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ABSTRACT

With data growing in scale and complexity, interactive visualizations are increasingly

important in data analysis. However, interactive visual analysis lacks the reproducibility

and reusability of computational analysis using code or scripts. This dissertation aims to

improve the reproducibility and reusability of visual analysis, improving trust in the visual

analysis process and allowing the use of the analysis in a different context.

While computational analysis using languages like R or Python is inherently repro-

ducible and reusable, interactive visual analysis often remains ad hoc and difficult to

capture, reproduce, and reuse. Hybrid approaches, such as using multiple tools, have

compatibility issues and lack reproducibility within the interactive components. In com-

putational notebooks, code and interactive visualizations have two major gaps: results of

interactions cannot be used in code, and interactions with visualizations are lost upon cell

re-execution or notebook restarts, hindering the reproducibility and reusability of visual

analysis in notebooks.

The dissertation makes four contributions toward addressing the above issues: 1) a

software library to capture and replay the interaction provenance; 2) techniques to capture

the analyst’s pattern-based intent and annotations to make the interaction provenance

semantically meaningful; 3) techniques to reuse the semantically meaningful interaction

provenance on updated datasets and curate reusable workflows that can be reused on up-

dated datasets as well as different analysis environments; and 4) techniques to leverage the

interaction provenance to bridge the gaps between code and interaction in computational

notebooks. These techniques improve the reproducibility and reusability of visual analy-

sis, therefore improving trust, reducing the gaps between computational and interactive

analysis, and moving us closer to achieving a literate visual analysis framework.
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CHAPTER 1

INTRODUCTION

In this dissertation, we introduce techniques to enhance the reproducibility and reusabil-

ity of the visual analysis process. As we witness unprecedented growth in the scale and

complexity of data, the role of data visualization in understanding this information and

making it accessible has become increasingly pivotal. Interactive visualizations are in-

tuitive, leverage human perceptual capabilities, offer a dynamic means to explore data,

and are, therefore, integral to the data analysis. However, despite growing popularity,

interactive visual analysis often remains ad hoc and is challenging to reproduce or reuse.

1.1 Data Analysis Methodologies
Data analysis methodologies generally fall into two broad categories: 1) computational

analysis and 2) interactive visual analysis.

1.1.1 Computational Data Analysis

The computational analysis approach offers high flexibility and expressivity. Such anal-

ysis involves using code and scripts in programming languages such as Python and R.

These languages, coupled with specialized libraries and frameworks, offer a powerful

approach to data analysis. Code/script-based analysis is particularly suited for situations

where custom analysis workflows are needed or when dealing with large datasets that

require sophisticated statistical or machine learning techniques. However, despite the ex-

pressivity and flexibility of programming, it often presents a steep learning curve, posing

a barrier for those without a programming background. This complexity can make even

simple data analysis tasks time-consuming and outputs challenging to interpret. More-

over, maintaining a codebase requires good software development practices, adding to the

learning curve.



2

1.1.2 Interactive Visual Analysis

Interactive visual analysis is highly intuitive. Interactive visual analysis tools represent

the data visually and support interactions like selections, filters, and data transformation

operations for analysis, data wrangling, and processing tasks. Examples of visual analysis

tools include Tableau [4] and PowerBI [5]. Visual analysis tools are user-friendly and do not

require programming knowledge, making them accessible to novice users. Visual analysis

tools are valuable for exploratory data analysis to uncover patterns, relationships, and

insights. However, these tools also have their drawbacks. Many specialized tools are de-

signed with a specific end-user or task in mind, which can limit flexibility in visualizations

and interactions [6]. On the flip side, generic tools often introduce complexity. Interactive

tools also often struggle with large datasets and may not support custom analyses and

interactions not built into the tool.

Most important for this dissertation, though, is that the two methodologies have signif-

icant differences in the reproducibility and reusability of the analysis conducted between

them, which we will discuss next.

1.1.3 Reproducibility

A growing concern over reproducibility marks the current state of scientific research.

A 2016 Nature survey by Baker [7] found that 52% of scientists believe we are in the midst

of a “reproducibility crisis.” This concern is further supported by the fact that over 70%

of researchers could not reproduce the experiments of others, and more than half have

struggled to reproduce their experiments. A reproducible analysis should produce the

same results when repeated with the same data. To verify the reproducibility of an analysis,

analysts must share not only the results and the data but also the analysis process and

their rationale. Pratt points out reproducibility may not be a relevant or desirable goal for

all research methodologies, especially in qualitative research where transparency is more

valuable than replicable results [8]. Reproducibility is critical for establishing trust and

credibility when using quantitative methods and data analysis. Therefore, these statistics

call into question the reliability of scientific findings and highlight the need for more

reproducible methods. Multiple factors affect the reproducibility of an analysis session.

Selective reporting, publishing pressure, fraud, etc. rely on integrity of the analyst or stem
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from systemic issues. There are other factors for low reproduciblity which the analyst can

address like availability of analysis steps/data or lack of validation by the original analyst.

Developing methods for easily recording, replaying and sharing the analysis can address

some factors in reproducibility crisis.

Computational analysis is potentially reproducible. Such analysis uses code/scripts

that can be run deterministically to produce the same results for the same inputs. Prove-

nance of code development can be tracked using version control, and most computa-

tional programming environments support documentation of the analysis or code using

code comments or text representations. The literate programming approach proposed by

Knuth [9] exemplifies the extent to which documentation and code can be co-located,

greatly enhancing reproducibility. As much of the software does, computational analy-

sis faces challenges with long-term reproducibility. These challenges include changing

or discontinued dependencies, data unavailability, lack of documentation, or incompat-

ibility with the computing environment (such as the operating system). However, these

challenges can be addressed by employing practices and technologies like robust docu-

mentation processes, long-term backup of data, version control for managing code, and

containerization for archiving computing environments.

Visual analysis often falls short with respect to reproducibility. A core limitation of

most visual analysis tools is their lack of support for tracking the analysis process, making

it challenging to retrace the steps taken. The analysis process can be tracked by tracking

the underlying interactions. Such a sequence of interactions from an analysis is called an

interaction provenance. Some visualization tools offer basic provenance tracking capabili-

ties, often limited to supporting undo/redo functionality. When available, the provenance

is often a log of keyboard and mouse events that capture the what, but not the why, be-

hind the interactions. To understand the why, we need to know the analyst’s rationale for

an interaction, which can include patterns in the data or domain knowledge. Analysts

typically rely on manual notes or recordings to capture the analysis steps. Such manual

note-taking adds effort for the analyst and is challenging to do consistently. Further, the

lack of support for annotating the analysis steps means contextualizing their analysis

rationale is not straightforward.

The statistics and concerns about reproducibility in scientific research underscore a
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critical need for more robust methods. The challenge for interactive visual analysis lies

in capturing and sharing the analysis process and the rationale behind it. Considering this

challenge, we pose the following research question: Can we effectively capture the inter-

actions and the analyst’s rationale for the interactions to reproduce the visual analysis?

1.1.4 Reusability

Reusability is another area where computational and interactive visual analysis di-

verges. Reuse is applying the same analysis methods to different datasets or contexts. In an

ever-changing data landscape — such as a business updating sales figures, a public health

agency revising health reports, or a weather station collecting new meteorological data —

applying a consistent, reliable analysis process to new data are invaluable, saving time and

resources.

Computational analysis excels in reusability. Scripts and programs can be adapted and

re-run on new datasets with minimal modifications, making code-based analysis efficient

and conducive to standardizing workflows and collaboration. The emergence of open-

source communities, data analysis libraries [10], [11], and platforms [12], [13] has further

facilitated the sharing and reuse of code, improving collaboration.

However, interactive visual analysis often lacks such adaptability. Visual analysis has

challenges reproducing the analysis; therefore, reusing the interactions presents an even

more formidable challenge. Visual analysis is user-friendly for data exploration but fre-

quently falls short in its ability to export or translate interactive steps into a reusable

format. When the dataset updates, a particular data operation might need slight tweaking

to be reapplied to the new data. Low-level interaction provenance based on keyboard and

mouse events does not support such parameterization and reuse. Visual analysis is often

nonlinear and iterative; therefore, the interaction process can be extensive and include

multiple analysis paths, which might have alternate analysis approaches, dead-ends, or

paths created by correcting mistakes. We often want to reuse only repetitive parts of the

analysis (such as data cleaning steps) or parts that lead to valuable insights. Poor support

for capturing interaction provenance makes curating one or more useful parts difficult.

The constantly changing data landscape necessitates the need for reusable analyses

that can adapt to new data. Interactive visual analysis struggles with adaptability and
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capturing interaction provenance. In light of these struggles, we ask the following research

question: Can we meaningfully apply (parts of) the interaction provenance of a visual

analysis process to an updated dataset?

1.2 Hybrid Approaches to Data Analysis
We are unlikely to have data analysis solutions with both the simplicity of visual analy-

sis tools and the expressiveness of programming languages. A hybrid approach would al-

low data analysts to use simple and effective interactive approaches when appropriate and

fall back to expressive code-based operations for tasks that cannot be efficiently completed

with interactive tools. Such a hybrid approach can be achieved using multiple analysis

tools or a single well-integrated platform supporting visual and code-based analysis.

1.2.1 Multiple Tools: Picking the Best Tool for the Job

Complex data analysis pipelines often employ multiple tools for different analysis

tasks. Doing so offers a comprehensive approach to processing, understanding, and in-

terpreting complex data. This approach leverages the strength of various tools such as

SQL and databases for managing the data, statistical software like SAS and SPSS for sta-

tistical analysis, programming languages like Python and R for advanced data analysis

and machine learning, and visualization tools like Tableau and Power BI for interactive

dashboards and reporting. The primary advantage of this approach is versatility, allowing

the analysts to use the best tool for the job.

Apart from the steep learning curve associated with multiple tools, this approach offers

another major challenge — compatibility between tools. Different tools have varying levels

of support for capturing the analysis steps, with many tools having none. Application

programming interfaces (APIs) for software and interchange formats for data enable com-

munication between different systems. However, there is no standard way to capture the

interactions to enable sharing of the provenance between tools. A standard specification

or interchange format for interaction provenance could enable tighter integration between

analysis tools and enable seamless switching between tools that adhere to the standard.

A popular way to continue the analysis from one tool to another is to export/import

the data between these tools. Data is usually transferred using popular data interchange
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formats like CSV, JSON, XML, etc. These formats often have strict specifications on how the

data can be represented; therefore, different tools can independently develop support for

these formats. However, the data interchange format cannot store the analysis provenance

that was used to curate the dataset. Therefore, the analysis context is often lost when

switching from one tool to another using only the data. The loss of analysis context can

lead to issues with misinterpretation of the data, e.g., incorrect parsing of dates due to

different standards or repetition of analysis steps such as converting a column of 1s and 0s

to Boolean instead of integer.

Using multiple tools in complex data analysis pipelines presents a unique set of chal-

lenges, particularly with sharing analyses between different tools. While the versatility of

using the best tool for each task is advantageous, it also leads to complexities in integrating

these tools seamlessly. Therefore, the pertinent research question that comes up is: How

can we reuse interactions captured from one analysis tool in another?

1.2.2 Computational Notebooks: Best of Both Worlds?

Computational notebooks are not a novel concept, but recent advancements in cloud-

based notebooks and interactive outputs have increased their popularity even more. Mike

Bostock, the creator of d3 [14] and Observable [13] notebook platform, describes a note-

book as “an interactive, editable document defined by code” and “a computer program

designed to be easier to read and write by humans” [15]. This definition aligns closely

with the literate programming paradigm proposed by Knuth[9], which emphasizes mak-

ing computer programs reproducible, reusable, and easily maintainable through a mix of

natural language exposition and source code.

Modern notebooks support interactive visualizations in the output either natively (as

in Observable) or with the help of libraries (as in Jupyter Notebooks). In theory, compu-

tational notebooks offer the best of both worlds: Highly expressive, documentable code

paired with interactive visualizations.

However, is this truly the case?

Whereas computational notebooks like Jupyter support interactive visualizations, these

are often a dead end. The current integration of visualizations with code is typically unidi-

rectional: Plots are generated for analysis or storytelling, but they do not facilitate data
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manipulation. Libraries such as Vega-Altair [16], bokeh [17], and IPython widgets [18]

enable the creation of complex interactive visualizations in Jupyter Notebooks. However,

the results of the interactions in these visualizations, like selections and filters, are not

accessible in the code. Wu et al. [19] refer to this as the semantic gap in computational

notebooks.

Wu et al. describe another type of gap, which they refer to as a temporal gap: The gap

between the persistence of code cells and interactions in the outputs. Changes in code cells

are persistent across notebook saves and can be re-executed. However, interactions within

visualizations are transient and not saved, even across cell re-executions. To make insights

gained through interactive analysis in such outputs permanent, analysts must extensively

document the interactions, which can be burdensome [20].

Although a code-based analysis can be documented, saved, and re-executed, an in-

teractive visual analysis remains temporary and ad hoc. Consequently, because of the

semantic and temporal gaps, analysis in computational notebooks is not fully reproducible

or reusable, leading to the question: Can interaction provenance bridge the semantic and

temporal gap between interactions and code in computational notebooks?

1.3 Goals and Contributions
To address the research questions posed in previous sections, we have to achieve the

following goals:

G1 Capture and reproduce interaction provenance: To reproduce interaction prove-

nance for visual analysis, we will develop a provenance tracking approach that can

capture the interactions in a visual analysis system. Our approach will support cap-

turing nonlinear interaction provenance. The captured interactions will be replayable,

enabling reproducibility of interaction provenance.

G2 Make interaction provenance semantically meaningful: To make the provenance

semantically meaningful, we will capture the analyst’s rationale for the selection

interactions. Selection forms the basis for other interactions such as filtering, labeling,

aggregation, etc., making it crucial to understand the rationale for the selection. We

will capture the analysis rationale by capturing the pattern-based intent and domain

knowledge of the analyst.
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G3 Curating and reusing interactions: To reuse the interactions, we will develop tech-

niques for effectively applying the interaction steps to an updated dataset by lever-

aging the semantically meaningful interaction provenance. Since interaction prove-

nance can have multiple branches and grow in size rapidly, we will support curating

smaller workflows for reuse.

G4 Porting interactions to a different environment: To use captured interactions in a

different environment, we will adapt the interaction provenance to act as a shared

abstraction between different analysis tools. The shared abstraction will sit between

interactions and data operations and allow the conversion of interactions from visu-

alization to data operations in code-based tools.

G5 Bridging the gaps between code and interactions in computational notebooks: We

will develop techniques to bridge the two major gaps between code and interactions

in computational notebooks: Results of the interactions are not accessible in code

and interactions are not lost on cell re-execution. Our techniques will leverage the

interaction provenance from the output to act as a shared representation between

the code and the interactive output. We will save the interaction provenance directly

in the notebook, enabling us to replay the interactions.

This dissertation proposes capturing the interaction provenance (i.e., sequence of inter-

actions) for the interactive visual analysis session and leveraging the captured provenance

to meet the above goals. Figure 1.1 gives an overview of our contributions and how they

relate to the goals. The key contributions of the dissertation are:

1.3.1 A Software Library to Capture Interaction Provenance (G1)

In Chapter 3, we discuss a web-based software library [1] — Trrack — that is designed

for easy integration into existing or future visualization systems. Trrack supports a wide

range of use cases, from simple action recovery to capturing intent and reasoning, and can

be used to share states with collaborators and store provenance on a server. Trrack also

includes an optional provenance visualization component — TrrackVis — that supports

the annotation of states and aggregation of events. It is designed to support various types

of provenance, including interactions, insights, and rationale. Trrack addresses the need

for an approach to capture and replay interactions as described in G1.



9

I developed the initial versions of Trrack and TrrackVis and later advised Zach Cut-

ler, who was an undergraduate student at the time, with further development. Trrack

and TrrackVis are available for installation on npm and have collectively been installed

more than 12, 000 times. Links to the source code, and documentation are available at

https://vdl.sci.utah.edu/publications/2020 visshort trrack/

1.3.2 Techniques to Capture Semantics Behind Interactions (G2)

Chapter 4 introduces methods to infer analyst intent behind selections in data vi-

sualizations [2] addressing G2. We describe intents based on patterns in the data and

identify algorithms that can capture these patterns. Upon an interactive selection, we

compare the selected items with the results of a large set of computed patterns and use

various ranking approaches to identify the best pattern for an analyst’s selection. We store

annotations and the metadata to reconstruct a selection, such as the type of algorithm and

its parameterization, in the provenance graph captured by Trrack. We present a prototype

system that implements these methods for tabular data and scatterplots. Analysts can

select a prediction to auto-complete partial selections and to seamlessly log their intents.

We evaluate our approach in a crowdsourced study, where we show that auto-completing

selection improves accuracy and that we can accurately capture pattern-based intent.

Links to the source code for the prototype and the supplementary materials, including

scripts for generating the datasets for crowdsourced study and analysis of the study, are

available at https://vdl.sci.utah.edu/publications/2021 ivi intent/

1.3.3 Technique to Curate Reusable Workflows
from Interaction Provenance (G3, G4)

Chapter 5 introduces methods to capture the interaction provenance in visualization

systems for different interactions such as selections, filters, categorizing/grouping, label-

ing, and aggregation. These interactions can be curated or directly applied to updated

datasets, making interactive visualization sessions reusable. We demonstrate our approach

using an interactive visualization system that tracks interaction provenance, and allows

generating workflows from the recorded actions. The system can then be used to compare

different versions of datasets and apply workflows to them. We also introduce a Python

library that can load workflows and apply them to updated datasets directly in a compu-

https://vdl.sci.utah.edu/publications/2021_ivi_intent/
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tational notebook, providing a seamless bridge between interactive visualization tools and

computational environments. These techniques contribute towards goals G3 and G4.

Links to the source code for the prototype and the supplementary materials are avail-

able at https://vdl.sci.utah.edu/publications/2022 eurovis reusing workflows/

1.3.4 Techniques to Bridge Between Interactions
and Code in a Computational Notebook (G5)

In this chapter, we introduce Persist, a family of techniques to capture and apply in-

teraction provenance to enable the persistence of interactions in computational notebooks.

When interactions manipulate data, we make the transformed data available in dataframes

that can be accessed in downstream code cells. Our techniques address the semantic and

temporal gaps in computational notebooks addressing G5. We implement our approach

as a JupyterLab extension that supports tracking interactions in Vega-Altair plots and in a

custom data-table component. Persist extension can re-execute the interaction provenance

when a notebook or a cell is re-executed, enabling reproducibility and re-use. We evalu-

ated Persist in a user study targeting data manipulations with 11 participants skilled in

Python and Pandas, comparing it to traditional code-based approaches. Participants were

consistently faster with Persist, were able to correctly complete more tasks, and expressed

a strong preference for Persist.

The Persist JupyterLab extension is available for installation on the Python Package

Index and can be installed using pip. Links to the source code, supplementary material

including example notebooks and study analysis, and the published package are available

at https://vdl.sci.utah.edu/publications/2024 preprint persist/

1.4 Organization
In Chapter 2, we discuss the background and related work on interaction provenance,

analyst’s intent, analysis workflows, and computational notebooks. Chapters 3 to 6 discuss

techniques that make up our contributions. In Chapter 7, we discuss the broader implica-

tions of our research and briefly probe possible future work. We conclude with Chapter 8

by summarizing our contributions.

https://vdl.sci.utah.edu/publications/2022_eurovis_reusing_workflows/
https://vdl.sci.utah.edu/publications/2024_preprint_persist/
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Figure 1.1: An overview of our contributions in the dissertation. Chapter 3 discusses our
first contribution — Trrack — which is a provenance tracking library [1] that captures
and replays the interactions (G1). Chapter 4 will discuss techniques to make the interac-
tion provenance semantically meaningful [2] (G2). Chapter 5 will discuss techniques for
curating and reusing the interactions on an updated dataset and use the interactions in a
different analysis environment altogether [3] (G3, G4). Chapter 6 will discuss our contribu-
tion to bridging the gaps between code and interactions in computational notebooks [21]
(G5).



CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter delves into the foundational and related work underpinning the concepts

and techniques discussed in this dissertation. We will discuss prior research on provenance

in interactive visualizations, capturing analysis intent, data analysis workflows, and inter-

active visualizations in computational notebooks.

2.1 Interaction Provenance in Visual Analysis
A central aspect of the techniques discussed in this dissertation is tracking the in-

teraction provenance in visual analysis. Interaction provenance refers to the interactions

recorded during a visual analysis session. Understanding and capturing this provenance

is essential for enhancing the reproducibility and reusability of the visual analysis. This

section reviews interactions in visual analysis, focusing on selections, current methodolo-

gies, and technologies employed in capturing interaction provenance, underscoring the

existing gaps that our research aims to bridge.

2.1.1 Interactions in Visual Analysis

Interactions are integral for the exploration and understanding of data in visual anal-

ysis. These interactions range from picking the datasets and selecting parts of the data to

applying data transforms, zooming, and panning in the visualizations. Before discussing

how to capture these interactions for provenance effectively, we must consider the various

types of interactions commonly employed in visual analysis systems. From among the

numerous interaction taxonomies (e.g., [22]–[25]), we adopt the taxonomy proposed by

Heer and Shneiderman [26], which classifies interactions into three high-level categories

of “interactive dynamics”: 1) data and view specification, with the subcategories visualize

(specify data and visual encoding), filter, sort, and derive; 2) view manipulation, with the

subcategories select, navigate, coordinate (synchronize between multiple views), organize
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(arrange windows and workspaces); and 3) process and provenance (record, annotate,

share, guide).

