python and Pandas. The
study focused on data cleaning and manipulation opera-
tions. The results show that participants were consistently
faster, could complete the tasks more often when using
Persist, and rated their perceived workload as lower. Par-

2

https://github.com/visdesignlab/persist
https://github.com/visdesignlab/persist
https://pypi.org/project/persist_ext

Persist PREPRINT

ticipants also expressed a preference for Persist over code-
based approaches for all tested operations.

2 Persist Walk-Through

To demonstrate how data analysis with Persist works we
here describe an analysis session following a user as they
work on the Utah avalanche dataset [4]. This analysis
session is also available in the supplemental materials.
The dataset contains reported instances of avalanches in
Utah’s mountains. After loading the data, the analyst starts
by creating a Persist-enabled Vega-Altair scatterplot of
the Elevation_feet (the altitude at which the avalanche
occurred) vs. Vertical_inches (the thickness of the
avalanche) columns of the dataset. This visualization helps
in identifying the general data distribution and potential
outliers. The analyst notices that some records show eleva-
tions below 2,000 and above 15,000 ft, which are outside
Utah’s elevation range (2,300–13,500 ft) and concludes
that these must be erroneous entries (see Figure 2a). Using
a brush, the analyst selects these points and uses the Re-
move Selection button in the Persist toolbar to remove the
selected points (Figure 2b). Persist automatically creates a
variable which holds the resulting dataframe.

Next, the analyst uses the updated data to explore monthly
avalanche trends by creating a composite Vega-Altair plot
containing a bar chart for avalanches aggregated by month
and the scatterplot from previous analysis. The bar chart re-
veals a seasonal pattern, with avalanches peaking in Febru-
ary. The analyst creates a new category called Avalanche
Season with three options, Start, Middle, and End using
the Add Category button on the Persist toolbar. They now
brush ranges in the bar chart and assign them to one of
the avalanche season phases using the Assign Category
button from the toolbar (Figure 2c). The chart’s color-
encoding automatically updates to show the new data. In
the dataset, Persist automatically created a new column in
the dataframe that reflects the interactions done in the bar
chart

To examine the data in a tabular format, the analyst em-
ploys the interactive Persist Table (see Figure 3), applying
it to the current dataframe. This reveals some data artifacts,
such as extraneous semicolons in column headers. They
correct these in the table by double-clicking and editing
the affected column header.

3 Related Work

We review relevant prior work to notebooks and interac-
tive data analysis in general, followed by a discussion of
interactive visualization within notebooks.

3.1 Computational Notebooks

Computational notebooks are a popular tool for data explo-
ration and analysis. They fulfill Knuth’s [20] vision of lit-
erate programming by blending together code, text, figures

and data to develop a narrative data analysis. Jupyter [19]
is the most popular literate programming tool and has sup-
port for wide variety of data analysis and visualization
libraries. Jupyter notebooks support iterations during the
analysis process, however analysts report ending up with
a ‘messy’ notebook having ‘ugly’ or ‘hacky’ code [23].
While a notebook’s linear structure is great for narrating
the final data analysis process, the data analysis process
itself is non-linear, which presents challenges. In order
to iterate over different approaches, analysts end up copy-
ing code and running cells out of order which reduces the
reproducibility of the notebook [23].

3.2 Interactive Data Analysis

Interactive data analysis environments like Tableau [26],
Power BI [14], or bespoke custom tools are popular be-
cause they support direct manipulation of the data. Certain
tasks such as removing outliers or assigning labels are
easier to perform directly with an interactive plot. How-
ever interactive analysis has limited reproducibility and
reusability. It is difficult to replicate an analysis session
on updated datasets. These tools also have limited support
for transitioning to other tools directly. Usually analysts
have to export the results as a data file and then load it in
the next tool. Our previous work [10] introduces methods
of extracting workflows developed in an interactive visu-
alization system and re-using them, e.g., on new datasets.
We also demonstrated exporting workflows so that they
can used in a computational notebook. In this work, we
are building on this foundation to instrument interactive
visualizations directly in notebooks instead.

Kandel et al. [17] introduced an interactive system for data
transformations called Wrangler. Wrangler allowed direct
manipulation of visualized data and offers an interactive
history for review and refinement, but also can export
wrangling steps to code. Guo et al. [11] extended the
Wrangler system to enable proactive suggestions for data
analysis based on inputs from the analyst. MS VS Code has
an extension called Data Wrangler [22] which is described
as code-centric data cleaning tool. The extension allows
for interactive data cleaning and simultaneously generates
Python/Pandas code which corresponds to the cleaning
operations.

Unlike for these approaches, operations executed in Persist
do not directly generate code, but rather contribute to a
history of transformation steps that can be re-executed
just like code, enabling a close integration of the actions
with the visualization, as well as advanced features such
as branching states.

3.3 Interactive Analysis in Notebooks

In many scenarios analysts have to frequently switch be-
tween interactive and computational tools [28]. However,
transitioning between tools in different environments is not
straightforward and often requires repetition of analysis
steps when moving from code to GUI and vice-versa [5].

3

Persist PREPRINT

Figure 2: Examples of how Persist is used for data manipulation. (a) An analyst creates an interactive Vega-Altair
scatterplot showing elevation and depth of avalanches. They notice the outliers in the elevation and proceed to select the
outliers and remove them (b). The interactions are tracked in the provenance graph, and Persist creates a dataframe
containing the updated data. In a follow-up cell they use the cleaned data to create a composite Vega-Altair chart with an
interactive bar chart showing avalanche records aggregated by month next to the scatterplot of elevation vs. depth. They
want to categorize avalanches by start/middle/end of the season using the Persist UI. The colors indicating categories
were added without modification to the visualization code, and again all steps are tracked and applied to the dataframe.

Therefore, despite the advantages of an interactive visu-
alization, analysts frequently stick to code environments
to avoid the extra work involved with switching between
tools [28]. Batch and Elmqvist discuss the need of interac-
tive visual analysis systems that can export the interactive
action performed in them [2]. Alspaugh et al. [1] propose
developing integrated tools which combine expressiveness
of code environments with direct manipulation available
in interactive visualizations.