A key interaction in visualization systems is selection [26], which is the foundation

for numerous higher-level tasks in visual analysis. Brehmer and Munzner [27] classify

selections as a manipulation method in the how part of their typology. Rind et al. [28] clas-

sify tasks along a cube using the dimensions abstraction (concrete to abstract), composition

(low-level to high-level) and perspective (how and why). In their design space, a selection is

an abstract, low-level task of the how perspective. Selections, including brushes, queries,

and filters, define a subset of data items. These are typically communicated through visual

alterations of the selected items. In systems with multiple coordinated views, linked brush-

ing is commonly used to highlight the same items across different visualizations. Most

selections are defined by explicit clicks on individual items, “paint-brushes” that select all

elements under a brush tool, geometric brushes, such as rectangles or lassos, or textual

queries. More advanced, data-driven brushes have also been proposed. For example, Fan

and Hauser [29] introduce a method for fast brushing based on neural networks, where

they estimate an intended selection based on simple sketches.

Data-aware selections are particularly interesting for this dissertation. These are actions

defined in ’data space ’ [26], [30], [31], meaning they are described by certain predicates

rather than a list of items. This approach is exemplified by dynamic queries [32], which

consider all items meeting specific conditions, such as those defined via sliders, as part of

the query results. Certain types of brushes [33] can be realized in a data-aware way. For

example, a rectangular brush in a scatterplot easily translates into the necessary predicates.

Many selections (and other actions) are, however, realized by direct reference, e.g., by

pointing at items, and hence, they are defined in item space. Selections in item space have

several disadvantages: They cannot be generalized to apply to updating data or be used to

explain a selection semantically. Data-aware selections, on the other hand, offer several

advantages: They are robust to changes, can semantically explain a selection, and can

be adapted in various ways to support an analyst, e.g., by relaxing a selection [34], or

for reuse in a different context [35]. Most data-aware selections are realized by deriving

rules directly from a rectangular brush. In general cases, rules for data-aware selections

are more complicated to derive. However, deriving the pattern of a selection (what makes
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the items in a selection belong to each other and different from everything else) is possible 

algorithmically. Xiao et al., for example, create “knowledge representations” of selections 

in communication networks [36]. This approach is similar in spirit to the work we discuss 

in Chapter 4. However, Xiao and coauthors’ knowledge representations are limited to 

simple clauses and are not concerned with higher-level patterns in the data.

2.1.2 Provenance in Visual Analysis

Research on provenance capture and visualization has a long history. Provenance in 

data analysis refers to the history of an artifact, such as a dataset, a computational work-

flow, or an insight. Ragan et al. [37] discuss different purposes of provenance, including 

recall, replication (reproducibility), presentation, and collaboration (among others), but 

do not discuss reuse. Ragan et al. also characterize the different types and purposes 

of provenance. They distinguish the provenance of data, provenance visualization, the 

provenance of interaction, provenance insights (which capture analytical findings), and 

provenance rationales (which capture the reasoning behind any decisions made). Most 

provenance-tracking techniques are limited to the former three, whereas insight and ratio-

nale provenance can be achieved only using manual annotation.

Provenance tracking has two distinct approaches: 1) explicitly modeling a visualization 

workflow (workflow-based) [38] and 2) tracking the history of analysis to achieve prove-

nance (process-based) [39].

2.1.2.1 Workflow-Based Provenance

Provenance based on explicitly designed workflow is typical in large-scale scientific 

data processing [40] systems such as SCIRun [41]. Workflow-based approaches are also 

common for specifying the visualization pipeline, for example, for volumetric data [42], 

networks [43], and tabular data [44]. A benefit of workflow-based systems is that they 

explicitly capture rules and thus can be reused easily. However, creating these workflows 

does not support freeform data exploration, and these rules do not typically capture higher 

level semantics.
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2.1.2.2 Process-Based Provenance

An alternative to the workflow-based approach is to capture the provenance as the 

analyst interacts with an interactive visualization system [1], [39]. Many visualization 

systems support history tracking for action recovery (undo/redo), so we limit our dis-

cussion to systems that explicitly target provenance. Examples of the system that captures 

provenance directly from interactions include the graphical histories by Heer et al. [45] 

or CzSaw [46]. Various tools also represent histories as node-link diagrams [47]–[50], and 

some methods automatically detect key states in an analysis process [51] or retrieve prior 

states using search [52]. The provenance tracking in these systems is realized in an ad 

hoc way. However, recent papers have introduced software libraries for process-based 

provenance tracking. SIMProv [53] captures provenance for web-based visualizations. 

SIMProv uses a hybrid model that primarily stores actions, which can make switching 

between states slow. This dissertation presents the Trrack software library for tracking 

provenance in web-based applications. We will discuss the novel techniques implemented 

by Trrack [1] in Chapter 3.

2.2 Semantic Interaction Provenance

Understanding the ’why’ behind user interactions in visual analysis is as crucial as 

tracking them. Interaction provenance often fails to capture the semantics or the intent 

behind the interactions themselves. We explore the concept of intent in data analysis, 

reviewing prior works that have attempted to capture and analyze these intents within 

a visual analysis framework.

Interaction provenance is often captured as a series of mouse and keyboard events 

and, hence, is not reusable, reproducible, or even human-readable. Interactions in a visual 

analysis system are guided by domain-specific analysis questions, e.g., identifying a  gene 

that could be a drug target. The interactions themselves are based on specific patterns in 

the data, for example, finding a  cluster o r filtering out the outliers. Th e provenance log 

comprised of mouse and keyboard events does not fully reflect t his p attern-based intent 

by the analyst. The focus of the provenance in such a case is on ‘what’ the analysts did 

rather than ‘why’ they did it. To meaningfully capture visual analysis sessions, we must 

infer the intent or the why behind the analyst’s interactions during the analysis session.
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This intent or the why is comprised of two parts: 1) the domain-agnostic structural patterns 

in the data and 2) the domain-specific knowledge that the analyst possesses.

2.2.1 Pattern-Based Intent

We can refer to the patterns in the data that analysts interact with as pattern-based 

intents. Pattern-based intent is related to insights in the data, as defined by Karer et 

al. [54]: “Insights affecting the viewer’s knowledge about statistical and other structural 

information about the data.” A difference in our definition of pattern-based intents i s the 

viewpoint: Insight is about an analyst learning something, whereas intent is the reasoning 

behind an interaction.

In Chapter 4, we will discuss our contribution to automatically capturing intent behind 

selection interactions. We compare the analyst’s selections with an output of different 

machine learning algorithms, each representing a pattern in data. We use the comparison 

to predict or infer the intent behind the selection. As discussed in the previous section, 

selection is one of the fundamental interactions found in visualization systems. However, 

selections also serve as the first step in more complicated actions, such as filtering, extract-

ing, querying, aggregating, grouping, manipulating, or labeling items. Hence, knowing 

the intent behind a selection is also helpful in knowing the intent behind these derived 

operations.

Inferring an analyst’s intent has been studied in various contexts. For example, My-

ers [55] proposes methods for inferring operations and source code from demonstrations 

when implementing graphical user interfaces. More specific to data analysis, Gotz and 

Zhou [25] study analysts’ activities and model them in four tiers, from high-level tasks, to 

subtasks, to actions, to events. Actions, which correspond to our pattern-based intents, are 

composed of a type, an intent, and parameters. They represent an executable, semantic 

step, such as a query, that bridges the high-level human cognitive ability and the low-level 

user interactions. Gotz and Zhou implement this framework in the Harvest prototype 

that captures such actions. In contrast to our approach, however, Harvest captures that an 

action was executed, but not why. A related tool that also captures actions is SensePath [56]. 

A key difference to Gotz and Zhou’s work is that SensePath is optimized to support 

qualitative data analysis: It is made for analysts to use the log of semantic actions in
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qualitative coding. Dou et al. [57] argue that much of the reasoning process during a visual

analysis session can be inferred by humans from inspecting user interactions. However, it

is unclear whether a human’s ability can be leveraged by automatic methods [39]. Brown

et al. [58] have shown that user performance and certain personality traits can also be

inferred from analyzing user interactions.

Another related thread of work is concerned with predicting future events in an

analysis process to enable guidance [59]. For example, Ottley et al. [60] predict future

clicks on items based on an interaction history. Steichen et al. [61], and Gingerich and

Conati [62] show that predicting lower-level tasks, such as retrieve value, is possible using

eye gaze data. This approach differs from our goal of inferring the intent of an interaction.

Monadjemi et al. [63] propose a Bayesian approach to predict intents by ranking Gaussian

distribution models based on user interactions. The ranked models can then predict the

next interaction, detect exploration bias, and summarize the analysis process based on click

patterns. Battle et al. [64] propose ForeCache, a tool for exploring large datasets. ForeCache

uses Markov chains and computer vision algorithms to model analysts’ future actions

based on their past moves. The system uses these predictions to pre-fetch data. In contrast

to our techniques, these related approaches target predicting future interactions, visualiza-

tion recommendations, query generation, or preloading data subsets but fail to capture the

’why’ behind an interaction. Our approach is also related to query-from-example methods

developed in the databases community. For example, Dimitriadou et al. [65] infer range

queries from a set of selected items.

A common goal for intent prediction is view specification, i.e., selecting data (sub)sets

and suitable visual encodings. Systems such as Tableau’s Show Me [66] use data properties

to predict proper visual encodings. Natural language interfaces for view specification

attempt to extract intents from language [67] and extract configurations for a view. Saket

et al. [68] predict intents for view specification from demonstrations, such as assigning a

color to a dot in a scatterplot, based on which their system infers the intent of mapping

an additional variable in a dataset. Their follow-up work [69] demonstrates that analysts

seamlessly switch between manual and mixed-initiative approaches. Demiralp et al. [70]

compute patterns for a dataset and suggest visualizations for each pattern, but their

approach is not reactive to analyst selections.
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2.2.2 Domain Specific Knowledge

The analyst’s domain knowledge is the other important part that informs the intent

behind an interaction. A common approach to capture the domain knowledge is through

note taking and annotation. Annotations are standard in visualizations designed for

presentation but are not frequently integrated into exploratory visualization tools, with

notable exceptions (e.g., [45], [50], [71]–[75]).

Manual notes, documentation, and annotations can capture analysts’ reasoning and

insights, but creating and maintaining them is associated with a burden on the analyst and,

thus, a lack of scalability [25]. In computational notebooks, support for documentation and

annotations is built with markdown and code comments. Rule et al. [20] have claimed that

most Jupyter notebooks they analyzed either completely lacked or had scarce documenta-

tion of the analysis. The interviews with data analysts showed that interviewees found

documenting the analysis for sharing and presentation tedious and lacked guidance.

When such documentation is present, the documentation focuses on presenting the results

and interpretation rather than an exposition of the analysis process. Online discussions

regarding the use of literate programming [76] bring up the point that the story one tells at

the start of the project is not the same as one told at the end. Documentation of the analysis

exposition from the beginning will make it harder to change and adapt as the analysis

evolves, whereas retroactive documentation risks missing out on how the assumptions

and analysis approach changed over time.

In Chapter 4, we propose associating annotations with the corresponding provenance

step and automatically capturing pattern-based intents. This approach allows analysts to

elaborate on their intentions, bridging the gap between pattern-based and domain-specific,

higher-level intents. We will further discuss the possible future work on capturing the

domain knowledge in Chapter 7.

We can augment the provenance with semantic information by automatically captur-

ing the ‘pattern-based intent’ and associating the analyst’s domain knowledge. Semantic

provenance can enable the goal of reproducibility and reusability of the analysis session

by allowing the session to be verified by other analysts and be meaningfully applied to an

updated version of the dataset.
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2.3 Data Analysis Workflows
Reapplying the interactions or workflows curated from the interaction provenance to

an updated dataset or in a different analysis environment is challenging. This section

discusses prior work on data analysis workflows, compares visual analysis workflows

with code-based workflows, and discusses existing research on creating, specifying, and

reusing visual analysis workflows.

We define workflows in the context of data analysis as a sequence of steps executed to

achieve some data transformation or analysis goal. We can distinguish between two types

of workflows: 1) explicitly modeled workflows and 2) provenance-based workflows.

2.3.1 Explicitly Modeled Workflows

Explicit modeling of workflows is common in scientific data analysis [40]. Represen-

tative examples are systems such as Galaxy [77] for biomolecular data, SCIRun [41], and

Kepler [78] for scientific/simulation data, and KNIME [79] in a machine learning context.

Workflow approaches are also common for scientific visualization applications such as

volume rendering. Here, VisTrails [42] is a prolific example. Notable workflow-based

systems for abstract data visualization include GraphTrail [43], where each node in the

workflow shows an aspect of a multivariate network, and VisFlow [44], which is tailored

to tabular data. GEM-NI [80] is a system that presents a workflow-based approach for

generative design. The GEM-NI approach demonstrates explicit workflows for the parallel

exploration of alternative designs. Commercially available solutions like Tableau Prep sup-

port the creation of workflows for preparing and cleaning data. The interactions supported

by Tableau Prep are combining data, filling in missing values, etc. However, Tableau Prep

does not support creating a workflow interactively by manipulating the data directly or

exporting the modeled workflow to another environment, including Tableau Desktop.

Explicitly modeled workflows are designed to be easily reused. At the same time,

the definition of these workflows is similar to the explicit code-based specification of

visualizations, and thus, the associated interaction cost [81] is high. The spontaneity and

rapid exploration associated with interaction patterns such as direct manipulation [82] is

lost. They are easier to learn than writing code but have a steeper learning curve than

interactive systems.
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2.3.2 Provenance-Based Workflows

An alternative approach to explicit workflow modeling is tracking user actions prove-

nance [39], [83] and using this information to extract workflows l a ter. A l though several 

visualization systems track provenance [45], [47], [48], [84] and a few dedicated libraries to 

making tracking provenance easier to implement exist [1],[53], most tools do not explicitly 

curate workflows based on provenance. A notable exception is the Vistories tool [50], 

which enables analysts to curate interaction steps into data stories. However, these data 

stories cannot be reused on different datasets. Chen et al. proposed a parametric symbolic 

approach to support analytic provenance in their CZSaw system [85]. CZSaw enables 

analysts to reuse parts of the analysis process based on a previously created parametric 

model. The system does not support autodetection and application of patterns, and the 

analysis has to be done in the same system.

2.4 Analysis with Multiple Tools

In many scenarios, analysts frequently switch between interactive and computational 

tools [86]. Recent surveys and interviews with data practitioners [86]–[89] support the 

idea that data analysis rarely takes place within a single environment. Data scientists fre-

quently switch between code-based environments (Jupyter, R, or MATLAB) and graphical 

analysis environments (Tableau or PowerBI) during the data analysis. However, transi-

tioning between tools in different environments is not straightforward and often requires 

repetition of analysis steps when moving from code to GUI and vice versa [89]. Data 

analysis workflows created in one tool cannot be directly or easily shared with another. 

Data stored in a widely supported format such as CSV or JSON are commonly used 

when switching between environments. Using only data instead of the actual analysis 

process frequently requires repeating specific analysis steps in the new environment, e.g., 

converting columns with only ones and zeros from integer to boolean. Further, the history 

and context of analysis steps from one tool are not transferred to the new tool, complicating 

the reproducibility of the entire analysis process. Therefore, despite the advantages of 

interactive visualization, analysts frequently stick to code environments to avoid the extra 

work involved with switching between tools [86]. Batch and Elmqvist discuss the need for 

interactive visual analysis systems to export the interactive action performed in them [88].
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Alspaugh et al. [87] propose developing integrated tools that combine code environments’

expressiveness with direct manipulation available in interactive visualizations.

In Chapter 5, we present a hybrid approach to capturing workflows. Analysis sessions

are automatically captured in a provenance graph with support for branching the analysis

processes. The analyst can later use the provenance graph to curate explicit workflows,

which can be applied to an updated dataset. Our approach supports storing the analysis

provenance and the curated workflows in an abstract representation, which can be reused

in different environments by building tooling around it.

2.5 Bridging the Gaps Between Code and
Interactions in Computational Notebooks

This section discusses relevant prior work to notebooks and interactive data analysis,

followed by interactive visualization within notebooks.

2.5.1 Computational Notebooks

Computational notebooks are a popular tool for data exploration and analysis. They

fulfill Knuth’s [9] vision of literate programming by blending code, text, figures, and

data to develop a narrative data analysis. The most popular examples are the Jupyter

notebooks [90], Observable notebooks [13], and R Markdown [91]. Computational envi-

ronments enable sophisticated documentation and narration, incorporating markdown

text, figures, and other media. These computational environments inherently support

capturing a reproducible and reusable analysis process. Analysts can use markdown

features in notebooks to externalize their analysis rationale and add context to their

methodologies. Structuring data analysis in parameterized functions allows for code reuse

on updated or new datasets. The popularity of data analysis libraries such as Pandas [11],

scikit-learn [92], [93], tidyr [94], and ggplot [95] further support the reusable nature of

computational environments.

2.5.2 Code and Interactive Data Analysis

Kandel et al. [96] introduced an interactive system for data transformations called

Wrangler. Wrangler allows direct manipulation of visualized data and offers an interactive

history for review and refinement, but it can also export wrangling steps to code. Guo et
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al. [97] extended the Wrangler system to enable proactive suggestions for data analysis

based on inputs from the analyst. MS VS Code has an extension called Data Wrangler [98]

described as a code-centric data cleaning tool. The extension allows interactive data clean-

ing and generates Python/Pandas code corresponding to the cleaning operations.

2.5.3 Interactive Analysis in Notebooks

Interactive data analysis is rare to see in notebooks. Schmidt and Ortner [99] cite

limited interaction capabilities native to the environment as one of the reasons for the

lack of interactive data analysis. However, support for interactive outputs in notebooks

is becoming more common. Wrex [100] is a Jupyter Notebook extension that implements

the programming-by-example principle. Wrex allows analysts to work on samples of a

dataframe and use an interactive grid that provides data transformation examples. Wrex

synthesizes code from these interactions, which the analyst can modify and use subse-

quently. Wrex does not persist the interactions beyond the generated code. Jupyter [90]

is the most popular computational notebook and supports various data analysis and

visualization libraries. Jupyter Notebook can be used to create interactive outputs with

libraries like JuptyerWidgets [18], Bokeh [17], and Streamlit [101].

However, the notebooks’ interactive outputs and code-cells have significant gaps. First,

native visualization libraries, such as Matplotlib [102] in Jupyter, have only basic interac-

tive capabilities and cannot feed back actions from visualizations to code. Complex visual-

izations, such as custom tools, can be embedded in Jupyter notebooks but typically cannot

manipulate data in the notebooks. Libraries such as Vega-Altair [16] support interactive

visualizations, but the interactions primarily coordinate between multiple views and do

not natively manipulate data. Second, the notebook interactions are transient and lost on

re-executing the notebook or restarting the kernel. In contrast, the code-cells are persis-

tent and can be replayed repeatedly. Some recent works try to address these gaps using

different techniques, the most common of which is generating code from interactions.

Wu et al. [19] have introduced the B2 system, which attempts to address the gaps be-

tween code and interactions. B2 uses data queries or selections as the shared abstraction be-

tween the code and interactive visualizations. The B2 approach expresses the interactions

as selections of data. The Mage API extension for notebooks [103] also aims to support
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fluid movement between code and interactive outputs. Mage detects the interactions in

the output, maps it to equivalent code using code templates, and injects the code into the

cell. Code templates offer more flexibility compared to the B2 approach of using selections

in the data. Mage achieves the persistence of interactions by injecting the filled-in code

templates in the cell. B2 adopts a similar approach of injecting selection predicates in the

code cell to persist the interactions. Both these approaches risk cluttering the code cells

with unused code snippets. Keeping track of non linear analysis using code snippets can

become complex.

In Chapter 6, we present Persist, a new principle for integrating interactions with code.

Persist shares the vision of a seamless transition between code and interactions with B2

and Mage. However, despite the shared vision, Persist approaches the problem of bridging

between code and interactions differently. Similar to B2, Persist employs the idea of using

a shared abstraction to bridge between code and interactions. Persist leverages the rich

interaction provenance that is captured from the interactive outputs as the shared abstrac-

tion. Persist supports capturing and replaying complex interactions such as categorization

by capturing the interaction provenance instead of data queries. Results of interactions

in Persist can be accessed directly as Pandas dataframes, which are kept in sync with the

interaction provenance. Persist directly saves the interaction provenance to the notebook

and replays it when required to address the issues with interactions being transient. Persist

does not rely on code generation to track the interactions, preventing the cell input area

from being cluttered with generated code snippets. The interaction provenance is part

of the cell and not just the input code, allowing analysts to update input dataframes or

visualizations without losing the interaction history.



CHAPTER 3

TRRACK: PROVENANCE TRACKING

FOR WEB-BASED VISUALIZATIONS

This work is based on our previous work published as a short paper [1]. © 2020 IEEE.

Reprinted, with permission from Z. Cutler, K. Gadhave, and A. Lex, “Trrack: A library

for provenance-tracking in web-bsed visualizations,” in IEEE Vis. Conf., Oct. 25–30, pp.

116–120.

At least since Shneiderman argued that we cannot expect users to get it right imme-

diately, and visualization systems need the ability to correct a sequence of actions and

replay it, the value of undo/redo and replay [22] (or action recovery) has been undisputed.

Even though professional desktop applications commonly support action recovery, many

web applications, especially academic visualization prototypes, do not. For example, the

authors of both Lyra [104] and Data Illustrator [105], two popular web-based data visu-

alization authoring tools, mentioned the lack of undo in their original designs as a cause

for concern for users, which resulted in less exploration. Yet, action recovery is only one

of the purposes of collecting provenance data. Provenance data have many other uses,

ranging from recalling an analysis process to reproducing it, collaborating, and logging

for evaluation or meta-analysis [37].

Designers and developers of web-based visualization tools and prototypes frequently

develop custom software to capture, store, and utilize provenance information. Doing so,

however, can be tedious and is often not in immediate service of the goals of a visualization

prototype. Home-grown solutions are also unlikely to leverage the full potential of prove-

nance, such as history visualization or easy state sharing among remote collaborators.

To remedy this problem, we developed the Trrack library (the name derives from

Reproducible TRACKing), our primary contribution, which provides provenance-tracking

for the purpose of action recovery, reproducibility, collaboration, and logging. Trrack can
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benefit existing and future systems widely and support data collection in quantitative

and longitudinal evaluations. Trrack is designed to support a wide variety of types of

provenance, including provenance of interactions, insights, and rational. Trrack is accom-

panied by TrrackVis, which provides optional provenance UI elements, such as simple

undo/redo buttons or a sophisticated provenance visualization that can be customized

and supports annotation and aggregation of states. Finally, Trrack enables sharing states

through a URL and provenance data management on a server. Trrack comes with well-

documented examples and uses tests to ensure code quality. Trrack is available under

a permissive open-source license at https://github.com/visdesignlab/trrack. The npm

packages for Trrack and TrrackVis have been collectively installed more than 12,000 times.

The latest version of Trrack is used in multiple places, including industry applications.

The prototypes we will discuss in the next chapters use Trrack for capturing and replaying

the interaction provenance. Trrack is used to implement the latest version of popular set

visualization — UpSet [106]. Trrack is instrumented for managing the provenance of two

network visualizations and the study they were used in. [107]. reVISIT study, a framework

for developing web-based user studies uses Trrack to enable provenance tracking of the

user studies [108].

Our contribution aims to inform the visualization research community of a robust,

well-tested, easy-to-integrate technology of broad interest. We believe Trrack is consistent

with the renewed calls for applications and systems-oriented research that is necessary

to tackle the increasing complexity of datasets and analysis challenges. Figure 3.1 sum-

marizes the contribution of Trrack to this dissertation, which is to enable reproducing

interaction provenance by capturing and replaying the interactions.

3.1 Design Goals
We designed the library based on our experience developing a provenance graph for a

storytelling application [50]. The overarching design goals are 1) versatility of use — the

library should support all different purposes of provenance-tracking; and 2) ease of use —

developers should be able to track and visualize provenance with minimal effort. Here, we

list our specific design goals.

1. Allow Developer Agency: Application developers should have the flexibility to

https://github.com/visdesignlab/trrack
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decide which actions to track. For example, what is sensible to track might be vastly

different between a production visual analytics system and a prototype used in a

user study.

2. Support Action Recovery: Undo/redo are important in all user interfaces, so mis-

takes can be quickly recovered. In addition to undo/redo, we want to make it pos-

sible to quickly browse to any prior state, so analysts might be willing to investigate

paths they otherwise would not have if they can easily recover.

3. Support Reproducibility: The reproducibility of analysis processes is critical in data

analysis. However, unlike analysis done in computational notebooks, interactive

visualizations are difficult to make reproducible. We strive to capture not only in-

teractions but also annotations so that user intent and reasoning can be captured as

well.

4. Support Collaboration: Analysts rarely work in a vacuum: They need to either share

and communicate their results or collaborate with other analysts on the same project.

A provenance-tracking library needs to support both. To give developers flexibility,

we envision two ways of collaborating: A lightweight approach of sharing the state

of an application by copying the browser URL and a more sophisticated approach to

sharing the full analysis provenance.

5. Support Meta-Analysis: We want to design our library to support collecting infor-

mation about usage, either for analysis of long-term use in the field or for controlled

studies. The requirements for action-recovery/reproducibility are different from

those for meta-analysis; usually, the latter requires more fine-grained logs, which

can be a hindrance for the former. We aim to design our system so that both can be

supported simultaneously. Meta-analysis also requires that the provenance data be

exported in a format that is amenable to further processing. Finally, unlike traditional

logging, we want to be able to jump into any recorded session so that the context of,

e.g., a performance problem, can be investigated.

6. Support Annotation, Highlighting, Bookmarking: As already alluded to when dis-

cussing reproducibility, users need to be able to bookmark states so that they can be

quickly found and retrieved and annotate states so that users or systems can provide

context, including insights or the rationale for a specific action. More generally, a
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developer might want to store a variety of meta-information with individual states,

which a provenance-tracking library should support.

7. Provide Feature Rich Provenance Visualization: In addition to provenance-

tracking, we also intend to provide user interface elements that can be used to

navigate provenance data if desired by the developer. A provenance visualization

should be able to manage the whole feature set of the library, including branching

states, annotations, and bookmarks. Also, as provenance data can quickly grow, it

needs to be able to manage large interaction graphs.

8. Efficient Storage and Retrieval in Large Provenance Graphs: A long visual analysis

session can lead to a very large provenance graph if every interaction is tracked or the

tracking continues for long periods of time. A library, therefore, needs to be designed

with efficient storage in mind. A provenance library also should support the quick

recovery of a particular state.

3.2 Trrack Design
Here, we describe the design decisions that went into the development of the Trrack 

library, as motivated by our design goals. We also provide a brief architectural overview 

and describe how Trrack interacts with a visualization application (see Figure 3.2).

Trrack uses a provenance graph approach where each recorded action results in a 

new node in the graph. Nodes can be attached at any point in the graph, following the 

branching model of provenance. To utilize Trrack, developers must define a state that fully 

describes their application. Developers may then add observer functions to individual 

keys in the state. These observers will be triggered if that particular part of the state 

changes, either by adding a new state or changing the current node in Trrack, e.g., through 

undo. We recommend updating only the front-end application within these observers. 

The only other interaction developers must implement is creating and applying an action 

when a user interacts with the visualization (see Figure 3.2). This action is what will 

then create a new node with a modified state in the graph. We provide a  web app with 

examples of different complexity to illustrate this approach at https://vdl.sci.utah.edu/

trrack-examples/.

https://vdl.sci.utah.edu/trrack-examples/
https://vdl.sci.utah.edu/trrack-examples/
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3.2.1 Trrack Architecture

The common storage types for action recovery systems are state-based and action-

based [45]. State-based systems store the user-defined state of the application at every

node, allowing for instant jumps to any node in the history. The downside of this approach

is the inefficient use of memory or disk space. Action-based systems store the action re-

quired to get from one node to the next, which can lead to slow performance when jumping

between states since actions must be applied sequentially to maintain proper recovery. The

advantage of this approach is that it minimizes the storage/memory overhead. Heer et

al. [45] also discuss hybrid approaches, where action-based systems periodically store a

state to increase performance when loading a previous state.

In Trrack, we use a different approach — differential states. To ensure quick loading of

arbitrary nodes of the provenance graph, we store states and require developers to define

a state for use in Trrack. However, we do not store the state at every node to address the

size problems common with such an approach. Instead, we store a difference between the

current node’s state and the last node that stored the entire state. We track how many

keys in a state object have changed, and if a heuristic threshold is surpassed, we store a

full state. This approach ensures that the stored differences do not grow larger than the

original state and minimizes the size of differences of ensuing nodes. Developers may

also specify that a particular action should always store the entire state if desired. This

mechanism is completely abstracted from developers using the library. A developer only

has to request a particular state, e.g., through the undo function, to receive a corresponding

state, as illustrated in Figure 3.2. In addition to the state information, we also store meta-

information about the actions, which is useful for visualization and to maintain a user’s

mental map.

3.2.2 Ease of Integration

Trrack is a JavaScript/TypeScript library developed with the goal of making the in-

tegration of the library as seamless as possible. There are two ways to use Trrack: It can

take over the state management in the application, which is most useful when designing

a new web-based visualization. Alternatively, Trrack can interact with any existing state

management solution to track changes to the state without affecting the UI. Trrack is
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designed to be framework agnostic. It can work with vanilla JavaScript, UI frameworks

like React, and state management libraries like Redux.

3.2.3 Sharing State

Visualization applications do not commonly provide the ability to share the state of an

application. Trrack allows for easy sharing by sending the current URL to a collaborator.

The current state of an application is encoded and added to the URL as a URL parameter.

Whenever the state of an application changes, the URL is updated. When a page with a

matching URL parameter is loaded, the Trrack library parses it and returns the desired

state to the application.

3.2.4 Persistence

By default, the provenance graph maintained by Trrack is stored only in memory. We

must make the provenance graph persistent to ensure reproducibility and collaboration

beyond just sharing states. Trrack has functionality for exporting provenance graphs so

that they can be managed how a developer desires. We also provide a default implemen-

tation based on Google Firebase. Users can connect a Firebase database to Trrack during

setup and automatically store every node in the graph in Firebase every time a change is

made.

3.2.5 Reproducibility and Capturing Intent

An important aspect of reproducibility is understanding the reasoning behind steps

taken by the user. For this purpose, each node in the provenance graph stores multiple

types of metadata. Every node has an annotation property and a “type,” a user-defined

string meant to identify the purpose of the state change at that node. Additionally, a

generic object may be defined by the developer and stored with the node. This metadata

can be used to capture and later interpret actions taken at each node, which can range

from simple bookmarks to written annotations to complex cases involving algorithmically

predicted intents [2].
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3.2.6 Logging for User Studies

Due to Trrack’s ability to reproduce entire sessions and store generic metadata, we

believe it is especially useful for user studies. Typically, analysis of individual actions in

a user study would require manual annotation of every user, a time-intensive process.

By storing labels, event types, time stamps, and generic metadata on every action, most

meta-analyses of a study using Trrack can be captured automatically. This functionality

can save time, reduce human error, and allow for more diverse analysis. Additionally,

our differential states architecture allows for convenient analysis of stored graphs since

all of the relevant information is contained in the provenance data, independent of the

tracked application. Trrack provides dedicated export functionality tailored to post hoc

data analysis needs. Specifically, it can export details about each action that are not stored

directly on the graph and are not required for action recovery. Finally, Trrack makes it

straightforward to jump into a specific analysis session of a user, allowing analysts to

understand their context.

3.2.7 Logging versus Action Recovery

Some actions developers want to track (e.g., for the purpose of logging) may be too

frequent or inconsequential to include in the undo/redo chain. An example is a hover

action that highlights an item when the mouse rests on it. Users would not expect to

undo/redo a hover, but seeing when a hover was used can be important when analyzing

logs. For these cases, Trrack allows developers to label actions as ephemeral. By default,

the undo/redo functions in the library will skip over ephemeral nodes, and ephemeral

nodes are also treated specially in the provenance visualization.

3.3 TrrackVis
TrrackVis is a separate library complementing Trrack to visualize the provenance

graph, as shown in Figure 3.2. The purpose of this library is to allow for easy navigation in

the provenance graph and to provide a way to create and view annotations and metadata.

The graph is shown as a node-link tree. Clicking on any node will change the application’s

state to the one associated with that node. TrrackVis is designed to be highly customizable,

allowing the user to choose to integrate features, such as tooltips or annotations. Custom
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icons can be added to nodes to match user-defined event types. To address the scalability

of the visualization, consecutive nodes can be defined as a group, which can collapse the

constituting elements. For example, groups can be used to identify specific sections of

the analysis process as related and organize them as such for additional annotation. The

“Insight” nodes in Figure 3.3 contain nested actions that are associated with a particular

insight captured in this application. By default, we also use groups to collapse nodes that

are labeled as ephemeral.

3.4 Implementation, Testing, and Documentation
We developed Trrack over the course of 18 months, constantly refining and adapting

the library to a variety of changing needs. The library has roots in an integrated application

we designed for visual storytelling [50] and in a prototype library based on the concepts

from that paper [109].

To encourage the adoption of the library, we created a series of basic examples that

demonstrate the core features of the library. The repository contains additional documenta-

tion and other examples. Trrack also includes a comprehensive suite of unit tests to ensure

previous versions of the library do not break with future additions.

3.5 Usage Examples
We have used the Trrack library in multiple projects, spanning prototypes developed

for a technical visualization paper, applications used by medical professionals, and user

studies. Figure 3.3 shows some of the examples. Here we provide details on two of them.

We used Trrack to capture data on participants in a crowdsourced study [107] for

evaluating multivariate network visualization techniques. The study used two levels of

provenance: A study-level provenance to track the progression of the study and a task-

level provenance to track the interactions in a particular task. A combination of these two

provenance graphs allowed us to collect data about interaction patterns in both conditions

while participants completed the tasks. To explore the logged data, we developed a custom

visualization, which also allowed us to jump into individual analysis sessions. The study

stimulus is available at https://vdl.sci.utah.edu/mvnv-study/.

We also leveraged Trrack in our prototype system designed for predicting analysis

https://vdl.sci.utah.edu/mvnv-study/
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intents when brushing in scatterplots [2] to capture user interactions such as selections,

brushes, and adding/removing plots. The system uses this provenance trail to calculate

a set of predictions for possible intents (clusters, outliers, etc.) and ranks them. We used

Trrack’s ability to store metadata for capturing these predictions along with relevant action

nodes. Users can select one of the predictions to mark it as their intent and provide

annotations stored in the provenance graph. Additionally, we captured data when we

ran a crowdsourced evaluation of this project with Trrack. The evaluation involved 128

participants and used the Firebase integration. The screenshot for TrrackVis shown in

Figure 3.3 is taken from this project. A demo is available at http://vdl.sci.utah.edu/

predicting-intent/.

3.6 Discussion and Limitations
The library most related to Track is SIMProv [53]; we discuss the main differences next,

followed by a brief discussion of limitations.

3.6.1 Performance

Compared to SIMProv, Trrack’s differential states storage model provides benefits over

SIMProv’s hybrid model. An action-based model can be slow when jumping between

nodes that are far from each other, and due to the use of differential states, the storage

requirements of Trrack are mitigated.

3.6.2 Easy-to-Use Exports

For user studies and log-file analysis, easily analyzing exported provenance data is

critical. Because SIMProv uses an action-based model, the exported data refers to context-

specific information, such as function names, which do not exist in the export. This context-

specificity makes it difficult to analyze the data outside the original application. In contrast,

Trrack’s exported data are not application-specific and are human-readable. Every node

has a state that can be used for analysis without knowing anything about the architecture

of the application.

http://vdl.sci.utah.edu/predicting-intent/
http://vdl.sci.utah.edu/predicting-intent/
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3.6.3 Ease of Integration

Trrack abstracts away as much of the storage model as possible. Developers simply 

register observer events on each property of the state. These observers then handle forward 

and backward navigation. In contrast, to ensure efficient n avigation, S IMProv requires 

users to define c heckpoint r ules, f orward c hanges, i nverse c hanges, s tate c hanges, and 

inverse state changes, thereby increasing the complexity of the application.

3.6.4 Data Provenance

Although Trrack is well suited to track interaction data, it is not designed to store 

the provenance of datasets. For example, interactively running a normalizing procedure 

would create a new dataset. This dataset could either be stored directly, as an attribute 

of a node, or written to a separate file, a nd t hat fi le co uld be  re ferenced as  th e output. 

Both solutions have disadvantages: The former mixes actions and data and creates a large 

provenance graph; the latter makes the association between data and an application state 

brittle. We plan on investigating the integration between data and action provenance in 

the future.

3.6.5 URL-Based Sharing

Sharing state through URLs may become problematic if the state is large and exceeds 

URL size limits. However, we have successfully tested this approach with over 150 keys 

describing a state. We believe most applications will be able to store a state much smaller 

than this as long as data are stored separately.

3.7 Future Work
In the future, we plan to strengthen the collaborative aspects of our method. We 

currently enable asynchronous collaboration but do not track contributions by separate 

users. We also would like to allow synchronous collaboration so multiple users may view 

and interact with the same visualization session, similar to the functionality available in 

Google Docs. As an immediate next step, we want to add story-editing and story-viewing 

capabilities to our library, similar to the approach demonstrated by Gratzl et al. [50].

With our hybrid strategy for storing states and diffs, the primary question to answer is 

how frequently states should be stored. We hope to do more investigation into ideal times
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to store states. We also hope to add functionality that optimizes the graph’s size when

exported by iterating over the graph and re-storing nodes as appropriate.

3.8 Conclusion
In this chapter, we introduced Trrack, a library to track provenance in web-based

visualizations. Our goal is to provide an option to easily track provenance in existing

or future visualization systems. The companion library TrrackVis allows for visualization

of and interaction with the provenance graph. Tracking provenance with Trrack allows

action recovery, collaboration, reproducibility, annotation of analysis steps, and post hoc

meta-analysis of the interaction sequences; and provides persistent storage with Firebase

or other custom storage solutions.

Trrack and TrrackVis are open-source and published in the npm registry. We provide

extensive usage examples and documentation and hope our library will contribute to

increased provenance-tracking in more visualization tools. Also, although Trrack was de-

signed primarily with visualization tools in mind, it can also be used with general-purpose

web applications.
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Figure 3.1: Contribution of Trrack to reproduce the interactions. Provenance tracking using
Trrack can be instrumented to capture the interactions in the web-based visualization.
Trrack can replay the interaction and reproduce it.

Figure 3.2: The relationships between the analyst, the application, and the Trrack library
for storing provenance.
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Example Applications Trrack Provenance Visualization

Figure 3.3: Four example applications using Trrack, our provenance-tracking library, and
TrrackVis, the associated provenance visualization library, for different purposes, ranging
from action recovery to logging for user studies. TrrackVis, shown on the right, utilizes
custom icons, annotations, and grouping of nodes.



CHAPTER 4

PREDICTING INTENT BEHIND SELECTIONS

IN SCATTERPLOT VISUALIZATIONS

In this chapter, we introduce techniques to achieve goal G2 — making interaction

provenance semantically meaningful. Towards this end, we will introduce techniques to

semiautomatically capture the analyst’s pattern-based intent. Figure 4.1 shows the con-

tribution of this chapter toward this dissertation. The chapter is based on our previously

published work [2]. K. Gadhave et al., “Predicting intent behind selections in scatterplot

visualizations,” Inf. Vis., vol. 20, no. 4, Aug. 2021, pp. 207–228.

4.1 Motivation and Overview
When experts interact with a visual analysis system, they are frequently guided by a

domain-specific analysis question, such as identifying a gene that could be a drug target.

To answer this question, they execute a series of intermediate tasks, such as selecting a set

of correlated items for detailed analysis. In contrast to the high-level goal of answering a

domain-specific question, these intermediate tasks are based on patterns in the data: For

example, selecting outliers, clusters, or correlations. Such a carefully constructed selection

of items based on a domain-agnostic structure reflects a reasoning process — an intent —

by the analyst. We refer to the motivation behind these actions as the pattern-based intent

of an analyst. Pattern-based intents are distinct from higher level intents in that they are

free of context and based solely on the data. They are also distinct from low-level intents,

such as hovering over an item to read its label. In this chapter, we introduce methods to

infer these pattern-based intents for brushes in scatterplots. We define pattern-based intents

as the reasoning behind selections based on statistical patterns or structures in a dataset.

These selections can then serve as the basis for more sophisticated actions, such as filtering,

querying, aggregating, or labeling so that semantic knowledge about the purpose of the

selection can be applied to these actions.
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Why is capturing pattern-based intents important?

First, inferring intents based on partial selections can be used to autocomplete selec-

tions. To select outliers, for example, analysts would have to brush only a few examples

and could then autocomplete the selection instead of painstakingly brushing the examples

individually. autocomplete can also be used to correct a selection. For example, if an

analyst intended to select a cluster, reviewing the predicted cluster might reveal points

that should be added to the selection.

Second, making pattern-based intents available in provenance data improves the recall

and reproducibility of analytic processes conducted with visualization tools. By capturing

such processes at a higher level of abstraction than just low-level interactions, they become

more transparent when revisited either by the original analyst or a collaborator. Hence,

analysis sessions that capture intents are more justifiable and likely to increase trust in the

process.

Down the line, such rich provenance data also have the potential to enable reusing

visual analysis sessions on modified or updated data. For example, when an analyst first

removes outliers before proceeding with an analysis, that action could be translated into a

rule, which then could be used to automatically remove outliers from an updated dataset.

We use scatterplots and tabular data as common and important representatives of

visualization techniques and data types to demonstrate the feasibility of predicting intents

from selections. To identify the types of patterns that map to these pattern-based intents,

we conducted formative interviews with scientists who regularly use scatterplots in their

research.

Our primary contribution is a set of methods to detect and capture these pattern-

based intents for brushes and selections. We select data mining algorithms that are suitable

to detect patterns in a dataset and compute a large set of potential patterns for a dataset. We

introduce methods to address the potentially large space of dimensions and parameters.