Wrex [8] is a Jupyter notebook extension which imple-
ments the programming-by-example principle. Wrex al-
lows analysts to work on samples of a dataframe, and use
an interactive grid that provides data transformation ex-
amples. Wrex synthesises code from these interactions
which the analyst can modify and use subsequently. Wrex
does not support persistence of the interactions beyond the
generated code.

Support for interactive outputs in notebooks is becoming
more common. Jupyter Notebook can be used to create
interactive outputs with libraries like JuptyerWidgets [15],
Bokeh [3] and Streamlit. However, interactive data analy-
sis is rare to see in notebooks. Schmidt and Ortner [25] cite
limited interaction capabilities native to the environment
as one of the reasons for the lack of interactive data analy-
sis. Native visualization libraries, such as Matplotlib [13],
have only basic interactive capabilities and cannot feed
back actions from visualizations to code. Complex vi-
sualizations, such as custom tools can be embedded in
Jupyter notebooks but typically cannot manipulate data in
the notebooks. Libraries such as Vega-Altair [27] support
interactive visualizations, but the interactions primarily
serve the purpose of coordinating between multiple views
and do not natively manipulate data.

Two recent works that align with Persist’s vision of seam-
less transition between code and interactions are Mage and

B2. Mage [18] is a Jupyter extension which adds API to
support graphical interfaces that interact with the notebook
state directly. Mage instruments string templates and pat-
terns to synthesize code from interactions and then inserts
the code back into the cell. When the cell is re-executed the
generated code has to be mapped back to the interaction,
which can be affected by the users changing the generated
code. B2 [29] is a Jupyter extension which adds an inter-
active dashboard to the side of the notebook and “reifies”
the interactions as data-queries in the code cell. The data-
queries act as a shared-abstraction between the code and
the interactive visualizations. Unlike Mage which provides
an API and can be extended to any graphical interface,
B2 focuses on interactive visualizations it generates in the
dashboard area.

Despite the shared vision, Persist approaches the problem
of bridging between code and interactions in a different
manner. Persist uses interaction provenance as a bridge
between code and the output. Having a rich abstraction
like interaction provenance allows Persist to handle in-
teractions beyond selections and create Python variables
directly. Similar to Mage, Persist can be extended by
interface developers. Further, Persist uses the captured in-
teraction provenance to enable persistence of interactions.
Persist directly saves the interaction provenance in code
cell metadata. It can then load and replay the interaction
provenance automatically when the cell is re-executed. A
provenance visualization shown directly in the cell out-
put enable seamless transitions between different states of
analysis. Persist does not rely on code generation to track
the interactions, preventing the cell input area from being
cluttered with generated code snippets. The interaction
provenance is part of the cell and not just the input code,
allowing analysts to update input dataframes or visualiza-
tions without losing the interaction history.

4

Persist PREPRINT

(a) Persist Toolbar

(b) Persist Table

(c)Dataframe Manager (d) Provenance History

(e) Column Operations (f) Editable Cell

Figure 3: The Persist Table is an interactive, Persist-enabled data table that can be used for manipulating data frames.
(a) Shows the Persist toolbar that is also injected into Vega-Altair charts. (b) Shows the paginated table. Analysts can
interact with the headers (e), rows, or individual cells (f). (c) The Dataframe Manager serves as the interface between
the dataframes created and maintained by Persist and subsequent code. (d) The Provenance History view enables
browsing the history, branching, annotating states, creating dataframes for specific states, etc. A summary view (not
shown) gives a textual description of the active operations.

4 Persist Principles

Persist can be used with any supported interactive output
in Jupyter with minimal changes to code, and to leverage
existing libraries. It does so by wrapping interactive com-
ponents in a layer that (a) tracks interaction provenance,
(b) makes data operations available through a GUI, and (c)
applies these operations to the data structures, as shown in
Figure 1c.

Injecting Operations Persist both listens to native oper-
ations of a component, such as selection, and also injects
operations into the component, as illustrated in Figure 1d,
where a toolbar was added to the native Vega-Altair chart.
Persist can also listen to keyboard events or direct manipu-
lation events if they are supported by the component.

Tracking Provenance. Persist captures the interaction
events from the interactive component it observes and trans-
lates the events into meaningful operations that Persist can
track and operate on where necessary. It also injects a
provenance visualization widget into the notebook, as illus-
trated in Figure 1e and shown in Figure 2. The provenance
graph documents all the steps taken and can be used to
navigate back in history and even to create branches.

Transforming Data. Based on the provenance informa-
tion, Persist applies the operations to a dataframe in se-
quence, as illustrated in Figure 1f. Different operations
map to different dataset manipulations. For example, se-
lections create a new Boolean column indicating whether
an item is selected; other operations might change values,
delete rows, re-order columns, etc.

Persist maintains one dynamic dataframe that represents
the active state of the user interface. That means that this
dataframe is updated every time a new operation is added,
but also if the history is used to navigate to a previous state
or a different branch. This dataframe can then be used
in subsequent code cells, as shown in Figure 1g, with the
changes being illustrated in Figure 1h.

Persist also enables users to explicitly create a static
dataframe for every provenance state. In this way, one
interactive component could be used, to e.g., create two
separate dataframes with different subsets of rows which
both can then be used in the notebook.

Updating Interactive Components Operations also
change how data is best displayed in the interactive com-
ponents, illustrated by the arrow connecting Figure 1f to
the scatterplots. For example, a Vega-Altair chart should
update after a filter was applied, or after a category was
assigned. We distinguish between two scenarios: (1) The
change is to the data, but no additional “channel” has to
be encoded. In this case, we can just use the exact same
chart specification and re-render with the new data. Ex-
ample operations that fall into this category are filters. (2)
The change in the data has created an additional “channel”
that should be encoded. For example, when a category is
applied, that category could be shown as a color. Or when
a data point is labelled, that label should be displayed in
the chart. We do this by updating the Vega-Altair chart
specification to encode the category column to the color
channel. In case of labelling operations, we encode the
added label as tool-tips on the data points.

Re-Execution. When a Persist-enabled cell is re-
executed or the notebook is rerun, Persist reapplies the
interactions from the beginning to restore the interactive

5

Persist PREPRINT

analysis done by the analyst. Therefore Persist fills the
temporal gap by making the interactions persistent as well
as supporting revisiting previous interactions.

The interaction provenance saved by Persist is output
and data agnostic. Every entry in the provenance can be
thought of as a line of Python code. If the Persist-enabled
cell is re-run with updated data, or even changes to the
visualization code, Persist will still attempt to apply the
interactions to the new output and dataframe. In this man-
ner, analysts can, for example, update their styling or even
change their visual encoding choices while retaining their
interactive workflow.

However, there are scenarios where the operations may not
be compatible with the changed data or changed visualiza-
tion. If either of them are incompatible, Persist will raise
an error similar to Python. If, e.g., if an interaction deletes
the column that the updated Vega-Altair chart uses, the
chart breaks and may be unusable. However the analyst
can use the interaction history to go to the point just be-
fore the column is used and branch off into a new analysis
session.

5 Persist Design

The previous section described the principles behind Per-
sist. Here we describe our concrete instantiation of these
ideas in the Persist prototypes, including a description of
the supported operations, the interactive components we
provide, and the UI choices we made.

To demonstrate the flexibility of the Persist library, we
implement two different visualization options: (1) an inter-
face to arbitrary Vega-Altair charts and (2) an interactive
table that can be used to view and manipulate dataframes
directly.

As part of the Vega-Altair integration, we inject the Persist
toolbar, shown in Figure 3a. Selection is natively sup-
ported by Vega-Altair charts. The toolbar adds options to
rename columns, remove columns, label items, filter items,
and categorize items. It also provides an interface to gen-
eral Persist operations, such as undo/redo (traversing the
provenance graph), resetting all operations, and deleting
all dynamic datasets.

The Persist Table, shown in Figure 3 uses the same tool-
bar and hence supports all the same operations as Vega-
Altair charts. The table, however, also enables operations
through direct manipulation, by either interacting with the
column headers (Figure 3e) or even with individual cells
(Figure 3f). These actions include sorting items, renaming
columns, editing values, and reordering columns. Addi-
tional operations, such as find and replace, would be easily
implementable in the future.

Persist also adds a dataframe manager at the bottom of all
Persist-enabled views (Figure 3c). Here, analysts can view
existing dataframes (including the dynamic dataframe dis-
cussed before) and create and name new dataframes based

on the current state of the visualization. The manager also
provides buttons to copy the dataframe name and inject a
new code cell that prints the dataframe into the notebook.
Based on this interface, analysts can easily transition be-
tween Persist enabled visualizations and python code to
use the created dataframes.

All Persist enabled components are also accompanied with
a provenance visualization, rendered as a tree (Figure 3d).
Any interaction, in the toolbar or the visualization, creates
a new node in the graph. Analysts may revisit any captured
step in the graph, updating the visualization. Any exist-
ing dataframes associated with the current step are visible,
and their name can be copied or inserted into a new cell.
Analysts can bookmark steps they deem important, or add
annotations. Additionally, a separate tab displays a sum-
mary of interactions leading to the current state, instead of
the entire provenance graph, if desired.

6 Implementation

Persist is a JupyterLab extension designed to work with
JupyterLab 4 and Jupyter Notebook 7 interfaces. Persist
uses the Notebook API to access the cell metadata for per-
sistence. Other notebook frontends like VS Code Jupyter
and Google Colab do not support the Notebook front end
API directly. Persist uses the Trrack [6] provenance track-
ing library which we developed previously. Persist is avail-
able on Python Package Index (PyPi) and can be installed
with pip install persist_ext.

The Persist extension package contains two modules: The
first is the JupyterLab Code Cell extension which aug-
ments the CodeCell API with Persist specific features like
managers for provenance and generated datasets. The cell
extension is developed with TypeScript and React. The
second module is PersistOutput widget developed using
anywidget [21] which is an abstraction over the popular
JupyterWidgets [15]. The PersistOutput widget contains
the core Persist module and the interfaces for Vega-Altair
charts and the custom data table UI. The widget backend is
developed in Python and the front end is developed using
TypeScript, React and Mantine React Table.

While Persist attempts to support Vega-Altair charts with
minimal overhead, certain Vega-Altair defaults cannot be
meaningfully supported. To make the chart compatible
with Persist, analyst should follow a few guidelines de-
scribed in the documentation.

7 Evaluation

We evaluate Persist by comparing it with traditional
Pandas-based data analysis in Jupyter in an empirical, lab-
based study. Our goal was to find out if using Persist
extension made the data analysis faster, more accurate
and reproducible, and to collect preferences and opinions
from participants with experience in data analysis. Our
hypothesis were:

6

Persist PREPRINT

REMOVE COLUMNS RENAME COLUMNS CHANGE DATA TYPE

ADD CATEGORICAL COLUMNFILTER DATA

PARTICIPANTS MADE THE FOLLOWING CHANGES TO A DATASET

CONDITIONS

2 DATASETS

ACTIVE TRAINING

1 2 3 4 5

FULL FACTORIAL DESIGN

?

THE ORDER OF CONDITIONS WAS RANDOMLY
ASSIGNED.

MOTIVATION

2a

TASKS AND CONDITIONS

PERSIST EXTENSIONPANDAS CODING

I

TASKS

DATASETS

ARE DATA ANALYSTS MORE ACCURATE AND/OR FASTER
IN THEIR ANALYSIS WITH PERSIST?

DO DATA ANALYSTS FIND THE PERSIST WORKFLOW
HELPFUL?

THE QUESTIONS ARE...