Finally, we develop three approaches to score and rank the output of the algorithms

relative to an analyst’s selections.

Our secondary contribution is an implementation of these methods in an interactive

visualization technique, thereby demonstrating how they can be leveraged for autocom-

plete and provenance tracking. By showing ranked predictions of patterns for a selection,
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we create a mixed-initiative approach that lets analysts easily capture their pattern-based

intent by verifying a prediction. We provide the means to annotate these intents to tie them

to higher level domain goals and capture this information in a provenance graph.

We demonstrate the usefulness of our approach in a set of examples. We also show that

we can successfully predict pattern-based intents in a large, crowdsourced quantitative

study.

4.2 Patterns for Selections
When analyzing data, analysts have intentions at different levels of abstraction. We

are specifically interested in the pattern-based intents behind brushes or selections of data

items in scatterplots, which are still semantically rich but domain agnostic [110]. To define

a set of patterns that map to these intents, we first developed an initial classification

based on the literature [111], [112] and our own experiences working with scatterplots.

We then validated and extended the initial classification through interviews with six

scientists at the University of Utah who regularly use scatterplots in their data analysis.

We used a convenience sample of domain experts we had interacted with professionally.

Our inclusion criteria were: 1) regular use of scatterplots, and 2) and a willingness to

share scatterplots or data used in scatterplots. The interview protocol was reviewed by

the Institutional Review Board and classified as exempt from full review. We identified six

participants from nursing, astrophysics, chemical engineering, psychiatry and population

health, and surgery. The participants included one graduate student, one research scientist,

and four faculty members. We provided participants with paper printouts of scatterplots

of their own data and asked them to describe and highlight the kinds of patterns they

found interesting. The goal of the interviews was to validate our initial classification

of patterns based on the literature and to identify patterns we might have missed. The

interviews were video recorded and then transcribed. The transcriptions were coded by

two independent coders using a seeded codebook developed from the initial classification

of patterns: Outliers, clusters, categories, multivariate optimization, and range queries. A

table in the supplementary material shows the code frequencies from both coders for each

interview. Both coders identified many instances of outliers, clusters, categories, and range

queries. Only one of the two coders identified two cases of multivariate optimization. Both
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coders frequently identified correlation analysis, which we originally had not included in

our set of patterns. Based on this process, we identified the following data patterns that

match the analyst’s intents when analyzing data in scatterplots.

4.2.1 Correlations

Correlations are associations between two or multiple dimensions. Five of our six

interviews with domain experts mentioned them as a target pattern. Frequently, analysts

were looking to identify correlations in the overall datasets or parts of the data but also

attempted to find points that did not fit the correlations. They had the intent to identify

subsets of data that correlate, but also identify items that do not fit the correlation. In

several interviews, these points were identified as “bad data”. We found that participants

did an approximate visual regression analysis, identifying linear and nonlinear trends.

4.2.2 Outliers and Inliers

Outliers are data points that differ significantly from other items. They were brought

up as a pattern of interest in all six interviews. Frequently, analysts wanted to under-

stand what causes the data points to be outliers, relying on their background knowledge.

Outliers are also related to, but distinct from, the points that do not fit a correlation: For

example, an item can be an outlier in its magnitude but perfectly fit the correlation. Outliers

were also mentioned as bad data that should be filtered out. We consider both outliers and

“inliers,” i.e., the set of points that are not outliers, as target patterns.

4.2.3 Clusters and Groups

Clusters or groups of data points are items that are similar to each other but distinct

from the rest of the dataset. They were mentioned as a pattern analysts look for in three

of six interviews. Clusters were frequently not well defined in the data the experts we

interviewed analyzed.

4.2.4 Multivariate Optimization

One goal when analyzing data is to find data points that are dominant over multiple

dimensions. A typical example is to find a hotel that is both close to the city center and

affordable. The set of such points is often called a skyline [113]. Hotels in the skyline are
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such that no other hotel is cheaper and closer to the center. Skylines were brought up in

two of our six interviews and hence are the least frequently mentioned pattern.

4.2.5 Categories

An observed pattern can sometimes be traced back to the items being of distinct

categories. Four of our six expert participants mentioned they intend to select elements

by category. For example, one expert wanted to separate data points based on categories,

where one category corresponded to an experimental condition, and the other category

was made up of unmanipulated controls.

4.2.6 Ranges

Four of the six experts mentioned they select data based on numerical ranges. Several

experts stated these ranges can be based on domain conventions for setting cut-offs. We

observed range selections based on single or multiple dimensions, implying that ranges

can be combined for more complicated queries.

4.2.7 Discussion

We believe that the described patterns cover a broad range of use cases, but we do not

argue that our list of patterns is exhaustive. For example, domain-specific patterns might

be meaningful in certain contexts. Sarikaya et al. [112] describe tasks for analyzing scatter-

plots. Each of our patterns can be mapped to one or multiple tasks from their work. For

example, they mention tasks like identify anomalies, identify correlation, and search for known

motif, which can be mapped to the outlier, correlations and cluster pattern, respectively. Their

list of tasks, however, goes beyond patterns, including, for example, explore data, and they

do not explicitly mention some of our patterns, such as multivariate optimization.

Our pattern classification is limited to tabular data in scatterplots. We expect other

patterns, such as rankings, would be common in different representations. Finally, we

have sometimes included a pattern and its antipattern, such as outliers and nonoutliers, as

separate patterns, but we have not done so consistently for all patterns. We have included

anti-patterns for those cases where they were explicitly mentioned in our interviews

(outliers and correlation). However, anti-patterns could also be considered for other cases.
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4.3 Mapping Patterns to Intents
Most patterns that we identified in our formative study are also commonly targeted

in data mining, which implies that various algorithms can be used to identify them. We

leverage this diversity to calculate a broad set of patterns using different algorithms,

combinations of dimensions, and parameters. We then compare the computed patterns

with analysts’ selections and rank them according to that match. Whereas our initial step

creates a large set of patterns, the subsequent ranking makes these patterns manageable.

We explain the details of the algorithms used and our ranking approaches in this sec-

tion. Figure 4.2 gives an overview of our method.

Up to this point, we have implicitly assumed that the patterns we discussed appear in

two-dimensional space. In practice, however, many datasets have much higher dimension-

ality. Hence, a key question we have to answer is: For which dimensions should we calculate

predictions? We considered calculating patterns for all pairs of dimensions, all dimensions

that are actively brushed in the system, all dimensions that are visible in the system, all

dimensions in the dataset, and any combination of these options. Calculating all possible

options is computationally expensive, if not prohibitive, but also not necessary. As we aim

to predict the intent of analysts interacting with (possibly multiple) 2D scatterplots and

not to reveal high-dimensional patterns, we decided to limit predictions to: 1) pairwise

dimensions; and 2) the dimensions that are actively brushed. We believe that predicting

patterns on pairs of dimensions is the most appropriate choice for 2D scatterplots, as these

patterns match what is visible in the plot. This restriction to pairs of dimensions is also

supported by the fact that we did not encounter examples where experts wanted to select

items based on more than two dimensions. However, we also do not want to exclude the

possibility of analysts selecting higher dimensional patterns. Hence, we also calculate all

patterns for all dimensions that are actively brushed, as the brushes indicate that an analyst

is explicitly interested in a combination of these dimensions. Consequently, in a set of two

2D scatterplots visualizing dimensions A/B and C/D, and with active selections in both

scatterplots, we calculate and predict patterns in two dimensions for A-B and C-D and

patterns in 4D space for A-B-C-D.

For example, if an analyst would like to select the species in Fisher’s prominent Iris

flower dataset, a selection based on 2D combinations of dimensions would be difficult
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as the features are not well separated in any combination of 2D plots. In our system, they

could start by plotting sepal width and sepal length and brushing a group of similar plants.

They can further narrow the selection down by brushing in a second plot showing petal

length and petal width. This combination of selections triggers a prediction considering

all four dimensions. They can then select the cluster prediction that best matches their

intended selection, leveraging patterns computed on higher dimensional space.

4.3.1 Algorithms

Many algorithms can extract the patterns we describe. In our system, we deliberately

rely on standard algorithms that are robust and simple, although more sophisticated ver-

sions might exist. One reason for this is generality: Many data mining algorithms require

careful choices of hyperparameters, but choosing good parameters requires expertise and

trial and error, which is not acceptable for our use case. Instead, we choose parameters

for these simple algorithms by sampling the parameter space or relying on defaults. For

example, we run k-means with a k of 2-7 but use defaults for all other parameters. We do

not use evaluation approaches for the quality of the outputs; instead, we let our ranking

approach reveal the most suitable results. We also assume that the visualization uses linear

scales. However, an extension to logarithmic or power scales would be straightforward.

We use algorithms provided by Scikit-learn [92] unless noted otherwise and normalize the

data before the analysis.

We use two algorithms for clusters, DBSCAN and k-means, that have complementary

strengths since different algorithms pick up different kinds of clusters, such as circular

clusters or concave-shaped clusters. DBSCAN is based on a (parameterized) measure of

density (clusters are clouds of dense points of arbitrary shape), whereas k-means assumes

roughly spherical clusters and requires the cluster number as a parameter. If no clusters are

present, DBSCAN considers the whole dataset as one cluster (except for outliers), whereas

k-means always provides a segmentation of the dataset. We solve each formulation multi-

ple times with different parameterizations.

For outliers, we use two algorithms: The local outlier factory and the outliers identified

by DBSCAN. We treat inliers provided by the local outlier factory as a separate prediction

named nonoutliers.
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Multivariate optimization is used to find values that are optimal across multiple

dimensions. Although a general optimization would require weighting the value of each

dimension, skylines [113] are a generic approach that determines the items that are not

dominated by other points. As a skyline requires a definition of what is considered “good”

in each dimension (e.g., a low price, but a high customer rating is considered good for

a hotel), we compute skylines for all high/low permutations of the 2D cases. We limit

predictions to all-low or all-high for higher dimensional cases because calculating all

possible permutations would be computationally expensive.

The patterns that we have described so far use the output of an algorithm as a reference

against which we can compare an analyst’s selection. The range-based query pattern

differs from the other patterns in that we do not have such a reference because the values

used in range selections are typically external to a dataset. Our interviews have shown

that ranges can be the result of domain-specific knowledge or can be used to select all

the high or low values. We also found that analysts create complex queries by combining

multiple simple brushes and selections. The traditional approach to storing range-based

queries is to store the extent of brushes. However, this method is not general: It does not

work for other selection types, like point or paintbrush selections, and it is defined only on

spatial representations. To address this problem, we introduce a method that is based on

learning a decision tree from the input. We formulate the problem as a binary classification

problem, where the decision tree is used to separate the selected from the not-selected

points. As the decision tree uses information-theoretic measures, it learns a compressed

representation of the brushes made by the analyst. For example, the red, rectangular brush

in Figure 4.3(a) could be stored with four coordinates identifying each side of the rectangle.

A range query based on a decision tree, shown in Figure 4.3(b), stores a generalized and

simplified version with only two rules. We can also generalize a selection, similar to query

relaxation [34], based on this idea. By pruning the decision tree by one level, we extract the

most important components of the selections, as illustrated in Figure 4.3(c), which can be

useful to correct imprecise selections.

If a dataset contains categorical values, we treat each category as a separate pattern.

Individual categories could conceivably be shown in the scatterplot, but predicting an

overlap between a selection and a category is especially important if a dataset has many
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categories that cannot be shown at the same time.

Finally, we use regression as a framework to analyze correlations in the data. To

identify the sets of points that are part of a linear or quadratic correlation pattern, we run

the following algorithm on linear and quadratic regression datasets, where X is the entire

dataset, I are points marked as inliers, R is the regression model built with Scikit-learn, ri

is the residual for a point xi calculated from R, and iters is a constant for the maximum

number of iterations we execute if the algorithm does not converge earlier.

1. First we assume all the points in the dataset X are inliers I and build a Scikit-learn

regression model R on the I.

2. Then we calculate residuals ri using R for all points xi in I.

3. Next we define r̄ = median(ri|xi ∈ I).

4. Then we redefine I as all the points xi|xi ∈ X where ri < 2r̄.

5. We repeat points 1 to 4 for a predefined number of iterations iter, stopping early if

inliers do not change between iterations.

The pseudocode for the above algorithm is expressed in Algorithm 1.

4.3.2 Ranking Predictions

All the described patterns result in classifications for each item in the dataset. To rank

the predictions in our system, we compare these patterns with a binary classification

representing an analyst’s selection. Figure 4.4 shows an overview of our method. Some

algorithms, like clustering, produce a multiclass prediction, which we first transform into

a set of binary classifications using one-hot encoding. We can then use a similarity metric to

rank each of the predictions. We use a preprocessing step to remove duplicate predictions

for the same pattern from the set of predictions to rank. Duplicate predictions occur

frequently if a pattern is robust to different parameterizations of the same algorithm.

Algorithm 1 Calculate inliers for a correlation pattern.

I ← X ▷ initially mark all points as inliers
while iters > 0 and I is changed do

R← Regression(I) ▷ building regression model
r̄ ← median(ri|xi ∈ I) ▷ median residual over I
I ← xi|xi ∈ X ∧ ri < 2r̄ ▷ update inliers
iters← iters− 1

end while
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In the following subsection, we discuss three ways to rank the predicted patterns that

are optimized either to infer intent for an existing selection or to predict intent of a partial

selection, plus a special case for ranking range queries.

4.3.2.1 Ranking for Inferring Intent

Our baseline metric is the Jaccard index, which is a measure of similarities between

sets. We consider the set of selected items S and the set of items in a candidate pattern C.

The Jaccard index J(S, C) between those two sets is then defined as

J(S, C) =
|S ∩ C|
|S ∪ C| =

|S ∩ C|
|S|+ |C| − |S ∩ C| .

Here, a value of 1 corresponds to a perfect match, and a value of 0 indicates no overlap.

The Jaccard index is well suited to infer the intent of an existing, complete selection.

4.3.2.2 Ranking for Autocomplete

The tasks of autocompleting and inferring intent differ with respect to ranking a possi-

ble pattern: In the case of inferring intent for a completed selection, finding the best match

overall is necessary. In contrast, for autocompletion, the selection is partial, as the goal of

the task is to complete the selection. Hence, we needed to develop a ranking approach

that does not penalize incomplete selections. To do this, we rank the predictions using a

modified Jaccard index Jm. We define the similarity between sets S and C as

Jm(S, C) =
|S ∩ C|

|S ∩ C|+ |C \ S|+ w× |S \ C|+ r× |X| .

Here, X is the complete dataset. The modified similarity metric reduces the penalty for

points in S that are not present in C by down-weighting |S \ C| using a factor w < 1,

reflecting the goal of a partial selection to be automatically completed. The metric also

adds a regularization parameter of r to prevent boosting ranks in cases where few correct

points are selected. Empirically, we found that w = 0.2 and selecting r such that r× |X| = 3

gives good results for datasets that are suitable to be visualized in scatterplots. Due to the

regularization, the metric never reaches 1, but 0 still indicates no overlap.

4.3.2.3 Ranking Ranges

Our range-based queries rely on a decision tree of arbitrary depth; hence, the pattern

captured by that decision tree is always a perfect match to the selection. Consequently,



47

the range query would always rank at the top if we ranked it using the Jaccard index.

However, this ranking is inconsistent with what humans perceive as a good prediction of

their intent: When analysts create complex selections, they tend not to think of them as

long lists of rules. Instead, they likely select a pattern based on a higher level relationship

in the data. To address this inconsistency, we assign a score R to the range-based query

using a heuristic based on the depth d of the decision tree: R = 1
d2 . Our heuristic relies

on the assumption that simpler queries are more likely to match an analyst’s intent than

complex queries that require deep decision trees to represent them. The resulting score is

on the same scale as the Jaccard index and, hence, can be easily integrated.

4.3.2.4 Probabilistic Ranking

The Jaccard index considers each possible pattern independently. However, an an-

alyst’s intent is rarely independent, and some predicted patterns are more likely than

others. To address this, we propose a probabilistic framework that models these effects. We

denote predicted patterns with Ci ∈ C and the Boolean vector representing the analysts’

selection as S. Finding a probabilistic ranking of the predicted patterns is the same as

determining the conditional probability P(C|S) for each pattern. Framing the problem

using probabilities also gives us more interpretability as it relates the different intents to

one another: The probabilities for each intent add up to one:

∑
Ci∈C

P(Ci|S) = P(C|S)

∑
Ci∈C

P(Ci|S) = P(COutliers|S) + P(CClusters|S) + . . . = 1.

To compute P(Ci|S) we can use Bayes theorem. P(S|Ci) models how a particular intent

explains the current selection of the analyst. It is scaled by the term P(Ci), which is called

the prior. It describes the probability of each intent without considering additional informa-

tion. Finally, P(S) acts as a normalizing constant that ensures that the result is a probability.

To make this equation computationally tractable, we make use of two observations. First,

if we do not consider the order of selections, the problem that we are trying to solve is very

similar to text classification. Our description of the analysts’ selection is almost identical

to a bag-of-words (BOW) model, which is often used in this domain. The difference is that

typically, in text classification, the bag-of-words model describes the frequency of each
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word. In our method, the BOW model simplifies to a constant frequency of one if a point is

part of the selection. Second, by assuming that each feature (selected point) is independent

of another, we can compute P(S|Ci) using the naive Bayes method. In particular, we use a

multinomial naive Bayes classifier to compute the conditional probabilities. For each selec-

tion by the analyst, we train such a classifier on the output vector of each of the intents

Ci. Given a selection S as an input, the classifier yields the corresponding probability. Our

prediction is then the intent that maximizes this probability. Sometimes, selected points

are not part of any of the training samples, which leads to zero probabilities for the intent.

This is a common problem when using naive Bayes classifiers. We use Laplacian smoothing

to avoid this effect.

4.4 Visualization and Interaction Design
In this section, we describe how we implemented our methods in an interactive vi-

sualization system and explain our visualization design decisions. The interface allows

analysts to add scatterplots as desired. Categories can be visualized using glyph types

(see Figure 4.5). We provide a paint-brush feature [33] with three brush sizes, rectangular

brushes, and individual, click-based selections. The items in multiple rectangular brushes

can be treated as unions or as intersections within or between multiple plots. Points that are

selected individually or using the paintbrush are always treated as part of the intersection.

The labels of the items in a selection are shown in a separate view (see Figure 4.6), where

we also break down the number of items in the union and intersection of multiple brushes.

We designed the prediction interface, shown in Figure 4.6, as a ranked table with

scores shown as bar charts [114]. Each predicted pattern is a row. Hovering over a pre-

diction shows a preview, and clicking it replaces the selection with the prediction. The

different scores are shown as bar charts in the columns “Intent Rank” (the Jaccard index),

“autocomplete Rank” (the Jaccard index modified to be sensitive to partial selections), and

“Probability.” The table can be sorted based on these scores. Other columns denote the

“Matches (M),” i.e., the number of points that the prediction and selection share; the “Not

Predicted (NP)” items, i.e., the number of items in the selection but not in the prediction;

and the “Not Selected (NS)” items, i.e., the number of items in the prediction but not in

the selection. Combined with the similarity scores, these numbers give analysts a sense of
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how well each prediction matches the selection. Hovering over each of the M, NP, or NS

numbers highlights the corresponding items in the scatterplot in green (see Figure 4.6).

Each prediction also shows on which dimension it was calculated (and their order) in

the “Dims” column. We use short labels, which we replicate on the axes of the scatterplots

to identify the dimensions. For range queries, we display the dimensions that are used in

the decision tree.

When using autocomplete, analysts can sort by the autocomplete score. In addition,

a pop-up appears right next to a selection in the scatterplot (Figure 4.7) showing the top

three predictions for the current selection according to the autocomplete score. This popup

can be used as a shortcut to complete selections.

To enable reproducibility and recall, a provenance graph is visualized in the history

view (Figure 4.6) [1]. Every persistent action, such as adding a plot or making a brush, is

logged in the interface and can be retrieved at a later time. The provenance graph supports

branching analysis histories. A prediction can be logged as a semantically meaningful

insight, which can be supplemented with an annotation (see the annotation interface in

Figure 4.5). Textual annotations are designed to connect the pattern-based intent in the

data to the high-level, domain-specific goals. We use insights to group and aggregate the

provenance graph: All actions that were in service of a particular insight are grouped

together and can be collapsed. This grouping allows us to show a concise and semantically

meaningful analysis history while still storing a complete history of interactions. The

example in Figure 4.6 shows one expanded group, indicated with an orange frame, and

one aggregated insight in the inactive branch on the left.

The provenance graph contains all the information that is necessary to reconstruct

the semantics of a selection, which means that a selection is not just a list of IDs but

contains, for instance, the explicit range query or the cluster centroid and the algorithm

configuration that can be used to reproduce a specific pattern on updated data. In the

future, we plan to export the intents into machine-readable form so that an interactive

analysis and filtering session can be used, for example, in computational notebooks.

We chose to use scatterplots and point/brush-based selections for our prototype be-

cause Scatterplots are a commonly used and widely understood visualization technique

and are well-suited for brushing items. Combined with highlighting, scatterplots allow
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us to demonstrate analyst selections and system predictions clearly. We chose to focus

on selections because they are not only important by themselves but also are frequently

precursors to more complex interactions like filtering, grouping, labeling, or segmentation.

Our goal was to demonstrate the capturing of intent at the selection stage.

The visualization system described here is a technology demonstration that we devel-

oped with the goal of showing and validating the methods to detect and capture intent.

We expect that a production system using our approach will use a simplified user interface

for ranking intents, potentially closer to the simplified selection interface we used for our

study (shown in Figure 4.7).

4.5 Results
We have implemented our prediction approach in an open-source prototype and have

also provided a variety of real and simulated datasets. An online version of the tool is

available at https://vdl.sci.utah.edu/predicting-intent/, and the source code is available

at https://github.com/visdesignlab/intent-system.

We demonstrate our results through examples of brushes and the matching prediction.

Figure 4.5, for example, shows a partially selected cluster that is also predicted as a cluster.

Figure 4.6 shows a brush that closely matches a category and a range. Figure 4.7, which

shows the study stimulus, gives an example of how our system can be used to auto-

complete complex brushes. The plot, overall, shows a strong linear correlation between

X and Y. Here, a participant has selected four points in a dataset (the four points in

the top-left corner) and intended to select outliers. Our system recommended a list of

predictions on the right and shows the top three predictions on the plot itself. Selecting a

prediction in the pop-up or the ranked table on the right reveals the points recommended

for autocompleting the selection in green. Here, the first pattern matches the outliers above

the main trend, and the third pattern matches all outliers, including those above and below

the main trend. We provide further examples for all patterns in the supplementary material

and refer to our prototype for an interactive demonstration.

https://vdl.sci.utah.edu/predicting-intent/
https://github.com/visdesignlab/intent-system
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4.6 Evaluation
We explored various approaches to evaluate our methods. First, we decided to focus

our evaluation on the primary contribution of this chapter: A set of methods to detect and

capture analysts’ pattern-based intents behind selections. We do not evaluate details of our

visualization design, as they are meant to be technology demonstrations in service of our

primary contribution. To validate our primary contribution, we have to determine how

well our predicted intents match the mental models of analysts. To do this, we considered

qualitative evaluation with experts using our system, case studies, usage scenarios, and

quantitative evaluation. We ultimately chose a two-pronged approach: A demonstration of

our results through a prototype with many preloaded datasets illustrated by a discussion

in the previous section and the supplementary material and a quantitative evaluation. For

our quantitative study, we had to make trade-offs among ecological validity (realism),

internal validity (isolating factors), and external validity (generalization), and we opted

for a controlled crowdsourced study with a simple interface to have control over the

factors (internal validity) and to include diverse participants, beyond just experts (external

validity) [115].

We validate our predictions using autocomplete as an application scenario (see Fig-

ure 4.8-I). This choice is pragmatic: Even though our ability to capture mental models is

at least equally important to autocomplete, evaluating autocomplete is significantly easier

because it enables us to run a large-scale study and cover various types of patterns. We

argue that success in predicting correct pattern-based intents in an autocomplete scenario

is transferable to capturing pattern-based intents for the purpose of reproducibility and

reuse.

In our study, participants were instructed to select a specific pattern in two conditions:

Either using only brushes or using brushes and autocomplete based on our prediction

system (see Figure 4.8-II). The study is designed to test the validity of our approach using

two primary measures: Accuracy and match between intended and predicted pattern.

We chose a subset of our patterns: Correlations (linear and quadratic), outliers, clusters,

and multivariate optimization. We excluded ranges since they cannot be used for autocom-

plete, and categories since selecting elements belonging to categories would be tedious in

our system without autocomplete, and yet an alternative user interface design that enables
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participants to explicitly select categories would solve that problem trivially.

We also describe the study in a data comic, shown in Figure 4.8, because data comics

are an effective way to communicate the complex procedures of a study [116].

4.6.1 Procedure

We used a within-subjects design for two conditions: User-driven, using only manual

brushes, and computer supported, which adds a simplified version of our prediction

interface. Participants were instructed to select points that belong to a specified pattern.

The interface, shown in Figure 4.7, was simplified to show only the rankings tailored

to autocomplete. The names of the predicted patterns were not shown to avoid biasing

participants. To counter-balance any learning effects, the conditions were assigned in

random order, the task order in each condition was randomized, and the datasets were

randomized. We recruited 128 participants for the study on Prolific, a crowdsourcing

platform with a research focus. Based on the completion times of pilot experiments, each

participant was paid $ 6.25 USD for an estimated duration of 25 minutes, resulting in an

hourly rate of about $ 15 USD. All participants viewed and agreed to an IRB-approved

consent form. To be eligible, participants had to use a laptop or desktop device and either

the Chrome or Firefox browsers.

Our procedure consisted of five phases (see Figure 4.8-III) and followed guidelines on

training participants for complex analysis tasks [107]: Passive training, in the form of an 8-

minute video introducing the types of patterns and the interface; active training, where they

had to complete representative tasks, but could use a help-feature to reveal the answer;

trials in the two conditions; and a short poststudy survey. The full study with all phases is

available online.

Our initial study had a negative result for outlier detection. We found that our outlier

prediction algorithms did not perform adequately after investigating the reasons behind

this result. The algorithm we used at that time was the Local Outlier Factor (LOF), which

compares the local density of the object to the density of its neighbors. The k-nearest

neighbors algorithm gives this local density. The algorithm is good at detecting local

outliers, i.e., data points that are some distance from a dense cluster are considered outliers,

whereas a point that is far from a sparse cluster might be considered a part of the cluster

http://3.136.64.162:5000/index.html#/study
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due to the cluster being sparse. We added another outlier detection algorithm, DBSCAN,

to the interface. DBSCAN clusters the given data into density-based clusters and marks

the points lying in the low-density regions as outliers, which ensures that points that are

outliers with respect to the entire dataset are correctly marked as outliers most of the time.

We re-ran the study only for the outlier task. We edited the instructional video to remove

explanations on other tasks; otherwise, the procedure remained the same. We recruited

130 participants for the revised outlier-only study. Participants were paid $ 3.52 for an

estimated study duration of 14 minutes. For transparency, we report on both our original

outlier results (referred to as “outlier old” going forward) and the revised outlier condition

(“outlier revised”).

4.6.2 Data and Tasks

We generated synthetic 2D datasets with between 200 and 222 items for 1) linear

correlations, 2) quadratic correlations, 3) outliers combined with a linear correlation, 4)

outliers combined with a single cluster, 5) clustered datasets with three or four clusters, and

6) datasets for multivariate optimizations, each in three levels of difficulty: Easy, medium,

and hard. The levels of difficulty were driven by how apparent a pattern is. For example,

an easy clustering dataset had fully separated clusters, whereas a hard dataset had clusters

that significantly overlap. We generated two variations of each combination (to be used in

the different experimental conditions) for a total of 36 datasets for the study and 6 datasets

for training tasks. For each dataset, we generated ground-truth through human labeling.

Patterns such as clusters or outliers can be ambiguous, and our goal was to match the

human perception of those patterns. Hence, we chose to ask expert coders to label the

datasets. Our coders were five doctoral students in visualization not involved with this

work, with experience analyzing these patterns. We instructed them to carefully label each

dataset for a specific pattern, with no algorithmic support. We then treated all points that

four to five of our coders selected as correct, the points that two to three coders selected as

ambiguous (neither correct nor incorrect), and the points that only a single or no coder

selected as incorrect. The supplementary material contains images of the datasets, the

ground-truth labels, and the code used to generate them.

The tasks instructed participants to select one of the patterns they learned about during
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training. As an example, for outliers, the prompt was: “Select the points that are outliers,

i.e., that are not following the main pattern you see in the data” (see Figure 4.7). For

clusters, a specific cluster was marked in the plot with a red cross, and the prompt was

“Select the points which belong to cluster centered around the cross.”

4.6.3 Measures

We measured accuracy, time to completion, the type and rank of a predicted pattern

chosen by a participant, and survey responses. After each question, we also elicited

confidence and perceived difficulty on a 5-point Likert scale and asked for comments. We

also logged detailed interactions in a provenance graph. We calculated the accuracy of the

participant’s responses by using the Jaccard index of the response overlapping with the

ground-truth, where we first removed the ambiguous points (hence, selecting ambiguous

points neither benefits nor penalizes a score). For the time measures, we subtracted the

times when the browser window showing the study was inactive. The final survey asked

about satisfaction with different features and experience with visualization and statistics.

Demographic data are provided through Prolific participant profiles.

4.6.4 Pilots, Analysis, and Experiment Planning

We conducted several tests and pilots to evaluate tasks, system usability, data collec-

tion modalities, measures, and our procedure. We estimated the number of participants

required to uncover effects based on a pilot run on Prolific with 10 participants. We used

a power analysis to estimate the variance in our measures, which we combined with

our observed means to estimate the number of trials required. Due to the limitations

of null hypothesis significance testing, we base our analysis on best practices for fair

statistical communication in HCI [117] by reporting confidence intervals and effect sizes.

We compute 95% bootstrapped confidence intervals [118] and effect sizes using Cohen’s d

to indicate a standardized difference between two means. For the accuracy values, we also

supplement our analysis by including p-values from Wilcoxon signed-rank tests (given

the non-normal distributions of our data and the within-subjects design). We consider a

Bonferroni-corrected threshold for significance of p = 0.0083.
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4.6.5 Expectations

We expected that accuracy would be higher using computer-supported mode for the

medium and hard datasets and that accuracy would be about the same and consistently

very high with the easy datasets. We assumed that the value of the prediction system

would be greater on ambiguous patterns and that obvious patterns would be easy to select

manually, given the brushing tools we provided. We also expected that participants would

perceive predictions as accurate and the interface as user-friendly, and they would prefer

the computer-supported mode. Finally, we initially also expected computer-supported

mode to be faster, but we realized during testing and pilots that this would unlikely be

the case.

4.6.6 Results

The original study had 128 participants, and the follow-up outlier study had 130

participants. After reviewing the provenance data using the reVISit system [119], we re-

alized that participants sometimes chose not to use predictions in the computer-supported

condition. Since our goal was to measure the effects of using predictions, we removed

trials that were not completed using predictions in the computer-supported mode. To

avoid biasing our data by removing low-effort results in one condition, we also always

removed the equivalent trial in the user-driven mode. We include data for all trials in our

supplemental material. Based on these criteria, we retained 1381 of 2268 trials in each of the

computer-supported and user-driven conditions (826 of 1560 for the second study). Hence,

when autocomplete was available, participants chose to use it in 61% of cases (53% for the

second study). We argue that the removal of these trials is justified and even necessary, but

this argument leads to the question of why predictions were not used in many cases. We do

not have definitive answers for that question since conducting follow-up interviews with

crowd participants is not possible. We do believe, however, that skipping the prediction

interface is a sign of a crowd participant minimizing their effort, which is well known to

be a challenge in crowdsourced studies [120].

We analyze easy, medium, and hard tasks together, resulting in 1785 valid trials across

both studies. Figure 4.9 summarizes our main results. Accuracy and speed for every task

are shown individually in Figure 4.10 and Figure 4.11. We also break down results by
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levels of difficulty (see Figures 4.12 to 4.14). Accuracy was fairly high in both conditions

for clusters, linear regression, and quadratic regression (median of 84-98%), with a small to

medium, significant effect showing higher accuracy in the computer-supported condi-

tion. The computer-supported clustering condition shows a small “bump” at an accuracy

of around 0.5. Analysis of provenance data has revealed that this bump is due to one of

the clustering predictions aggregating two ground-truth clusters into one.

Overall accuracy for the multivariate optimization task was lower, with accuracy in

the computer-supported condition being significantly higher, with a small to medium

effect size. Interestingly, many of our coders omitted points that are contained in the

formal definition of a skyline, resulting in a “bump” of accuracy scores at around 0.85,

representing participants who have selected the formally correct skyline as recommended

by the algorithm.

The accuracy for our original outliers condition (“outlier old,” in Figure 4.9) was

significantly lower in the computer-supported condition than in the user-driven condition.

Inspection of the provenance data revealed that, in many cases, applying a prediction

for outliers made user selections worse. As previously discussed, we re-ran our study

using a different outlier prediction algorithm (outliers as reported by DBSCAN). In the

second study, we saw significantly higher accuracy for computer-supported mode, al-

though overall accuracy had gone down. The reduced overall accuracy could be caused

by reduced learning effects in the study with fewer tasks.

The difference in accuracy in favor of the computer-supported condition was more

pronounced in medium and hard tasks. The accuracy in easy tasks was similar for both

conditions (see Figures 4.12 to 4.14).

Our exit survey revealed that participants generally found predictions accurate (aver-

age score of 3.6 on a 5-point Likert scale) and helpful (average score of 3.8 on a 5-point

Likert scale). In terms of the interaction choices for selections, the paintbrush selection

was rated more helpful (average 4.5/5) than the rectangular brush (average 2.3/5) and

individual point selection (average 3.3). Every task was followed by a mini-survey in

which participants reported their confidence in their selection and self-reported the dif-

ficulty of the task. Confidence and difficulty were reported on a 1-5 scale, with 1 being

confident, 5 being not confident, 1 being easy, and 5 being difficult. Confidence was
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higher, and difficulty was reported lower for the computer-supported condition for all

tasks except outliers, where they were about the same, suggesting that participants trusted

the predictions when they matched their mental model.

We also analyzed whether the type of predictions chosen by participants matched the

patterns they were instructed to select, which is a useful metric to judge the quality of our

predictions and rankings. We see a strong overlap between prediction and target pattern

(see Table 4.1); participants selected the right type of pattern 70% of the time from our

predictions, and used the correct pattern or a reasonable substitute (e.g., “outside linear

regression” instead of “outlier”) 77% of the time. There were variations between patterns:

Clusters were almost perfectly matched, whereas regression patterns were less frequently

correctly matched. Notably, quadratic and linear regression were frequently substituted,

and nonoutliers were frequently chosen for regression tasks as well.

Time to completion was generally slower by 3–12 seconds (with completion times

ranging from 21-37 seconds on average) for the computer-supported condition (see Fig-

ure 4.15). Given the higher accuracy — overall, the median accuracy for computer-

supported mode was 3–9% higher (excluding the old outlier condition) — but the slower

response times, it is worth asking whether this a trade-off worth making. In retrospect,

the longer response times for computer-supported work make sense. Previous work by

Saket et al. has shown that task completion times in multiparadigm interfaces can be higher

compared to a single paradigm interface [69].

However, Saket et al. also argue that optimizing efficiency is not a suitable goal in

many contexts and that multiparadigm tools can make analysts think more carefully. How

meaningful are 10 seconds of an analyst’s time when trying to understand an important

dataset? We argue that accuracy by itself is much more important than time, when the time

difference is a few seconds, for most analysis scenarios.

Furthermore, for our study specifically, we were able to show not only that the accuracy

in computer-supported mode was higher but also that we were able to correctly predict

patterns based on participant selections in most cases, which has the benefit that this data

is now available as structured information that can be leveraged for reproducibility and

reuse.
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4.6.7 Study Discussion

Overall, our expectations were verified: Accuracy was consistently higher in the

computer-supported condition, and we were able to correctly predict a large percentage

of patterns. In terms of predicted patterns, quadratic and linear regression showed lower

accuracy in predicting correct patterns, even when including nonoutliers as a reasonable

substitute. This result is likely due to the linear and quadratic regression algorithms using

our thresholding being quite similar. Creating an umbrella intent “regression” would be

one possibility to address this problem.

Although we were able to show that we can successfully predict pattern-based intents

for autocomplete, the question remains how useful real-life analysts will find the ability to

track semantically meaningful pattern-based intents. To answer this question, we plan to

develop our prototype system into a visual exploration tool that enables actions derived

from selections, such as filters and groupings and provides features such as sharing,

replaying, and exporting the analysis process into other pipelines or tools such as Jupyter

Notebooks. We can then design a more comprehensive evaluation strategy that can vali-

date the efficacy of this system with regard to reproducibility and reusability.

4.7 Discussion
In this work, we demonstrate a method for semiautomatically detecting and capturing

analysts’ pattern-based intents. Detecting intents is useful for two scenarios: To autocom-

plete selections and to be able to semiautomatically record semantically rich insights in

provenance data and, therefore, make visual analysis processes reproducible and justifi-

able. By capturing pattern-based intents, we can, for example, more easily create curated

analysis stories by leveraging ideas from prior work on using provenance information to

create interactive data stories [50]. The capability to capture pattern-based intents opens

up numerous other prospects as well.

4.7.1 Integration in Computational
Workflows and Analysis Reuse

Our interviews show that analysts frequently use scatterplots in combination with

statistical modeling tools and computational notebooks, such as R-Markdown or Jupyter

notebooks. Having semantically meaningful intents available means that we can generate
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robust analysis scripts based on interactive visualization, supporting more automatic com-

putational workflows. For example, if an analyst uses our tool to select a specific cluster

for downstream analysis, we will be able to generate code that will select this cluster even

for updated data.

4.7.2 Learning from Interaction

Through large-scale capturing of intents, we can empirically learn patterns that an-

alysts select to further improve our predictions. Such a system could dynamically “au-

tocorrect” analysis and allow large-scale feedback on the usefulness and effectiveness of

various features within complex tools. For instance, a software tool with a diverse set of

users and skill levels would allow intent to be trained on experienced users so that novices

are guided quickly toward effective strategies [59].

4.7.3 Generalization to Other Visualization
Techniques and Data Types

We chose to limit ourselves to scatterplots and tabular data because we believe that

these are important cases that can be used to demonstrate the feasibility of our approach.

There are numerous extensions and generalizations of our work, ranging from implement-

ing more brushing tools, such as lasso selections, to allowing analysts to filter datasets.

We argue that our framework could be extended to other visualization techniques, such

as parallel coordinates, histograms, or tabular visualizations [121] with small adaptions.

Other visualization techniques could also provide additional clues we could use for pre-

dicting intents. For example, in a tabular visualization, the action of sorting a table is likely

important to understand the intent of a subsequent selection. Other data types, such as

time series or network data, are likely amenable to the same approach but would require

identifying appropriate patterns and the corresponding algorithms.

4.7.4 Higher Dimensionality

Although we allowed analysts to explore multiple two-dimensional views, building

a mental model of high-dimensional data can be difficult. A potential solution to this

problem is dynamic dimensionality reduction. That is, given points already selected, the

system could dynamically adjust a linear projection (e.g., PCA) to best capture those
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datasets in a 1-, or 2-dimensional subspace. Alternatively, given more complex selections,

like clusters of relevant points, dimensionality reduction can use techniques such as Latent

Discriminant Analysis to find the best linear projection to separate the clusters. Another

approach is to label pairs of points that should be close (or far). Using these pairs, a

similarity learning method could provide the best linear projection that satisfies those

constraints. An intent-driven tool could suggest the most informative point-pairs to label.

4.7.5 Scalability

Our current system recalculates the predictions every time an analyst interacts with the

system. This delay in the prediction mechanism can be prohibitive for large datasets, large

combinations of dimensions, or more parameterizations for algorithms. The prediction

mechanism’s two main phases are to run the machine learning algorithms on the datasets

and to rank the results based on an analyst’s selection. Only the second step has to be done

in real time. The first computationally expensive step can be done once, on data upload,

as an offline step. Precomputing would also allow us to include a larger combination of

dimensions and add more algorithms and parameterization without substantially adding

to the prediction time.

4.7.6 Active Pattern Exploration

Instead of just passively suggesting which pattern matches a selection, we could also

suggest various patterns in the data set as possible aspects to explore at the beginning of

an analysis. In this way, analysts could, for example, see all computed skylines without

ever using selections. The downside of such an approach is the potential for increased

complexity in the UI: Analysts would be confronted with many different analysis choices,

and rankings or suggestions would be difficult to achieve without prior input from the

analyst.

4.7.7 Multiverse Analysis

As in any multistep analysis process, analysts must make choices about their analysis

paths, leaving other reasonable paths behind. As we capture analysis paths explicitly,

it would be intriguing to also explore different analysis paths from the multiverse and

visualize the results of these alternatives using a framework like Boba [122].
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4.8 Limitations
Even in a simple scatterplot environment, our work has identified numerous complex-

ities. When more than four dimensions of a dataset are relevant in the exploration, the

combinatorial complexity of all the possible intents we model is significant. One potential

solution is to automatically filter entire classes of intents so that not all of them need to be

explicitly explored.

Showing many scatterplots also raises the problem of fitting them visually on the

screen. Predicting intents in higher dimensions based on selections in 2D scatterplots

is tricky because scatterplots do not provide a good visual representation of high-

dimensional patterns. We plan on addressing this problem by providing additional visu-

alizations for visualizing high-dimensional data, such as parallel coordinate plots or heat

maps, or by using dimensionality reduction.

Our tool currently does not handle missing data. When working with our collaborators,

we frequently encountered datasets that were generally well-suited to our approach but

contained invalid or missing cells. On the front end, we plan to provide separate views for

items with missing data. On the back end, appropriate interpolation and fitting strategies

could be a solution.

Our current approach to parameter space exploration is naive. We could improve our

prediction by evaluating our classifications using methods such as silhouette analysis for

clustering and varying the parameters accordingly.