I WISH I COULD
REMOVE THE
OUTLIERS

OR

VIDEO GAMES AVALANCHES

STUDY DESIGNIII
WE RECRUITED ELEVEN PARTICIPANTS FOR THE STUDY. PARTICIPANTS ALL HAD PRIOR EXPERIENCE
WITH PYTHON AND PANDAS.

STUDY SEQUENCE

2 CONDITIONS
FOR EACH CONDITION, DATASETS WERE
RANDOMLY ASSIGNED. PARTICIPANTS
NEVER SAW THE SAME DATASET TWICE

TAKE NASA-TLX SURVEY

ANALYSIS & RESULTSIV

RESULTS

3

ARE DATA ANALYSTS MORE ACCURATE AND/OR
FASTER IN THEIR ANALYSIS WITH PERSIST?

DO DATA ANALYSTS FIND THE PERSIST WORKFLOW
HELPFUL?

SUBJECTIVE PERFORMANCE TIME

STUDY METRICS

SEE FIG. 6

SEE FIG. 5

SEE FIG. 8

NAME JOB

STEVE

42

24

32

ANN

JILL

ENGINEER

TEACHER

PLUMBER

AGE NAME PROFESSION

STEVE

42

24

32

ANN

JILL

ENGINEER

BIG

SMALL

TEACHER

PLUMBER

AGE

“32”

“42”

“24”

AGEAGE

EDIT VALUES

NAME JOB

STEVE

42

24

32

ANN

JILL

ENGINEER

PLUMBER

NAME JOB

STEVE

42

24

32

ANN

JILL

ENGINEER

PRINCIPAL

PLUMBER

AGEAGE

ERROR REPRODUCIBILITY

PRE STUDY SURVEY

EXPERIENCE IN PYTHON?
1

42

24

32

42

24

32

AGEAGE

PANDAS TASKS2

2 1

PERSIST TASKS

?

POST STUDY SURVEY

4

INTERVIEW

5

1

2b

WOULD YOU USE PERSIST?

TIME

Tasks done with Persist were ~3
times faster than the equiva-
lent task in pandas.

We observed less mistakes or
skipped tasks with Persist

On a scale of 1 (not helpful) to 5 (very helpful), par-
ticipants labeled 76 of 77 tasks as a 4 or a 5

“so much easier than manually coding.”
 - M4
“easier as compared to the code and every-
thing was visible […] and it didn’t take much
time.”
 - M2
“Changing the category type, or adding new
categories or removing anomalies from data,
they were very much easier in [Persist] than
coding.”
 - M7
“The thing I really liked about is version control,
which shows the history of all operations […]
and also saves the changes […] into a data
frame.” - M14

Mistakes/partial answers/skipped tasks

?

SUBJECTIVE PERFORMANCE

DETERMINE ORDER

II

ANALYZING UTAH AVALANCHE DATA

CHAT GPT PANDAS DOCS

IMPORT PANDAS AS PD

TASK 1: COLUMN NAMES AND DATATYPES

DF = PD.READ_CSV(…)

DF_TASK_1 = DF.DROP(…)2

IMPORT PANDAS AS PD

DF = PD.READ_CSV(…)

IMPORT PANDAS AS PD
DF = PD.READ_CSV(…)

DF = DF[
 DF[‘X’] < 5 & DF[‘Y’] < 5
]

DF = DF.RENAME(
 COLUMNS={’JOB’: ‘PROFESSION’}
)

2
DF = DF.DROP(”AGE”)

DF.LOC[1, ‘JOB’] = ‘PRINCIPAL’

IMPORT PERSIST_EXT AS PR

DF = PD.READ_CSV(…)
IMPORT PANDAS AS PD

PR.PLOT.SCATTERPLOT(...)

SELECT 2 VALUES

REMOVE 2 VALUES

SELECT 2 VALUES

IMPORT PERSIST_EXT AS PR

DF = PD.READ_CSV(…)
IMPORT PANDAS AS PD

PR.PLOT.SCATTERPLOT(...)

SELECT 2 VALUES

REMOVE 2 VALUES

SELECT 2 VALUES

ANALYZING VIDEO GAMES DATA

1 2 3 4 5
EXPERIENCE IN PANDAS?

1 2 3 4 5
HELPFUL FOR FILTERS?

1 2 3 4 5
HELPFUL FOR SORTING?

ERROR

QUOTES

PERSIST

PANDAS

2

11

1

66

10
00

1 2 3 4 5

Figure 4: Illustration of study tasks and conditions, design, analysis and results.

• H1-Speed: That participants would perform the
tasks faster in the Persist condition.

• H2-Correctness: Most participants will be able
to complete most tasks, but Persist would result
in fewer incorrect solutions.

• H3-Completeness: That using Persist would re-
sult in fewer skipped tasks.

• H4-Reproducibility: That using Persist would
result in more reproducible notebooks.

• H5-Workload: That participants have lower sub-
jective workload using Persist.

• H6-Helpfulness: That participants find Persist
helpful.

An overview of the study tasks, design, analysis and results
is given in Figure 4. We recruited 11 participants who have
experience in data analysis using Jupyter notebooks and
Pandas (4 identified as women, 7 as men). We recruited

from our local student pool; our participants included un-
dergraduate students (2) and graduate students (4 PhD and
5 Masters). The self-reported experience on a 5-point Lik-
ert scale for Python was 3.6 (σ = 1.12), for Pandas was 3
(σ = 1.26), and for data wrangling was 3.18 (σ = 0.87).
Seven participants had experience using data analysis in
research or an industry setting. The study was deemed
exempt from full review by the University of Utah IRB
(IRB 00167331).

7.1 Procedure

The study employed a within-subject design using
two datasets: records about avalanches from the Utah
Avalanche Center [4] and Video Games sales data from the
Corgis Dataset Project [16].

The tasks involved data cleaning and data manipulation,
such as (1a) removing columns not required for analysis,
(1b) fixing column names to remove stray characters, (1c)
changing the data type of a column, (2a) removing outlier

7

Persist PREPRINT

records, (2b) removing records within a range, (3a) deriv-
ing a categorical column based on a numerical column, and
a final task (3b) where participants looked at a plot with
the new derived column to answer a question. Participants
were given a prepared Jupyter notebook for each condition
that contained instructions about each task and included
boilerplate code, such as imports and data loading. Also,
all visualization code (for both conditions) was given, so
that participants only had to execute data manipulation
steps. See the supplemental material for the notebooks
used.

Each participant completed these tasks under both the Per-
sist and traditional Pandas conditions. Tasks were matched
between the datasets but varied slightly to fit each dataset.
The order and dataset assignment was randomized using a
Latin square to counterbalance any effects of datasets and
order of conditions.

The study began with an introduction that included disclo-
sures that the screens and room audio were recorded and
their notebook would be analyzed, after which we obtained
consent. This was followed by a survey where participants
reported their experiences with Python, Pandas, and data
wrangling. Following this, participants performed the main
data analysis tasks under each condition. For the Persist
condition, the participants were first given a 15-minute
tutorial about Persist followed by a hands-on session in the
tutorial notebook. For the Pandas condition, participants
were permitted to use any resource to find help, includ-
ing using their own laptops to use search engines, consult
documentation, or employ LLMs like ChatGPT for help.
Participants could skip any task if they felt they could
not proceed; if a participant skipped, the experimenter
loaded a prepared dataset so that they could proceed with
subsequent tasks. After each condition, the participants
complete the NASA TLX [12] questionnaire to assess their
subjective workload. Upon completing the tasks, partici-
pants filled out a post-study survey and completed a semi-
structured debrief interview to discuss their experiences
with Persist. A session lasted approximately 1 hour and
45 minutes. Participants were compensated with a $30 gift
card.

7.1.1 Measures

We measured time to completion for each task (using post-
hoc video analysis), task correctness (correct, partially
correct, skipped, wrong), reproducibility of the notebooks
by attempting to re-execute them after the session, and
subjective performance (using NASA TLX [12]). We also
record preferences and feedback in a survey and a semi-
structured interview.

7.1.2 Pilots, Analysis, and Experiment Planning

We conducted four pilots to evaluate tasks, different condi-
tions and datasets, experimental setup, and our procedure.
Due to the limitations of null hypothesis significance test-
ing, we base our analysis on best practices for fair statis-

tical communication in HCI [7] by reporting confidence
intervals and effect sizes. We compute 95% confidence
intervals and effect sizes using Cohen’s d to indicate a stan-
dardized difference between two means. For the time val-
ues, we also supplement our analysis by including p-values
from Wilcoxon signed-rank tests (given the non-normal
distributions of our data and the within-subjects design).
We use a Bonferroni-corrected significance threshold of
p = 0.0071. We do not compute statistical tests for cor-
rectness, as we expected most participants to be able to
complete all tasks given the well-defined tasks based on
common data manipulation patterns, our participant inclu-
sion criteria (experience in data wrangling), and the ability
of participants to use arbitrary reference materials. We also
do not perform statistical tests on our perceived workload
measures and other survey responses due to the complex-
ity of analyzing subjective scores and our relatively low
number of participants.

7.2 Quantitative Results

Each participant attempted 14 tasks in this study, equally
distributed between two conditions. Task 3b, which in-
volved interpretation from a pre-generated plot, was iden-
tical between the two conditions, so we expected results
to be consistent between conditions and exclude it from
condition-specific discussions below.

Figure 5a shows the time participants require for the tasks,
means, 95% confidence intervals, and statistical informa-
tion. Participants completed all tasks more quickly using
Persist; with means being about 3x lower in the Persist con-
dition, confirming H1-Speed. For all tasks that were differ-
ent in the conditions, we observe a significant relationship,
with a very large to huge effect size [24]. Moreover, the
data shown in Figure 5b indicate that the Persist condi-
tion resulted in fewer errors (albeit overall correctness was
high). Of the 77 tasks undertaken with Persist, only one
was partially wrong (e.g., when instructions asked to filter
items large than some value but smaller than another, and
participants only filtered based on one condition), and an-
other was incorrect. No tasks were skipped. Conversely,
in the Pandas condition, two were incorrect and one was
partially correct, while eight tasks were skipped, lending
some support to H2–H3.

Upon revisiting the notebooks after the study for re-
execution, we found four from the Pandas condition that
could not be entirely executed due to errors: manually
bypassing some cells was necessary to complete the run.
However, most of these cases also coincided with skipped
tasks. Additionally, re-executing one notebook revealed
an incorrect dataset state, despite the answer being correct
during the study. In this case, it was necessary to execute
a specific cell twice to get the correct results. In contrast,
all 11 notebooks associated with tasks conducted using
the Persist extension demonstrated seamless functionality,
exhibiting no errors upon re-execution, making the par-
ticipant sessions more consistently reproducible, lending
support to H4-Reproducibility.

8

Persist PREPRINT

Figure 5: Time and Correctness Results (a) Overview of task completion times for both conditions in seconds. Raw
values are shown in jittered dot plots; the solid dot and lines show the mean and the 95% confidence intervals. The
colored numbers show the lower and upper bound of the confidence interval and the mean respectively. The plot
is clamped at 20 minutes (1200 seconds); data points exceeding 1200 seconds are shown as triangles. Statistical
information is provided above the plots in gray. Persist was at least three times faster in all tasks where it was used
(note that Task 3b Analysis was a visual analysis task identical in both conditions). All the differences are statistically
significant with “very large” to “huge” effect sizes [24]. (b) Overview of task correctness across conditions. In the
Persist condition, 75 of 77 tasks were completed correctly, 1 was partially correct, and 1 was wrong. In the Pandas
condition, 66 of 77 tasks were completed correctly, 1 was partially correct, 2 were wrong. In 8 cases, participants could
not come up with a solution and skipped the task.