In some cases, meaningful selections might not correspond to predicted patterns, yet

our ranking system will still recommend a pattern, although with low scores. We consid-

ered including a “no pattern” prediction in the ranking but ultimately decided against it

since it would be difficult to rank in either of our ranking frameworks. However, analysts

can explicitly record “custom insights” that are not based on any ranked pattern to account

for the same.

As analysts interact with a visualization over a longer period of time, the provenance

graph keeps growing. The Trrack library [1] can demonstrably handle a large number

of actions, but the provenance visualization will become hard to navigate. As a partial

remedy, we group the actions in a provenance graph when an insight has been generated,

which allows the collapse of the provenance visualization to give a higher level overview.
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We can improve this approach by allowing analysts to manually group provenance actions

and collapse the tree further. Finally, search functionality on the provenance graph may be

a scalable solution to the problem [52].

4.9 Conclusion
In this chapter, we introduce the first approach to predict, capture, and annotate

pattern-based intents of analysts as they interact with data in a scatterplot. We use a mixed-

initiative approach, leveraging data mining methods to identify patterns in datasets,

ranking potential matches based on selections, and allowing analysts to specify which (if

any) of the predicted intents fit their actual intents. We discuss two application scenarios:

Autocompleting selections and increasing reproducibility. We believe that our work will

form the foundation of many future projects. The immediate next step is the application of

different visualization techniques and data types. Other prospects include learning from

interactions and integrating the output of interactions in visualizations into computational

workflows.
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Figure 4.1: Techniques for making interaction provenance semantically meaningful. Inter-
action provenance captured by Trrack is used to semiautomatically infer the pattern-based
intent of the analyst for an interaction. Analysts can also annotate any interaction in the
provenance. Augmenting the interaction provenance with the analyst’s intent and the
analyst’s annotations allows us to more meaningfully reproduce the interactions.

Figure 4.2: Overview of our method for mapping patterns to intents. (a) An analyst
makes a selection in a scatterplot. (b) The system calculates many different patterns using
various algorithms that we use for prediction. (c) We rank how well the analysts’ selection
matches the predicted patterns. (d) The analysts select their intended pattern and provide
annotations to capture their thoughts.
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Figure 4.3: Using decision trees to capture range-based queries. (a) A brush is shown in
red. The brush geometry can be described with four rules. (b) The decision tree simplifies
the brush to two rules, illustrated in dark blue in (a). (c) A simplified decision tree where
one level has been removed. The result is a simple rule, which also includes a point that
was not in the original selection, contained in the light-blue area in (a).
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Figure 4.4: Overview of our method for ranking patterns for an analyst’s selection based
on a clustering example. (a) A dataset exhibits two clusters, shown in blue and green. (b) A
clustering algorithm detects the clusters and assigns labels to the points. (c) We use one-hot
encoding to transform the output of each algorithm into disjoint Boolean vectors. (f) An
analyst’s selection results in (e) another Boolean vector. (d) These Boolean vectors act as
inputs to compute Jaccard indices and the naive Bayesian classifier, which are then used
as scores for ranking.
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Figure 4.5: Scatterplots showing three dimensions of a dataset. An analyst has brushed
points in the right scatterplot based on a pattern they see (orange points). Our system
predicts possible intents and ranks them by their match to the current selection. The points
in green show a cluster that is recommended by our system based on the selection. When
an analyst accepts this suggestion, a semantically rich log entry is stored in a provenance
graph, shown on the right.

Figure 4.6: The prediction interface shows ranked patterns based on the three scores. The
“Category” prediction for a selection (orange points, rectangle brush) is shown in green
in the scatterplot. Hovering over a row in the prediction interface shows a preview of the
prediction. Clicking the row replaces the current selection with the predicted selection.
The M, NP, and NS columns show the number of matching items (M), not predicted
items (NP), and predicted but not selected items (NS). Hovering over a cell highlights
the corresponding items in the scatterplot in green. The “Dims” column displays the
dimensions considered for calculating a pattern. The “Probability” column encodes the
probabilistic ranking. The provenance visualization (right) shows the steps that lead to the
current selection and prediction. Insights (orange) are used to group and aggregate steps
that lead to them.
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Figure 4.7: The study interface for the computer-supported condition for an outlier task.
The user-driven condition was identical, except for the absence of the ranking on the right
and the prediction pop-up.



67

PATTERN 1

PATTERN 2

PATTERN 3

> USER IS 
TRYING TO 
SELECT 
OUTLIERS

AUTO 
COMPLETE

CLUSTER OUTLIER LINEAR OUTLIER LINEAR CORRELATION

QUADRATIC CORRELATION CLUSTER MULTIVARIATE OPTIMIZATION

PARTICIPANTS WERE ASKED TO SELECT THE FOLLOWING PATTERNS.

AUTO
COMPLETED 
POINTS

CONDITIONS

AUTO COMPLETE 
OPTIONS

PATTERN 1

PATTERN 2

PATTERN 3

6 PATTERNS
USER

PASSIVE TRAINING

HELP

ANSWERS

ACTIVE TRAINING

WATCH TRAINING VIDEO PRACTICE WITH REAL DATA

?

FULL FACTORIAL DESIGN

HOW ACCURATE DID YOU 
FIND THE PREDICTIONS?

DO YOU PREFER USER−DRIVEN OR 
COMPUTER-SUPPORTED SELECTIONS?

PATTERN 1

PATTERN 2

PATTERN 3

? ! !

TRIAL FILTER

TRIALS WHERE AUTO COMPLETE WAS NOT USED IN THE COMPUTER-SUPPORTED 
CONDITION WERE FILTERED OUT. WE ALSO FILTERED OUT THE CORRESPONDING 
TRIALS IN THE USER-DRIVEN CONDITION. 

?

SELF-REPORTED
DIFFICULTYCONFIDENCE

THE ORDER OF CONDITIONS WAS 
RANDOMLY ASSIGNED.

DID NOT USE 
AUTO COMPLETE

USER- 
DRIVEN

COMPUTER- 
SUPPORTED  

61%
1381 TRIALS

39%
887 TRIALS

53%
826 TRIALS

47 %
734 TRIALS

FIRST STUDY  SECOND STUDY

CORRECT PATTERN
0 100 %

I’D LIKE TO 
EXAMINE 
OUTLIERS...

MOTIVATION

USER SELECTED
POINTS

2

TASKS AND CONDITIONS

COMPUTER-SUPPORTEDUSER-DRIVEN

II

I

PATTERNS & TASKS

DIFFICULTIES

ARE DATA ANALYSTS MORE ACCURATE AND/OR FASTER IN THEIR 
ANALYSIS WHEN GIVEN AUTO COMPLETE FUNCTIONALITY ? 

HOW WELL CAN THE SYSTEM PREDICT THE CORRECT PATTERN? 

THE QUESTIONS ARE...

EASY MEDIUM HARD

STUDY DESIGNIII

DUE TO ISSUES WITH THE OUTLIER CONDITIONS IN THE FIRST STUDY,  
WE RAN A SECOND STUDY WITH ONLY THE OUTLIER CONDITIONS.

WE RECRUITED 128 / 130 PARTICIPANTS FOR THE FIRST AND SECOND STUDY RESPECTIVELY. 

STUDY SEQUENCE

2 CONDITIONS 3 DIFFICULTIES FOR EACH CONDITION, TASKS 
WERE RANDOMLY ORDERED.

?

LEAVE FEEDBACK ON THE TASK

AT THE END OF THE STUDY, PARTICPANTS WERE SURVEYED ON THEIR PREFERENCES.

ANALYSIS & RESULTSIV

USED AUTO 
COMPLETE

RESULTS

1

34

PERFORM  STUDY TRIALS

? 
? 

REPEAT FOR 
EACH TASK

Computer-supported 
selections were more 
accurate.

Our auto complete system identified 
the correct patterns most of the time.

70%

CORRECT + REASONABLE PATTERN

0 100 %
77%

PATTERN 1

PATTERN 2

PATTERN 3

ARE PARTICIPANTS MORE ACCURATE AND/OR 
FASTER IN THEIR ANALYSIS WHEN GIVEN AUTO 
COMPLETE FUNCTIONALITY ?

HOW WELL WAS THE SYSTEM ABLE TO PREDICT 
THE CORRECT TYPE OF PATTERN? 

ACCURACY TIME

WE RECORDED PERFORMANCE METRICS MEASURING ACCURACY, THE SELECTED PREDICTION, AND 
TIME. WE ALSO RECORDED PARTICIPANT-REPORTED VALUES OF CONFIDENCE AND DIFFICULTY.

STUDY METRICS

PATTERN 1

PATTERN 2

PATTERN 3

CLUSTER

SELECTED PREDICTION

PATTERN 1

PATTERN 2

PATTERN 3

Computer-supported 
selections were slower.

REASONABLE PATTERNS ARE THOSE THAT CAN BE 
CONSIDERED ANALOGOUS TO THE CORRECT PATTERN. 

SEE FIG. 6

5 PARTICIPANT SURVEY

SEE FIG. S13

SEE FIG. 8

SEE TABLE 1

SELF-REPORTED
DIFFICULTYCONFIDENCE

Figure 4.8: Data comic [116] showing the motivation, tasks, conditions, study design,
analysis, and results of our study.



68

0.896  −  0.919  −  0.941

0.852  −  0.878  −  0.901

n=257, W=4039, p=3.40e−04, d=0.212

0.967  −  0.976  −  0.982

0.907  −  0.926  −  0.943

n=265, W=6480, p=3.03e−08, d=0.414

0.945  −  0.954  −  0.961

0.911  −  0.924  −  0.936

n=248, W=8990, p=6.71e−05, d=0.343

0.759  −  0.794  −  0.826

0.667  −  0.705  −  0.741

n=213, W=5193.5, p=1.22e−06, d=0.331

0.697  −  0.722  −  0.744

0.783  −  0.807  −  0.829

n=398, W=43793.5, p=6.15e−10, d=−0.353

0.706  −  0.735  −  0.763

0.647  −  0.67  −  0.695

n=413, W=27483.5, p=6.92e−06, d=0.237

Cluster

Linear
Regression

Quadratic
Regression

Multivariate
Optimization

Outlier
Old

Outlier
Revised

0.00 0.25 0.50 0.75 1.00

CS

UD

CS

UD

CS

UD

CS

UD

CS

UD

CS

UD

Figure 4.9: Task-specific accuracy shown as medians and 95% confidence intervals on
a scale of 0–1. Blue (UD) encodes the user-driven condition, orange (CS) the computer-
supported condition. Violin plots visualize the underlying distribution. The numbers on
the left show the median and the extent of the 95% confidence interval. We also give the
number of trials per condition for each task (n), Cohen’s d for effect sizes (d), and p-values.
All differences are significant. Note that the number of trials varies due to our exclusion
criteria and that the outlier tasks have higher numbers of trials as they group multiple
outlier configurations (outliers on top of clusters, regressions, etc.) Also note that “Outlier
Old” shows the result of our original study, whereas “Outlier Revised” shows the result of
a separate study with an improved outlier detection algorithm.



69

0.967 [ 0.939 , 0.991 ]

0.967 [ 0.927 , 1 ]

0.959 [ 0.921 , 0.99 ]

0.982 [ 0.958 , 0.996 ]

0.797 [ 0.738 , 0.852 ]

0.598 [ 0.531 , 0.672 ]

0.8 [ 0.719 , 0.876 ]

0.747 [ 0.676 , 0.823 ]

0.968 [ 0.949 , 0.982 ]

0.977 [ 0.963 , 0.986 ]

0.734 [ 0.673 , 0.8 ]

0.819 [ 0.768 , 0.868 ]

0.78 [ 0.733 , 0.822 ]

0.856 [ 0.813 , 0.901 ]

0.893 [ 0.862 , 0.923 ]

0.959 [ 0.951 , 0.965 ]

0.87 [ 0.833 , 0.907 ]

0.821 [ 0.777 , 0.863 ]

0.898 [ 0.858 , 0.93 ]

0.824 [ 0.784 , 0.865 ]

0.86 [ 0.834 , 0.886 ]

0.918 [ 0.897 , 0.935 ]

0.701 [ 0.633 , 0.769 ]

0.783 [ 0.712 , 0.847 ]

0.9 [ 0.858 , 0.935 ]

0.942 [ 0.906 , 0.971 ]

0.926 [ 0.891 , 0.954 ]

0.986 [ 0.982 , 0.99 ]

0.873 [ 0.827 , 0.911 ]

0.713 [ 0.673 , 0.752 ]

0.587 [ 0.53 , 0.645 ]

0.605 [ 0.551 , 0.656 ]

0.948 [ 0.934 , 0.961 ]

0.968 [ 0.963 , 0.972 ]

0.677 [ 0.617 , 0.738 ]

0.778 [ 0.707 , 0.841 ]

14.983 [ 13.006 , 17.524 ]

20.457 [ 17.829 , 23.669 ]

20.822 [ 18.403 , 23.612 ]

24.935 [ 22.568 , 27.422 ]

23.97 [ 19.96 , 29.219 ]

39.665 [ 32.878 , 47.771 ]

23.917 [ 19.287 , 29.676 ]

34.854 [ 27.031 , 45.694 ]

26.213 [ 21.505 , 31.95 ]

32.508 [ 28.673 , 36.726 ]

25.841 [ 22.254 , 29.521 ]

36.368 [ 30.767 , 42.547 ]

26.077 [ 21.52 , 30.465 ]

32.458 [ 28.924 , 36.713 ]

29.493 [ 25.623 , 33.668 ]

34.33 [ 30.688 , 37.894 ]

28.249 [ 25.087 , 32.431 ]

37.053 [ 33.106 , 41.285 ]

22.973 [ 20.095 , 26.021 ]

35.581 [ 29.284 , 44.742 ]

33.583 [ 29.134 , 38.508 ]

45.456 [ 36.773 , 56.258 ]

29.234 [ 24.94 , 33.902 ]

36.37 [ 31.117 , 42.415 ]

23.183 [ 20.134 , 26.739 ]

29.242 [ 25.829 , 33.124 ]

27.485 [ 23.684 , 31.884 ]

30.527 [ 26.879 , 35.727 ]

18.984 [ 16.98 , 21.425 ]

38.25 [ 32.432 , 44.839 ]

29.668 [ 25.269 , 34.09 ]

36.807 [ 30.958 , 44.478 ]

34.784 [ 27.446 , 45.346 ]

42.758 [ 32.347 , 57.242 ]

33.632 [ 28.485 , 40.197 ]

49.194 [ 35.058 , 71.702 ]

Accuracy Time (seconds)

easy_manual_cluster

easy_supported_cluster

easy_manual_linear regression

easy_supported_linear regression

easy_manual_outlier_cluster

easy_supported_outlier_cluster

easy_manual_outlier_linear

easy_supported_outlier_linear

easy_manual_quadratic regression

easy_supported_quadratic regression

easy_manual_skyline

easy_supported_skyline

hard_manual_cluster

hard_supported_cluster

hard_manual_linear regression

hard_supported_linear regression

hard_manual_outlier_cluster

hard_supported_outlier_cluster

hard_manual_outlier_linear

hard_supported_outlier_linear

hard_manual_quadratic regression

hard_supported_quadratic regression

hard_manual_skyline

hard_supported_skyline

medium_manual_cluster

medium_supported_cluster

medium_manual_linear regression

medium_supported_linear regression

medium_manual_outlier_cluster

medium_supported_outlier_cluster

medium_manual_outlier_linear

medium_supported_outlier_linear

medium_manual_quadratic regression

medium_supported_quadratic regression

medium_manual_skyline

medium_supported_skyline

0 1 0 100

0.967 [ 0.939 , 0.991 ]

0.967 [ 0.927 , 1 ]

0.959 [ 0.921 , 0.99 ]

0.982 [ 0.958 , 0.996 ]

0.797 [ 0.738 , 0.852 ]

0.598 [ 0.531 , 0.672 ]

0.8 [ 0.719 , 0.876 ]

0.747 [ 0.676 , 0.823 ]

0.968 [ 0.949 , 0.982 ]

0.977 [ 0.963 , 0.986 ]

0.734 [ 0.673 , 0.8 ]

0.819 [ 0.768 , 0.868 ]

0.78 [ 0.733 , 0.822 ]

0.856 [ 0.813 , 0.901 ]

0.893 [ 0.862 , 0.923 ]

0.959 [ 0.951 , 0.965 ]

0.87 [ 0.833 , 0.907 ]

0.821 [ 0.777 , 0.863 ]

0.898 [ 0.858 , 0.93 ]

0.824 [ 0.784 , 0.865 ]

0.86 [ 0.834 , 0.886 ]

0.918 [ 0.897 , 0.935 ]

0.701 [ 0.633 , 0.769 ]

0.783 [ 0.712 , 0.847 ]

0.9 [ 0.858 , 0.935 ]

0.942 [ 0.906 , 0.971 ]

0.926 [ 0.891 , 0.954 ]

0.986 [ 0.982 , 0.99 ]

0.873 [ 0.827 , 0.911 ]

0.713 [ 0.673 , 0.752 ]

0.587 [ 0.53 , 0.645 ]

0.605 [ 0.551 , 0.656 ]

0.948 [ 0.934 , 0.961 ]

0.968 [ 0.963 , 0.972 ]

0.677 [ 0.617 , 0.738 ]

0.778 [ 0.707 , 0.841 ]

14.983 [ 13.006 , 17.524 ]

20.457 [ 17.829 , 23.669 ]

20.822 [ 18.403 , 23.612 ]

24.935 [ 22.568 , 27.422 ]

23.97 [ 19.96 , 29.219 ]

39.665 [ 32.878 , 47.771 ]

23.917 [ 19.287 , 29.676 ]

34.854 [ 27.031 , 45.694 ]

26.213 [ 21.505 , 31.95 ]

32.508 [ 28.673 , 36.726 ]

25.841 [ 22.254 , 29.521 ]

36.368 [ 30.767 , 42.547 ]

26.077 [ 21.52 , 30.465 ]

32.458 [ 28.924 , 36.713 ]

29.493 [ 25.623 , 33.668 ]

34.33 [ 30.688 , 37.894 ]

28.249 [ 25.087 , 32.431 ]

37.053 [ 33.106 , 41.285 ]

22.973 [ 20.095 , 26.021 ]

35.581 [ 29.284 , 44.742 ]

33.583 [ 29.134 , 38.508 ]

45.456 [ 36.773 , 56.258 ]

29.234 [ 24.94 , 33.902 ]

36.37 [ 31.117 , 42.415 ]

23.183 [ 20.134 , 26.739 ]

29.242 [ 25.829 , 33.124 ]

27.485 [ 23.684 , 31.884 ]

30.527 [ 26.879 , 35.727 ]

18.984 [ 16.98 , 21.425 ]

38.25 [ 32.432 , 44.839 ]

29.668 [ 25.269 , 34.09 ]

36.807 [ 30.958 , 44.478 ]

34.784 [ 27.446 , 45.346 ]

42.758 [ 32.347 , 57.242 ]

33.632 [ 28.485 , 40.197 ]

49.194 [ 35.058 , 71.702 ]

Accuracy Time (seconds)

easy_manual_cluster

easy_supported_cluster

easy_manual_linear regression

easy_supported_linear regression

easy_manual_outlier_cluster

easy_supported_outlier_cluster

easy_manual_outlier_linear

easy_supported_outlier_linear

easy_manual_quadratic regression

easy_supported_quadratic regression

easy_manual_skyline

easy_supported_skyline

hard_manual_cluster

hard_supported_cluster

hard_manual_linear regression

hard_supported_linear regression

hard_manual_outlier_cluster

hard_supported_outlier_cluster

hard_manual_outlier_linear

hard_supported_outlier_linear

hard_manual_quadratic regression

hard_supported_quadratic regression

hard_manual_skyline

hard_supported_skyline

medium_manual_cluster

medium_supported_cluster

medium_manual_linear regression

medium_supported_linear regression

medium_manual_outlier_cluster

medium_supported_outlier_cluster

medium_manual_outlier_linear

medium_supported_outlier_linear

medium_manual_quadratic regression

medium_supported_quadratic regression

medium_manual_skyline

medium_supported_skyline

0 1 0 100

0.967 [ 0.939 , 0.991 ]

0.967 [ 0.927 , 1 ]

0.959 [ 0.921 , 0.99 ]

0.982 [ 0.958 , 0.996 ]

0.797 [ 0.738 , 0.852 ]

0.598 [ 0.531 , 0.672 ]

0.8 [ 0.719 , 0.876 ]

0.747 [ 0.676 , 0.823 ]

0.968 [ 0.949 , 0.982 ]

0.977 [ 0.963 , 0.986 ]

0.734 [ 0.673 , 0.8 ]

0.819 [ 0.768 , 0.868 ]

0.78 [ 0.733 , 0.822 ]

0.856 [ 0.813 , 0.901 ]

0.893 [ 0.862 , 0.923 ]

0.959 [ 0.951 , 0.965 ]

0.87 [ 0.833 , 0.907 ]

0.821 [ 0.777 , 0.863 ]

0.898 [ 0.858 , 0.93 ]

0.824 [ 0.784 , 0.865 ]

0.86 [ 0.834 , 0.886 ]

0.918 [ 0.897 , 0.935 ]

0.701 [ 0.633 , 0.769 ]

0.783 [ 0.712 , 0.847 ]

0.9 [ 0.858 , 0.935 ]