0

2

4

6

8

10

Effort Frustration Mental Demand Performance Temporal Demand

0 20 40 60 80 100
Score

0 20 40 60 80 100
Score

0 20 40 60 80 100
Score

0 20 40 60 80 100
Score

0 20 40 60 80 100
Score

12.27 61.82 13.64 58.18 14.55 66.82 7.27 37.73 15.91 72.27

Persist
Pandas

Condition

Figure 6: Subjective workload as measured by the NASA TLX shown as an empirical cumulative distribution function
(eCDF), where the index of participants is on the y-axis, and the score is on the x axis. Low values are “good” in all cases
(low effort, low frustration, etc.). For performance, a low value is on the scale “Good (0)” to “Poor (100)”. Averages for
the both conditions are given in a lighter line. The Persist condition was rated “better” across all dimensions, mostly
with margins of about 50 points on average. The exception is performance, where participants rated their performance
with Persist by about 30 points better than with Pandas.Score Type

0

5

10

C
ou

nt
 o

f R
ec

or
ds

Rename Columns Delete Columns Change Column Data Type Interactive Selections Filter Selections Assign Categories History

1 2 3 4 5

Score

1 2 3 4 5

Score

1 2 3 4 5

Score

1 2 3 4 5

Score

1 2 3 4 5

Score

1 2 3 4 5

Score

1 2 3 4 5

Score
Figure 7: Histograms of ratings for helpfulness of Persist for tasks on a 5-point likert scale, where 1 corresponds to “not
helpful”, and 5 corresponds to “very helpful”. Participants find Persist helpful or very helpful across tasks. For filters
one user expressed a preference for entering precise queries and rated Persist lower.

9

Persist PREPRINT

The results of the subjective workload assessment are
shown in Figure 6. We omitted the physical demand met-
ric from these results as it was not relevant to our study
context. Figure 6 presents the empirical CDF plot for both
conditions, revealing consistently higher levels of effort,
mental demand, temporal demand, frustration, and lower
performance associated with the Pandas condition. These
findings suggest that participants felt more efficient and
less burdened while performing tasks with Persist, confirm-
ing H5-Workload. In the post-study survey, participants
assessed the helpfulness of Persist in completing various
tasks such as renaming columns, deleting columns, chang-
ing column data types, interactive selections and filtering,
categorizing, and navigating to prior states in the interac-
tion provenance (history). On a 5-point Likert scale, where
five denotes ‘very helpful’ and one signifies ‘not helpful,’
all participants consistently rated the helpfulness of Persist
as either 4 or 5 for every task, with a single exception, as
shown in Figure 7, lending support to H6-Helpfulness.

7.3 Qualitative Results

Here we report on the follow-up interviews, summarizing
and providing quotes for context. Quotes are edited for
grammar; for full transcripts refer to the supplemental
material. During the debrief interview, participants were
asked about the learning curve of the extension given the
short time they had to familiarize themselves with Persist
. Participants expressed that Persist was easy to learn
and the appropriate icons and tooltips help them discover
the feature required for a particular task. P4 recalled, “I
couldn’t remember what button it was, but it only took me
one second to find it”.

Participants were asked about their preference between
Persist and Pandas. They expressed that they preferred
using Persist for most tasks because of the ease of using
interactions. P8 described their experience with Persist
as, “what you think you can just do it right away”. P1
skipped Task 3a in the Pandas notebook but completed
it successfully with Persist. They said, “that was kind
of hard for me to write in code. By using the interac-
tive tool, it was super easy.” P6 was one of the most
experienced participants who also performed the Pandas
tasks the fastest compared to other participants. When
discussing the preference between Persist and Pandas they
said, “[with Pandas] I know what I want to do, but I still
get stuck, because of the [...] syntax. But with Persist,
I don’t have to write anything.” While all participants
preferred Persist for most of the tasks, some participants
had concerns with interactive selections. These concerns
stem from the task instructions giving precise numbers,
and hence participants were required to accurately select
something with a mouse; whereas in code they could put
in exact values. P6 said, “...I’m just just not comfortable
with visual selections. Because, as you know, there are
edge cases with human errors.” P11 had worked as data
scientist in industry. They commented, “the selections
part—I felt it’s rough around the edges. [...] if there are

many cluttered points [...], I can’t nail the selection exactly.”
However they later added, “apart from that point, if there
are anomalies or outliers, it’s extremely helpful.”

Our goal with Persist is to enable seamless switching be-
tween code and interactions, allowing the analyst to use
the best tool for the job. Therefore we asked participants
about their thoughts on switching between Persist and Pan-
das. P2 responded, “maybe there are some features which
are not present in this and we might want to use the code.
So it is helpful to have both the things”. We also asked
participants if they would like to use Persist in their own
data analysis. All participants showed interest in adopting
Persist. P6 said, “ I actually really find it helpful and I’m
planning to use it on my own research.” P3 responded “I
would definitely use it, because I felt it’s really intuitive”

Participants also brought up the interaction provenance and
ability to traverse between the states . P11 said, “the thing
I really liked about is version control, which shows the
history of all operations [. . .] and also saves the changes
[. . .] into a data frame.” P8 described in detail their strug-
gle with creating multiple temporary variables, copies of
notebooks and out of order cells that happen as part of
exploratory analysis, “I do want to say that when you are
working on a larger project, you tend to create so many
variables [...]. So instead of that, I would definitely want
to highlight how you don’t have to [create new named vari-
ables] for every small change that you make [in Persist],
you just have to [create a name] for the one that you wish
to retain.”

7.4 Study Discussion

Our results unambiguously demonstrate that participants
were, on average, significantly faster using Persist than
using standard data frame operations, validating H1-Speed.
We also have some evidence to support H2-Correctness,
H3-Completeness, and H4-Reproducibility, although the
overall low number of errors, skipped tasks, and not-
reproducible notebooks indicate that a more powerful study
is necessary to make definite statements on these hypothe-
sis. While we haven’t conducted statistical tests to evalu-
ate H5-Workload, we think the evidence from the NASA-
TLX survey and the interviews unambiguously supports
that participants do have lower subjective workload us-
ing Persist than using data frame operations. Similarly,
our survey data and the qualitative interviews validate H6-
Helpfulness.

Looking closer at the data for completion times, it is no-
ticeable that the Pandas condition has a higher variance
in completion times, while the Persist condition has min-
imal variation. This could hint at the fact that Persist is
easy to learn and can be consistently applied, while the
ease of using Pandas operations depends on the analysts’
experience. Almost all participants had to look up syntax
for most pandas operations. It is notable though, that even
the more proficient participants in our study expressed that
they found Persist helpful. We conclude that a tool like

10

Persist PREPRINT

SPECIFICITY GENERALITY

USABILITY

COMPLEXITY

PROGRAMMING

SIMPLE CHARTING

NOT DESIRABLE

IMPOSSIBLE

GENERAL PURPOSE
VISUALIZATION SYSTEMS

PERSIST INTERACTIONS

PERSIST
 OPERATIONS

Figure 8: Conceptual trade-offs of data analysis systems.

Persist can significantly speed up the workflow of most
somewhat proficient data scientists, while still being an ap-
preciated tool for experts, thereby contributing to making
computational data analysis accessible to a wider audience.

Another interesting observation is comparing the comple-
tion times of the two filter tasks (2a and 2b). While the
difference in the Persist condition is negligible, the differ-
ence in the Pandas condition is large: cutting the average
from 520 seconds to 224 seconds. We observed that this
speed-up is because participants copied the code they had
written for task 2a when completing 2b. This observation
makes us consider whether we can also in the future copy
workflows created with Persist [10].

One critique of our study design could be that we tested
tasks and operations that we expected would perform well
with Persist, but didn’t test tasks that possibly can’t be
completed with Persist alone, and that hence, the bene-
fits of Persist shown in the study are not surprising. We
did test a representative set of operations supported by
Persist. We also acknowledge that there are operations
that are just easier to execute in code, such as when using
regular expressions, or when applying complicated con-
ditional data transformations. Yet the point of Persist is
that it allows a seamless transition between interactivity
and code, allowing analysts to use the right tool for the job
without incurring the costs usually associated with switch-
ing between analysis modalities. Hence, we believe that
our study demonstrates that Persists is an overall valuable
addition to the data science tool-kit.

8 Discussion & Limitations

Most data analysis systems are either useful in a narrow
context (specific) and easy to use (such as simple interac-
tive charts, or systems designed for a specific workflow),
or general and complex (such as programming languages).
This relationship is illustrated in Figure 8. Most visu-
alization systems fall somewhere in the middle between
these tools: it takes effort to learn to use a general pur-
pose visualization tool, yet it can be used for many things.
The complex–specific quadrant is undesirable, while the

easy-to-use–general quadrant is likely impossible to popu-
late. We believe that Persist fills a unique niche by seam-
lessly bridging between the usability–specificity and the
complexity–generality quadrants, thereby allowing some
operations that would usually be in the domain of program-
ming languages to be executed with easy-to-use interactive
systems, while not reducing the overall generality of the
data analysis approach.

However, we recognize that Persist has limitations. First,
while data operations on pandas and similar tools are scal-
able to large datasets with millions of rows, Persist is lim-
ited w.r.t. scalability by what can be plotted in a reasonable
way. While scalable visualization solutions, such as sam-
pling, binning, or indexing exist, they are not implemented
in our prototype.

Second, Persist is currently limited to our custom table
and Vega-Altair charts. However, since the ecosystem for
interactive visualizations in Python is small, we expect it
to be feasible to extend our approach to libraries such as
Bokeh and Plot.ly.

Similarly, Persist is currently limited to pandas dataframes,
and doesn’t yet implement all reasonable operation for
dataframes. We believe that an abstraction to SQL would
open up compatibility with other data structures such as
DuckDB and other databases.

9 Conclusion and Future Work

We have introduced Persist, an approach for bringing data
operations to interactive visualizations in notebooks and
seamlessly bridging the gap between interactive visualiza-
tions and code.

While we believe that Persist is useful right now in day-to-
day data analysis, there are several immediate extensions
we want to implement. Low hanging fruit would be to
include other operations, or to improve how persist views
are shown in “preview” mode, e.g., when a notebook is
rendered in static form on Github. Also, Persist is currently
limited to Jupyter, and cannot be used, for example, in
Visual Studio code. We expect that a Visual Studio code
extension would be easy to implement, yet that extending
it to Google Colab would be difficult due to the closed
source nature of the platform.

One aspect that Persist doesn’t simplify is chart creation.
It would be desirable to combine Persist with the chart cre-
ation technology shown by others [29, 9]. Also, the Persist
principles could be used for changing the visualizations,
e.g., by removing or changing titles, visual encodings, etc.
In that case, operations would have to be applied to the
input visualization instead of to the data frame.

Finally, while we have compared Persist to traditional anal-
ysis, it would also be interesting to compare it to alternative
code-generating approaches, such as B2, so that we can
develop a better understanding of the trade-offs of both
approaches.

11

Persist PREPRINT

References
[1] S. Alspaugh, N. Zokaei, A. Liu, C. Jin, and M. A.

Hearst. Futzing and Moseying: Interviews with Pro-
fessional Data Analysts on Exploration Practices.
IEEE Transactions on Visualization and Computer
Graphics, 25(1):22–31, 2019.

[2] A. Batch and N. Elmqvist. The Interactive Visu-
alization Gap in Initial Exploratory Data Analysis.
IEEE Transactions on Visualization and Computer
Graphics, 24:278–287, 2018.

[3] Bokeh Development Team. Bokeh:
Python library for interactive visualization.
https://docs.bokeh.org/en/1.0.1/docs/citation.html,
2018.

[4] U. A. Center. Utah Avalanche Center.
https://utahavalanchecenter.org/observations,
2023.

[5] S. Chattopadhyay, I. Prasad, A. Z. Henley, A. Sarma,
and T. Barik. What’s Wrong with Computational
Notebooks? Pain Points, Needs, and Design Oppor-
tunities. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems, CHI ’20,
pages 1–12, New York, NY, USA, Apr. 2020. Associ-
ation for Computing Machinery.