0.942 [ 0.906 , 0.971 ]

0.926 [ 0.891 , 0.954 ]

0.986 [ 0.982 , 0.99 ]

0.873 [ 0.827 , 0.911 ]

0.713 [ 0.673 , 0.752 ]

0.587 [ 0.53 , 0.645 ]

0.605 [ 0.551 , 0.656 ]

0.948 [ 0.934 , 0.961 ]

0.968 [ 0.963 , 0.972 ]

0.677 [ 0.617 , 0.738 ]

0.778 [ 0.707 , 0.841 ]

14.983 [ 13.006 , 17.524 ]

20.457 [ 17.829 , 23.669 ]

20.822 [ 18.403 , 23.612 ]

24.935 [ 22.568 , 27.422 ]

23.97 [ 19.96 , 29.219 ]

39.665 [ 32.878 , 47.771 ]

23.917 [ 19.287 , 29.676 ]

34.854 [ 27.031 , 45.694 ]

26.213 [ 21.505 , 31.95 ]

32.508 [ 28.673 , 36.726 ]

25.841 [ 22.254 , 29.521 ]

36.368 [ 30.767 , 42.547 ]

26.077 [ 21.52 , 30.465 ]

32.458 [ 28.924 , 36.713 ]

29.493 [ 25.623 , 33.668 ]

34.33 [ 30.688 , 37.894 ]

28.249 [ 25.087 , 32.431 ]

37.053 [ 33.106 , 41.285 ]

22.973 [ 20.095 , 26.021 ]

35.581 [ 29.284 , 44.742 ]

33.583 [ 29.134 , 38.508 ]

45.456 [ 36.773 , 56.258 ]

29.234 [ 24.94 , 33.902 ]

36.37 [ 31.117 , 42.415 ]

23.183 [ 20.134 , 26.739 ]

29.242 [ 25.829 , 33.124 ]

27.485 [ 23.684 , 31.884 ]

30.527 [ 26.879 , 35.727 ]

18.984 [ 16.98 , 21.425 ]

38.25 [ 32.432 , 44.839 ]

29.668 [ 25.269 , 34.09 ]

36.807 [ 30.958 , 44.478 ]

34.784 [ 27.446 , 45.346 ]

42.758 [ 32.347 , 57.242 ]

33.632 [ 28.485 , 40.197 ]

49.194 [ 35.058 , 71.702 ]

Accuracy Time (seconds)

easy_manual_cluster

easy_supported_cluster

easy_manual_linear regression

easy_supported_linear regression

easy_manual_outlier_cluster

easy_supported_outlier_cluster

easy_manual_outlier_linear

easy_supported_outlier_linear

easy_manual_quadratic regression

easy_supported_quadratic regression

easy_manual_skyline

easy_supported_skyline

hard_manual_cluster

hard_supported_cluster

hard_manual_linear regression

hard_supported_linear regression

hard_manual_outlier_cluster

hard_supported_outlier_cluster

hard_manual_outlier_linear

hard_supported_outlier_linear

hard_manual_quadratic regression

hard_supported_quadratic regression

hard_manual_skyline

hard_supported_skyline

medium_manual_cluster

medium_supported_cluster

medium_manual_linear regression

medium_supported_linear regression

medium_manual_outlier_cluster

medium_supported_outlier_cluster

medium_manual_outlier_linear

medium_supported_outlier_linear

medium_manual_quadratic regression

medium_supported_quadratic regression

medium_manual_skyline

medium_supported_skyline

0 1 0 100

0.967 [ 0.939 , 0.991 ]

0.967 [ 0.927 , 1 ]

0.959 [ 0.921 , 0.99 ]

0.982 [ 0.958 , 0.996 ]

0.797 [ 0.738 , 0.852 ]

0.598 [ 0.531 , 0.672 ]

0.8 [ 0.719 , 0.876 ]

0.747 [ 0.676 , 0.823 ]

0.968 [ 0.949 , 0.982 ]

0.977 [ 0.963 , 0.986 ]

0.734 [ 0.673 , 0.8 ]

0.819 [ 0.768 , 0.868 ]

0.78 [ 0.733 , 0.822 ]

0.856 [ 0.813 , 0.901 ]

0.893 [ 0.862 , 0.923 ]

0.959 [ 0.951 , 0.965 ]

0.87 [ 0.833 , 0.907 ]

0.821 [ 0.777 , 0.863 ]

0.898 [ 0.858 , 0.93 ]

0.824 [ 0.784 , 0.865 ]

0.86 [ 0.834 , 0.886 ]

0.918 [ 0.897 , 0.935 ]

0.701 [ 0.633 , 0.769 ]

0.783 [ 0.712 , 0.847 ]

0.9 [ 0.858 , 0.935 ]

0.942 [ 0.906 , 0.971 ]

0.926 [ 0.891 , 0.954 ]

0.986 [ 0.982 , 0.99 ]

0.873 [ 0.827 , 0.911 ]

0.713 [ 0.673 , 0.752 ]

0.587 [ 0.53 , 0.645 ]

0.605 [ 0.551 , 0.656 ]

0.948 [ 0.934 , 0.961 ]

0.968 [ 0.963 , 0.972 ]

0.677 [ 0.617 , 0.738 ]

0.778 [ 0.707 , 0.841 ]

14.983 [ 13.006 , 17.524 ]

20.457 [ 17.829 , 23.669 ]

20.822 [ 18.403 , 23.612 ]

24.935 [ 22.568 , 27.422 ]

23.97 [ 19.96 , 29.219 ]

39.665 [ 32.878 , 47.771 ]

23.917 [ 19.287 , 29.676 ]

34.854 [ 27.031 , 45.694 ]

26.213 [ 21.505 , 31.95 ]

32.508 [ 28.673 , 36.726 ]

25.841 [ 22.254 , 29.521 ]

36.368 [ 30.767 , 42.547 ]

26.077 [ 21.52 , 30.465 ]

32.458 [ 28.924 , 36.713 ]

29.493 [ 25.623 , 33.668 ]

34.33 [ 30.688 , 37.894 ]

28.249 [ 25.087 , 32.431 ]

37.053 [ 33.106 , 41.285 ]

22.973 [ 20.095 , 26.021 ]

35.581 [ 29.284 , 44.742 ]

33.583 [ 29.134 , 38.508 ]

45.456 [ 36.773 , 56.258 ]

29.234 [ 24.94 , 33.902 ]

36.37 [ 31.117 , 42.415 ]

23.183 [ 20.134 , 26.739 ]

29.242 [ 25.829 , 33.124 ]

27.485 [ 23.684 , 31.884 ]

30.527 [ 26.879 , 35.727 ]

18.984 [ 16.98 , 21.425 ]

38.25 [ 32.432 , 44.839 ]

29.668 [ 25.269 , 34.09 ]

36.807 [ 30.958 , 44.478 ]

34.784 [ 27.446 , 45.346 ]

42.758 [ 32.347 , 57.242 ]

33.632 [ 28.485 , 40.197 ]

49.194 [ 35.058 , 71.702 ]

Accuracy Time (seconds)

easy_manual_cluster

easy_supported_cluster

easy_manual_linear regression

easy_supported_linear regression

easy_manual_outlier_cluster

easy_supported_outlier_cluster

easy_manual_outlier_linear

easy_supported_outlier_linear

easy_manual_quadratic regression

easy_supported_quadratic regression

easy_manual_skyline

easy_supported_skyline

hard_manual_cluster

hard_supported_cluster

hard_manual_linear regression

hard_supported_linear regression

hard_manual_outlier_cluster

hard_supported_outlier_cluster

hard_manual_outlier_linear

hard_supported_outlier_linear

hard_manual_quadratic regression

hard_supported_quadratic regression

hard_manual_skyline

hard_supported_skyline

medium_manual_cluster

medium_supported_cluster

medium_manual_linear regression

medium_supported_linear regression

medium_manual_outlier_cluster

medium_supported_outlier_cluster

medium_manual_outlier_linear

medium_supported_outlier_linear

medium_manual_quadratic regression

medium_supported_quadratic regression

medium_manual_skyline

medium_supported_skyline

0 1 0 100

0.967 [ 0.939 , 0.991 ]

0.967 [ 0.927 , 1 ]

0.959 [ 0.921 , 0.99 ]

0.982 [ 0.958 , 0.996 ]

0.797 [ 0.738 , 0.852 ]

0.598 [ 0.531 , 0.672 ]

0.8 [ 0.719 , 0.876 ]

0.747 [ 0.676 , 0.823 ]

0.968 [ 0.949 , 0.982 ]

0.977 [ 0.963 , 0.986 ]

0.734 [ 0.673 , 0.8 ]

0.819 [ 0.768 , 0.868 ]

0.78 [ 0.733 , 0.822 ]

0.856 [ 0.813 , 0.901 ]

0.893 [ 0.862 , 0.923 ]

0.959 [ 0.951 , 0.965 ]

0.87 [ 0.833 , 0.907 ]

0.821 [ 0.777 , 0.863 ]

0.898 [ 0.858 , 0.93 ]

0.824 [ 0.784 , 0.865 ]

0.86 [ 0.834 , 0.886 ]

0.918 [ 0.897 , 0.935 ]

0.701 [ 0.633 , 0.769 ]

0.783 [ 0.712 , 0.847 ]

0.9 [ 0.858 , 0.935 ]

0.942 [ 0.906 , 0.971 ]

0.926 [ 0.891 , 0.954 ]

0.986 [ 0.982 , 0.99 ]

0.873 [ 0.827 , 0.911 ]

0.713 [ 0.673 , 0.752 ]

0.587 [ 0.53 , 0.645 ]

0.605 [ 0.551 , 0.656 ]

0.948 [ 0.934 , 0.961 ]

0.968 [ 0.963 , 0.972 ]

0.677 [ 0.617 , 0.738 ]

0.778 [ 0.707 , 0.841 ]

14.983 [ 13.006 , 17.524 ]

20.457 [ 17.829 , 23.669 ]

20.822 [ 18.403 , 23.612 ]

24.935 [ 22.568 , 27.422 ]

23.97 [ 19.96 , 29.219 ]

39.665 [ 32.878 , 47.771 ]

23.917 [ 19.287 , 29.676 ]

34.854 [ 27.031 , 45.694 ]

26.213 [ 21.505 , 31.95 ]

32.508 [ 28.673 , 36.726 ]

25.841 [ 22.254 , 29.521 ]

36.368 [ 30.767 , 42.547 ]

26.077 [ 21.52 , 30.465 ]

32.458 [ 28.924 , 36.713 ]

29.493 [ 25.623 , 33.668 ]

34.33 [ 30.688 , 37.894 ]

28.249 [ 25.087 , 32.431 ]

37.053 [ 33.106 , 41.285 ]

22.973 [ 20.095 , 26.021 ]

35.581 [ 29.284 , 44.742 ]

33.583 [ 29.134 , 38.508 ]

45.456 [ 36.773 , 56.258 ]

29.234 [ 24.94 , 33.902 ]

36.37 [ 31.117 , 42.415 ]

23.183 [ 20.134 , 26.739 ]

29.242 [ 25.829 , 33.124 ]

27.485 [ 23.684 , 31.884 ]

30.527 [ 26.879 , 35.727 ]

18.984 [ 16.98 , 21.425 ]

38.25 [ 32.432 , 44.839 ]

29.668 [ 25.269 , 34.09 ]

36.807 [ 30.958 , 44.478 ]

34.784 [ 27.446 , 45.346 ]

42.758 [ 32.347 , 57.242 ]

33.632 [ 28.485 , 40.197 ]

49.194 [ 35.058 , 71.702 ]

Accuracy Time (seconds)

easy_manual_cluster

easy_supported_cluster

easy_manual_linear regression

easy_supported_linear regression

easy_manual_outlier_cluster

easy_supported_outlier_cluster

easy_manual_outlier_linear

easy_supported_outlier_linear

easy_manual_quadratic regression

easy_supported_quadratic regression

easy_manual_skyline

easy_supported_skyline

hard_manual_cluster

hard_supported_cluster

hard_manual_linear regression

hard_supported_linear regression

hard_manual_outlier_cluster

hard_supported_outlier_cluster

hard_manual_outlier_linear

hard_supported_outlier_linear

hard_manual_quadratic regression

hard_supported_quadratic regression

hard_manual_skyline

hard_supported_skyline

medium_manual_cluster

medium_supported_cluster

medium_manual_linear regression

medium_supported_linear regression

medium_manual_outlier_cluster

medium_supported_outlier_cluster

medium_manual_outlier_linear

medium_supported_outlier_linear

medium_manual_quadratic regression

medium_supported_quadratic regression

medium_manual_skyline

medium_supported_skyline

0 1 0 100

0.967 [ 0.939 , 0.991 ]

0.967 [ 0.927 , 1 ]

0.959 [ 0.921 , 0.99 ]

0.982 [ 0.958 , 0.996 ]

0.797 [ 0.738 , 0.852 ]

0.598 [ 0.531 , 0.672 ]

0.8 [ 0.719 , 0.876 ]

0.747 [ 0.676 , 0.823 ]

0.968 [ 0.949 , 0.982 ]

0.977 [ 0.963 , 0.986 ]

0.734 [ 0.673 , 0.8 ]

0.819 [ 0.768 , 0.868 ]

0.78 [ 0.733 , 0.822 ]

0.856 [ 0.813 , 0.901 ]

0.893 [ 0.862 , 0.923 ]

0.959 [ 0.951 , 0.965 ]

0.87 [ 0.833 , 0.907 ]

0.821 [ 0.777 , 0.863 ]

0.898 [ 0.858 , 0.93 ]

0.824 [ 0.784 , 0.865 ]

0.86 [ 0.834 , 0.886 ]

0.918 [ 0.897 , 0.935 ]

0.701 [ 0.633 , 0.769 ]

0.783 [ 0.712 , 0.847 ]

0.9 [ 0.858 , 0.935 ]

0.942 [ 0.906 , 0.971 ]

0.926 [ 0.891 , 0.954 ]

0.986 [ 0.982 , 0.99 ]

0.873 [ 0.827 , 0.911 ]

0.713 [ 0.673 , 0.752 ]

0.587 [ 0.53 , 0.645 ]

0.605 [ 0.551 , 0.656 ]

0.948 [ 0.934 , 0.961 ]

0.968 [ 0.963 , 0.972 ]

0.677 [ 0.617 , 0.738 ]

0.778 [ 0.707 , 0.841 ]

14.983 [ 13.006 , 17.524 ]

20.457 [ 17.829 , 23.669 ]

20.822 [ 18.403 , 23.612 ]

24.935 [ 22.568 , 27.422 ]

23.97 [ 19.96 , 29.219 ]

39.665 [ 32.878 , 47.771 ]

23.917 [ 19.287 , 29.676 ]

34.854 [ 27.031 , 45.694 ]

26.213 [ 21.505 , 31.95 ]

32.508 [ 28.673 , 36.726 ]

25.841 [ 22.254 , 29.521 ]

36.368 [ 30.767 , 42.547 ]

26.077 [ 21.52 , 30.465 ]

32.458 [ 28.924 , 36.713 ]

29.493 [ 25.623 , 33.668 ]

34.33 [ 30.688 , 37.894 ]

28.249 [ 25.087 , 32.431 ]

37.053 [ 33.106 , 41.285 ]

22.973 [ 20.095 , 26.021 ]

35.581 [ 29.284 , 44.742 ]

33.583 [ 29.134 , 38.508 ]

45.456 [ 36.773 , 56.258 ]

29.234 [ 24.94 , 33.902 ]

36.37 [ 31.117 , 42.415 ]

23.183 [ 20.134 , 26.739 ]

29.242 [ 25.829 , 33.124 ]

27.485 [ 23.684 , 31.884 ]

30.527 [ 26.879 , 35.727 ]

18.984 [ 16.98 , 21.425 ]

38.25 [ 32.432 , 44.839 ]

29.668 [ 25.269 , 34.09 ]

36.807 [ 30.958 , 44.478 ]

34.784 [ 27.446 , 45.346 ]

42.758 [ 32.347 , 57.242 ]

33.632 [ 28.485 , 40.197 ]

49.194 [ 35.058 , 71.702 ]

Accuracy Time (seconds)

easy_manual_cluster

easy_supported_cluster

easy_manual_linear regression

easy_supported_linear regression

easy_manual_outlier_cluster

easy_supported_outlier_cluster

easy_manual_outlier_linear

easy_supported_outlier_linear

easy_manual_quadratic regression

easy_supported_quadratic regression

easy_manual_skyline

easy_supported_skyline

hard_manual_cluster

hard_supported_cluster

hard_manual_linear regression

hard_supported_linear regression

hard_manual_outlier_cluster

hard_supported_outlier_cluster

hard_manual_outlier_linear

hard_supported_outlier_linear

hard_manual_quadratic regression

hard_supported_quadratic regression

hard_manual_skyline

hard_supported_skyline

medium_manual_cluster

medium_supported_cluster

medium_manual_linear regression

medium_supported_linear regression

medium_manual_outlier_cluster

medium_supported_outlier_cluster

medium_manual_outlier_linear

medium_supported_outlier_linear

medium_manual_quadratic regression

medium_supported_quadratic regression

medium_manual_skyline

medium_supported_skyline

0 1 0 100

Figure 4.10: Accuracy and time in seconds for all tasks during the initial study. Blue (UD) encodes the user-driven condition, orange
(CS) the computer-supported condition. Violin plots visualize the underlying distribution.
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Figure 4.11: Accuracy and time in seconds for all tasks during the revised study. Blue (UD) encodes the user-driven condition, orange
(CS) the computer-supported condition. Violin plots visualize the underlying distribution.
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Figure 4.12: Accuracy and time in seconds for easy tasks. Blue (UD) encodes the user-driven condition, orange (CS) the computer-
supported condition. Violin plots visualize the underlying distribution.
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Figure 4.13: Accuracy and time in seconds for medium tasks. Blue (UD) encodes the user-driven condition, orange (CS) the computer-
supported condition. Violin plots visualize the underlying distribution.
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Figure 4.14: Accuracy and time in seconds for hard tasks. Blue (UD) encodes the user-driven condition, orange (CS) the computer-
supported condition. Violin plots visualize the underlying distribution.

73



0.919 [ 0.895 , 0.94 ]

0.878 [ 0.853 , 0.9 ]

0.976 [ 0.967 , 0.982 ]

0.926 [ 0.907 , 0.945 ]

0.954 [ 0.945 , 0.961 ]

0.924 [ 0.911 , 0.936 ]

0.794 [ 0.758 , 0.828 ]

0.705 [ 0.666 , 0.741 ]

0.722 [ 0.697 , 0.745 ]

0.807 [ 0.783 , 0.829 ]

0.735 [ 0.706 , 0.764 ]

0.67 [ 0.645 , 0.695 ]

27.39 [ 25.461 , 29.456 ]

21.501 [ 19.867 , 23.089 ]

28.795 [ 27.109 , 30.568 ]

25.177 [ 23.313 , 27.136 ]

32.783 [ 30.744 , 34.883 ]

28.35 [ 26.288 , 30.581 ]

33.164 [ 30.753 , 35.592 ]

27.694 [ 25.579 , 29.806 ]

32.951 [ 31.4 , 34.466 ]

23.791 [ 22.487 , 25.193 ]

37.494 [ 35.825 , 39.158 ]

25.665 [ 24.415 , 27.16 ]

Accuracy Time (seconds)

Cluster

Linear
Regression

Quadratic
Regression

Multivariate
Optimization

Outlier
Old

Outlier
Revised

0 1 0 100

CS

UD

CS

UD

CS

UD

CS

UD

CS

UD

CS

UD

Figure 4.15: Accuracy and time to completion for all tasks. Blue (UD) encodes the user-driven condition, orange (CS) the computer-
supported condition. Violin plots visualize the underlying distribution.
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Table 4.1: To analyze the matches between patterns, participants were instructed to select (columns) and patterns they chose from our
set of predictions. The values in the cells show the number of times participants selected a certain predicted pattern for a pattern they
were asked to select. For example, the first column, “Cluster,” contains responses for all trials that instructed participants to select a
cluster. The first row, also “Cluster,” shows all trials where participants chose a cluster pattern from the predictions. Consequently, the
first cell shows that when asked to select a “Cluster,” in 256 trials, participants have also selected a predicted pattern of type “Cluster,”
Cells containing precise matches are highlighted in green. Cells highlighted in yellow show matches with analogous patterns. For
example, the “outside linear regression” pattern is a reasonable substitute for the “outlier” pattern. The numbers in parentheses
show how frequently a response resulted in a correct solution (assuming correct to be an accuracy > 0.75). The bottom two lines
give percentages for the correctly identified patterns and correct+analogous patterns combined. Again, the number of responses
with an accuracy > 0.75 is in parentheses. Overall, correct patterns were used frequently for clusters, multivariate optimization,
and outliers. Results for linear and quadratic regression show a frequent mix-up with the other type of regression pattern, and for
quadratic regression also with clusters. Interestingly, these mismatched patterns do not negatively influence accuracy.