[6] Z. T. Cutler, K. Gadhave, and A. Lex. Trrack: A
Library for Provenance Tracking in Web-Based Visu-
alizations. In IEEE Visualization Conference (VIS),
pages 116–120. IEEE, 2020.

[7] P. Dragicevic. Fair Statistical Communication in
HCI. In J. Robertson and M. Kaptein, editors,
Modern Statistical Methods for HCI, pages 291–330.
Springer International Publishing, Cham, 2016.

[8] I. Drosos, T. Barik, P. J. Guo, R. DeLine, and
S. Gulwani. Wrex: A Unified Programming-
by-Example Interaction for Synthesizing Read-
able Code for Data Scientists. In Proceedings
of the 2020 CHI Conference on Human Factors in
Computing Systems, CHI ’20, pages 1–12, New
York, NY, USA, Apr. 2020. Association for Com-
puting Machinery.

[9] W. Epperson, V. Gorantla, D. Moritz, and A. Perer.
Dead or Alive: Continuous Data Profiling for Interac-
tive Data Science. arXiv preprint arXiv:2308.03964,
2023.

[10] K. Gadhave, Z. Cutler, and A. Lex. Reusing Interac-
tive Analysis Workflows. Computer Graphics Forum,
41(3):133–144, 2022.

[11] P. J. Guo, S. Kandel, J. M. Hellerstein, and
J. Heer. Proactive wrangling: Mixed-initiative end-
user programming of data transformation scripts. In
Proceedings of the 24th Annual ACM Symposium
on User Interface Software and Technology, UIST
’11, pages 65–74, New York, NY, USA, Oct. 2011.
Association for Computing Machinery.

[12] S. G. Hart and L. E. Staveland. Development of
NASA-TLX (Task Load Index): Results of Empiri-
cal and Theoretical Research. In P. A. Hancock and
N. Meshkati, editors, Advances in Psychology, vol-
ume 52 of Human Mental Workload, pages 139–183.
North-Holland, Jan. 1988.

[13] J. D. Hunter. Matplotlib: A 2D Graphics Environ-
ment. Computing in Science Engineering, 9(3):90–
95, May 2007.

[14] M. Inc. Microsoft Power BI.
https://powerbi.microsoft.com/de-de/, 2019.

[15] IPython Widget Team. Jupyter Widgets
— Jupyter Widgets 8.1.1 documentation.
https://ipywidgets.readthedocs.io/en/stable/, 2015.

[16] A. C. B. Kafura, R. Whitcomb, J. Riddle, O. Saleem,
D. E. Tilevich, Dr. Clifford, A. Shaffer, and Dr.
Dennis. CORGIS Datasets Project. https://corgis-
edu.github.io/corgis/, 2023.

[17] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer.
Wrangler: Interactive Visual Specification of
Data Transformation Scripts. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’11, pages 3363–3372,
New York, NY, USA, 2011. ACM.

[18] M. B. Kery, D. Ren, F. Hohman, D. Moritz, K. Wong-
suphasawat, and K. Patel. Mage: Fluid Moves
Between Code and Graphical Work in Computa-
tional Notebooks. Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and
Technology, pages 140–151, Oct. 2020.

[19] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger,
M. Bussonnier, J. Frederic, K. Kelley, J. Hamrick,
J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Ab-
dalla, C. Willing, and Jupyter development team.
Jupyter Notebooks – a publishing format for repro-
ducible computational workflows. In F. Loizides and
B. Scmidt, editors, 20th International Conference on
Electronic Publishing (01/01/16), pages 87–90. IOS
Press, 2016.

[20] D. E. Knuth. Literate Programming. The Computer
Journal, 27(2):97–111, Jan. 1984.

[21] Manz, T. Anywidget. 2023.

[22] microsoft. Data Wrangler Extension for Visual Stu-
dio Code. Microsoft, Nov. 2023.

[23] A. Rule, A. Tabard, and J. D. Hollan. Explo-
ration and Explanation in Computational Notebooks.
In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, pages 1–12,
Montreal QC Canada, Apr. 2018. ACM.

[24] S. Sawilowsky. New Effect Size Rules of Thumb.
Journal of Modern Applied Statistical Methods, 8(2),
Nov. 2009.

[25] J. Schmidt and T. Ortner. Visualization in Notebook-
Style Interfaces. In Proceedings of the Workshop

12

Persist PREPRINT

on the Gap between Visualization Research and
Visualization Software (VisGap), May 2020.

[26] Tableau Software. Tableau Software.
http://www.tableau.com/, Dec. 2015.

[27] J. VanderPlas, B. E. Granger, J. Heer, D. Moritz,
K. Wongsuphasawat, A. Satyanarayan, E. Lees,
I. Timofeev, B. Welsh, and S. Sievert. Altair: Interac-
tive Statistical Visualizations for Python. Journal of
Open Source Software, 3(32):1057, Dec. 2018.

[28] K. Wongsuphasawat, Y. Liu, and J. Heer. Goals, Pro-
cess, and Challenges of Exploratory Data Analysis:
An Interview Study. ArXiv, 2019.

[29] Y. Wu, J. M. Hellerstein, and A. Satyanarayan.
B2: Bridging Code and Interactive Visualization
in Computational Notebooks. In Proceedings
of the 33rd Annual ACM Symposium on
User Interface Software and Technology, UIST
’20, pages 152–165, New York, NY, USA, Oct. 2020.
Association for Computing Machinery.

13

	Introduction
	Persist Walk-Through
	Related Work
	Computational Notebooks
	Interactive Data Analysis
	Interactive Analysis in Notebooks

	Persist Principles
	Persist Design
	Implementation
	Evaluation
	Procedure
	Measures
	Pilots, Analysis, and Experiment Planning

	Quantitative Results
	Qualitative Results
	Study Discussion

	Discussion & Limitations
	Conclusion and Future Work