Pattern Asked For in Tasks

Cluster (N=257)
Linear

Regression (N=265)
Quadratic

Regression (N=248)
Multivariate

Optimization (N=213)
Outlier

Old (N=398)
Outlier

Revised (N=520)
Average

Cluster 256 (223) 6 (6) 82 (78) 13 (2) 43 (25) 44 (5) —
Linear Regression — Within 0 (0) 136 (136) 54 (54) 1 (0) 4 (1) 1 (0) —

Quadratic Regression — Within 0 (0) 82 (82) 84 (84) 0 (0) 2 (1) 0 (0) —
Multivariate Optimization 0 (0) 0 (0) 0 (0) 175 (163) 21 (10) 22 (22) —

Linear Regression — Outside 0 (0) 1 (0) 0 (0) 0 (0) 0 (0) 60 (44) —
Quadratic Regression — Outside 0 (0) 0 (0) 0 (0) 2 (0) 0 (0) 13 (0) —

Non-Outlier 1 (0) 40 (39) 28 (28) 0 (0) 1 (1) 0 (0) —
Outlier 0 (0) 0 (0) 0 (0) 22 (2) 327 (174) 380 (178) —

Correct Pattern 99% (87%) 51% (51%) 34% (34%) 82% (76%) 82% (44%) 73% (34%) 70% (54%)

Pa
tt

er
n

Pr
ed

ic
te

d

Correct+Reasonable Pattern 99% (87%) 66% (66%) 45% (45%) 82% (76%) 82% (44%) 87% (48%) 77% (61%)
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CHAPTER 5

REUSING INTERACTIVE

ANALYSIS WORKFLOWS

In this chapter, we introduce techniques to achieve goals G3 and G4. To achieve G3 —

curating and reusing interactions — we discuss techniques to leverage the semantically 

meaningful provenance based on techniques from Chapter 4 to automatically reapply 

the interactions to an updated dataset. We also show techniques to curate the interaction 

provenance into reusable workflows. For goal G4, using the interactions in a different 

analysis environment, we contribute techniques and a Python library to load the work-

flows captured in our prototype visualization tool in a Jupyter notebook and apply the 

workflow to a pandas dataframe. Figure 5.1 shows the contribution of this chapter toward 

this dissertation. The chapter is based on our previously published work [3]. K. Gadhave, 

Z. Cutler, and A. Lex. “Reusing interactive analysis workflows,” C omput. Graph. Forum, 

vol. 41, no. 3, Jun. 2022, pp. 133–144.

5.1 Motivation and Overview

Data visualization enables analysts to leverage the powerful human visual system to 

identify patterns and draw conclusions. When data visualizations are made interactive 

with selections and data transformations such as filters, labels, and aggregation, they can 

be used for various analysis, cleanup, and processing tasks. However, one significant 

drawback of interactive visual data analysis is that analysis processes remain ad hoc. 

The analysis must be redone when a dataset is updated or changed. Updating datasets, 

however, is very common. For example, businesses regularly add new sales data, and 

scientists expand or correct their datasets as errors are discovered or new samples come in. 

Economists get updated data about various countries’ indicators yearly. Data visualization 

tools typically cannot reapply actions like filters to new dataset versions. This lack of 

reusability in an interactive visual analysis contrasts sharply with computational analysis
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workflows: A function that filters a dataset based on parameters can be reapplied to an

updated dataset. This application has the usual drawbacks of computational approaches:

Analysts should know how to program, are hard to write, and cannot leverage the benefits

of graphical perception.

This chapter proposes methods to capture and reuse workflows in an interactive visu-

alization system. Our workflows are based on interactions made in interactive data visual-

izations, such as choosing data dimensions and selecting, filtering, labeling, categorizing,

or aggregating items. We introduce methods to capture these workflows semantically,

making them robust to changes in the datasets, as shown in Figure 5.2.

When reapplying a workflow, human review and potential updates are required to

ensure that the actions in a workflow still achieve the analysis goal. To address this, we

introduce a review interface that visualizes changes in the dataset and consequences of the

actions in a workflow, enabling corrections if necessary.

Finally, in addition to making workflows available for reuse within our interactive pro-

totype, we expose the workflows so they can be used directly in code. This approach allows

bridging between interactive visualization systems and scripted data analysis processes.

For example, an analyst could do some preprocessing in a Jupyter notebook, launch an

interactive visualization system from the notebook to execute a series of complex selections

and data transformations that are more easily achieved in a visualization system, and then

return to the notebook to apply, e.g., an algorithm to the transformed dataset. Because

we now have reusable visualization workflows, various parts of such an analysis can be

reapplied to an updated dataset.

We demonstrate these capabilities in a prototype visualization system that captures

interaction provenance, from which analysts can extract workflows. These workflows can

be reapplied to updating or changing datasets with some examples. We also introduce a

Python library to bridge between the visualization system and Python code and provide

examples for these workflows.

In summary, our contribution is a method to capture workflows in interactive visu-

alization systems that can be reapplied to a new dataset. To ensure the accuracy of the

reapply process, we introduce visualizations of changes and review and update capa-

bilities for these workflows. Finally, we introduce methods to use these workflows as
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part of computational workflows. We believe that our methods will make it possible to

use interactive visualizations even for analyzing datasets that are being updated. We also

push the limits of possible integration between computational and interactive workflows,

enabling analysts to leverage the best tool for each part of a job.

5.2 Capturing and Reusing Workflows
We propose an approach by which analysts curate their workflow from the provenance

of their analysis sessions rather than explicitly modeling the analysis workflow either in a

graphical workflow editor or in code. This way, analysts can freely work and explore until

they have achieved a result they think is worth saving in a workflow. Only on reaching an

interesting state can they extract the relevant steps to preserve it as a workflow, thereby

minimizing the required overhead to the analyst and encouraging open exploration. In the

rest of this section, we describe how we can capture provenance in a reusable manner and

use it to curate reusable workflows.

5.2.1 Capturing Interaction Provenance

Usually, capturing analytic provenance involves tracking the low-level mouse, pointer,

or keyboard events by the analyst. Such events are well-suited for implementing features

like undo/redo or logging the analysts’ activity. However, such low-level events lack the

information necessary to recreate the interaction. We propose capturing the interactions as

an abstraction rather than as events. The abstraction captures all the information that is

necessary to recreate the interaction. In our specification, we capture the interactions that

are relevant for data manipulation, namely view specification, selections, and various types

of data transformations [26].

View specification interactions are concerned with choosing the subset of dimensions.

An example is to show two dataset dimensions in a scatterplot: Here, the view specification

entails both the choice of dimensions and the choice of visualization technique.

Selections are a basic but essential interaction available in visualizations. Selections

cannot only be used to highlight items of interest but also form the basis for further data

transformation on selected subsets of the data. For our specification, we break down types

of selections by the level of semantics they capture:
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The simplest form of selection is ID-based selection, which directly stores the IDs of the

selected items. ID-based selection has the lowest level of semantics and is the least useful

when reusing a selection. When items are added to a new dataset version, they are not

considered, even if they fall into a selected pattern.

Next, we specify the range selection that stores ranges over dimensions, capturing a

set of rules for a selection similar to, e.g., an SQL query predicate. Range selections are

usually specified using rectangular brushes [30], [33] in scatterplots or a series of brushes

along an axis in parallel coordinates. They are reusable for updates in the data as long as

the updates happen within the extent of the range selection. For example, if an updated

dataset version has three new points within a rectangular brush area, these points will be

selected automatically.

The next level of selection is semantic selection as introduced in our previous work [2].

This approach captures higher level semantics behind the apparent selection when visu-

alizing data. A pattern-based selection recognizes, for example, that an analyst selected

all outliers or a cluster centered at a specific location. By selecting based on higher level

patterns in the data, such selections are robust to changes in the data. For example, when

outliers are selected in a dataset, similar outliers can be selected in an updated dataset,

even if the outliers appear in new locations. We could also use other approaches, such as

query relaxation proposed by Heer et al. [34]. Semantic selection aims to capture complex

selection patterns rather than a list of IDs or simple rules. Such selections are the most

reusable, as they are robust to fairly complex updates to the dataset.

Our specification supports four data transformation actions: Filter actions track

whether certain items are filtered in or filtered out of the dataset. Filters help focus on

a select group of items by filtering them in or removing irrelevant data items by filtering

them out. Labeling sets of items in a dataset help annotate or tag items with metadata

or observations. Categorize actions are used to classify items or assign them to categories

from a set of dynamically defined categories. Usually, each point is assigned to a unique

category. Categorization helps divide the dataset into subsets that can be compared or used

separately in subsequent analysis steps. Deriving new data items by aggregating groups

of existing ones is an important data transformation, as is evident from the popularity

of pivot tables in Excel. An aggregate item can replace the items it was derived from,
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simplifying the data. Aggregation also allows analysts to compare groups with shared

characteristics effectively. Aggregation is done by grouping multiple data items into a

new item. Attributes are aggregated based on a mathematical function (often called an

“apply function in programming libraries). These functions usually summarize multiple

values into a single representative value like the mean, median, sum, min, or max of the

item’s attribute, but custom functions are also common. For example, it might be helpful

to aggregate all European countries into a single “Europe” item and compare it to an

“Asia” item in a dataset on metrics about countries. For this aggregation, we have to

define “the population” of Europe as the sum of the population for all the countries in it.

However, a “life expectancy” column would need a different, more sophisticated function

for meaningful aggregation.

We have chosen these interactions as they allow us to demonstrate our approach. Yet,

other operations, such as deriving attributes or manipulation, such as moving around

items, could be supported by our methods. Together, these view specification, selection,

and data transformation actions make up a robust set of tools that benefit enormously

from being available in an interactive visualization interface and are commonly used in

data science tasks.

5.2.2 Capturing Analysis Process

We propose capturing the analysis session in a provenance graph where each node

represents an interaction. A provenance graph records the interactions in the sequence they

were performed, allowing us to infer the dependency of the interactions on each other.

Provenance graphs are typically directed acyclic graphs. Downstream interactions can

depend only on upstream interactions. Data transformations are derived from selections

to categorize a group of points; for example, they are first selected and then assigned to a

category. The robustness of the transformation depends on the type of selections used, as

described previously. For example, if an analyst selects 15 items individually and assigns

them to a category, and the category is associated with just those items. However, if the

items were selected using a range selection, the category is associated with the range

rather than individual items. When the dataset is updated, items appearing in the region

of the range selection are categorized as well. Using semantic selections further improves
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the robustness of subsequent actions. An analyst can use the pattern-based selection to

refine the initial selection of 15 items as a cluster. The category is then associated with the

cluster rather than the original selection. Updating the dataset by adding or removing

items automatically updates the categorization as well. If the groups of items were to

move, the semantic selection would still accurately track the items, in contrast to a range

selection, which would lose items that move outside the range.

Analysis sessions are rarely linear and usually involve trial and error. An analyst can

make multiple attempts by going back a few steps in the analysis provenance by undoing

actions and starting a different analysis flow. Alternatively, an analyst might clear all their

current interactions and return to an initial state before trying something else. A graph

representation allows us to capture the former type of iterations as parallel branches in the

provenance, whereas the latter are in a sequence.

An analyst can also add metadata to each node in the provenance graph. The metadata

can be in the form of annotations, where the analyst tries to externalize their knowledge,

such as assumptions about the data, known errors in the data, etc., which are typically

impossible to capture automatically. The analyst can also bookmark specific nodes as

points of interest in large analysis provenances, especially ones with lengthy analysis

sequences and multiple branching analyses. Using annotations and bookmarks simplifies

extracting workflow after an analysis goal is achieved.

Capturing the abstract interactions enables editing of the analysis session to curate

workflows and reuse the sessions on the same dataset or, more interestingly, on an updated

dataset. We capture the analysis process as an abstraction of the interactions, which makes

the captured analysis agnostic to the environment.

5.2.3 Curating Workflows

As we discussed in the previous section, the captured analysis provenance can be

cluttered by the iterative nature of the analysis process. Hence, extracting and cleaning

a particular analysis branch or a subsequence of the analysis as a reusable workflow is

desirable.

We previously introduced different levels of selections that can be captured. These

different types of selections can — and commonly are — combined. An analyst can start
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with a rough selection of points either by specifying the points directly or specifying a

range. They can modify this selection and add or remove points to it. They can then decide

to use semantic selection to refine their existing selection. A provenance graph will be

populated with multiple nodes as the analyst iterates over different points before settling

on a pattern. While curating the workflow, an analyst can easily remove extra selection

attempts, keeping only the most informative selection to drive downstream interactions

(see 5.2), creating a succinct reusable workflow.

It is also possible to automatically prune workflows to remove actions that do not

impact the eventual result. For example, when a “clear selection” action is detected as

part of a filter sequence, all previous selections and the clear selection operation could be

automatically removed.

5.2.4 Reusing Workflows

Capturing the analysis sessions and workflows in a reusable manner makes it easy

for an analyst to rerun the analysis on the same dataset (for reproducibility) and, more

importantly, apply the analysis to an updated version of the dataset (for reusability).

Tabular datasets can change in limited ways: Attributes associated with rows can

change, and rows can be added or removed. Also, dimensions or rows (items) can be

added, removed, or reordered [123]. For our purposes, we limit ourselves to changes to

existing attributes, adding or removing items, and updating attribute values, as order is

relevant only for certain representations, and adding or removing dimensions is beyond

our work’s scope.

We have different approaches to reapply selections, which are straightforward for IDs

and ranges. The method for reapplying semantically captured selections varies by the type

of selection. If we capture pattern-based intent [2], we can rerun the appropriate algorithm

and captured parameters to recreate the selection. Of these three types of selections, the

ID-based selections are the least useful for reusing a workflow on an updated dataset.

Range-based selection performs better but fails to capture dataset updates outside the

range. Semantic selections have the potential to be robust to updates in the dataset.

However, even with semantic selections, automatically reapplying the analysis session

or a workflow to an updated dataset might not always make sense. The dataset changes
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might be so drastic that a previous analysis session is no longer appropriate. Hence, it

is essential to allow analysts to review the captured sessions for different versions of the

dataset and mark whether different interactions are valid for those versions.

5.2.5 Bridging Between Environments

The environment-agnostic nature of our approach allows us to integrate workflows

with computational analysis systems and re-execute a workflow on an updated dataset

just like a function. The abstract representation of the analysis can be expressed in any

commonly used data interchange formats like JSON, YAML, etc. We can build visual

analysis tools that can capture the analysis sessions in one of the formats and companion

libraries to use the captured analysis sessions in other environments like notebooks.

5.3 Reusing Workflows Prototype
To demonstrate the feasibility of our approach for capturing and reapplying work-

flows, we developed prototype tooling to demonstrate all aspects of the approach. In an

interactive visualization tool, we demonstrate how to capture the analysis process and

reapply to updated datasets in the same tool. The prototype is available at https://reapply-

workflows.github.io/reapply-workflows/. We also implemented a Python library that

can load captured workflows and be used in computational environments like Jupyter

notebooks.

5.3.1 Interactive Visualization Tool

The interactive visualization tool allows analysts to create projects and upload different

dataset versions. Analysts may select dimensions of the tabular dataset to visualize in one

or multiple scatterplot(s) (Figure 5.3(a)). We provide rectangular and free-form “paint-

brushes” of three sizes for selection. Analysts may also add a parallel coordinate plot to

visualize multiple dimensions at once, which supports brushing on the axis.

We use the Trrack library [1], which we previously developed and stored the actions in

a directed acyclic provenance graph to capture the analyst interactions. Each node in the

provenance graph is the abstract representation of a corresponding interaction the analyst

makes. We visualize the provenance graph in a tree-like layout (5.3(c)), where each action

is described and can be annotated by the user. Analysts can go back in the provenance
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graph to a previous step and start a new branch, which supports the iterative nature of the

visual analysis process.

We use techniques from our previous work [2] to capture semantically rich pattern-

based intents. Our prototype monitors user selections in any plot and compares them to a

large set of patterns computed for a given dataset using various algorithms and parame-

terizations. The different patterns are ranked based on the Jaccard Similarity between the

selection and the prediction, as shown in Figure 5.3(b). In Figure 5.3, we see a rectangular

selection partially covering a cluster, and the system ranks a clustering pattern as a good

match. When an analyst hovers over the cluster prediction, the extent of the cluster is

shown as a polygon, and the items that are not part of the selection are highlighted. When

an analyst chooses to confirm this prediction as the intended pattern, our system stores the

details of this pattern.

We predict five patterns: Clusters, inliers and outliers, correlations, multivariate opti-

mization, and ranges. For each pattern, we store the information necessary to recreate the

pattern in an updated dataset. For example, for clustering, we store which algorithm was

used (e.g., KMenas or DBScan) with which parameters and attributes about the selected

cluster, such as its centroid. Figure 5.3 shows an example where an analyst first added a

plot of a dataset that exhibits clusters. The analyst then continued with a crude rectangular

selection. The system recommends a cluster as a match in the prediction interface. Hover-

ing over that cluster prediction reveals the cluster’s properties. The analyst decides this is

match is good for the intended selection and confirms the prediction. Finally, the analyst

filters out the selected items. Each of these steps is then reflected in the provenance graph.

The analyst could now go on and continue with subsequent analysis steps and only create

a robust workflow based on these steps at a later time.

5.3.1.1 Comparing and Updating Datasets

Our systems explicitly visualize differences between different dataset versions and how

a current analysis would be applied to different versions. Figure 5.4 compares the dataset

shown in Figure 5.3 and an updated dataset and a subsequent successful application of

a cluster-based selection. We see in Figure 5.4(a) how the dataset changed compared to

the one in Figure 5.3. Figure 5.4(b) shows how the selected cluster changed between the
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datasets; the hulls of both clusters are shown. Figure 5.4(c) shows the cluster selection in

the updated dataset. If the initial selection had been captured using range selection, i.e.,

not using a semantic pattern, the items that shift outside the range would not have been

captured.

Figure 5.5 shows another version of the dataset, where the selected and subsequently

filtered cluster broke apart into two clusters. Depending on the analyst’s intent, several

options are plausible: Remove both clusters, remove only the top or bottom cluster, or

remove none of the clusters. An automatic determination is impossible here, as the right

action depends on the analyst’s higher level intent. Hence, the analyst has to review this

situation and decide how to proceed, as illustrated in Figure 5.5. By default, the system

assumes that one large cluster is the best match (Figure 5.5(a)), as it best corresponds to the

previously selected cluster overall. Assuming that the analyst intends to select only the

top, smaller cluster, they can reject the “Clusters Selection” node in the provenance graph

and replace it with a better matching cluster, as shown in Figure 5.5(b).

5.3.1.2 Curating Workflows

Finally, the analysts can curate a reusable workflow based on the provenance data

(see Figure 5.6). After switching to the appropriate analysis branch, the analyst can open

the workflow editor and create a new workflow from the current branch. Doing so loads

the current branch as an editable workflow. The analyst can remove individual nodes,

name the workflow, and sync it to the workflow database. While theoretically possible,

our current implementation does not support automatic pruning. The workflows stored in

the workflow database are available for reuse in the tool and the Python library (see Sec-

tion 5.3.2).

5.3.2 Bridging to Computational Notebooks

At the heart of our suite of tools is the Reapply Workflows library that performs all the

predictions and the matching of actions between updated datasets. The library is used in

our prototype tool but can be used by third parties, e.g., to load workflows in notebooks.

The piece that connects the visualization tool and the computational environment is a

workflow database. As discussed, an analyst can use the visualization tool to perform

a visual analysis and capture workflows. Whenever a workflow is created or modified, it
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is also stored in the workflow database. The library can then load the workflows from the

database to a computational environment, such as a Jupyter notebook.

Figure 5.7 shows the process of loading and using a workflow in a notebook. The

library interfaces with the workflow database to provide convenient access, printing de-

scriptions, and an inspection of the steps in a workflow. Ultimately, workflows can be

applied to a pandas dataframe. The output of applying the workflow depends on the

actions in the workflow. If the workflow results in a selection, the output dataframe has an

extra boolean column isSelected that denotes the selected items. More complex workflows

with data transformation modify the output dataframe, e.g., filters return a subset of the

original dataset, labeling and categorization operations add an extra column with the

relevant label or category assignment, and aggregation workflows add a new row to the

dataset with the aggregated values.

5.3.3 Implementation

The prototype is a web based application developed with React and TypeScript. The

Flask server’s backend leverages the Reapply workflow library for computations and

workflow related features. The library is developed in Python and uses scikit-learn to run

the prediction algorithms. The library is available on the TestPyPi package index by the

name reapply-workflows. We show our computational demos in Google Colab notebooks,

which are equivalent to Jupyter notebooks but can be collaboratively edited and hosted by

Google.

We store datasets in an SQL database. Different dataset versions are tracked with a

separate record table. The changes between the datasets are computed on the fly; hence,

no additional storage is needed to track the diffs. We pre-compute patterns the prediction

system uses for pairs of dimensions to help speed up the initial predictions. We switch to

on-the-fly computations when any data transformation changes the dataset. The analysis

sessions and the curated workflows are stored in the Google Firebase Realtime database

as JSON.
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5.4 Comparison with Alternative Approaches
This section compares our approach with Tableau Prep, B2 [19] and VisFlow [44]. All

these systems have in common that they capture workflows, yet they all use different

approaches.

Tableau Prep and VisFlow use explicit modeling of workflows. Tableau Prep provides

a graphical workflow editor where analysts can drag and drop nodes as workflow steps.

The visualizations in Tableau Prep are limited to distributions, although data can be

imported into Tableau subsequently, which limits the possibility of open exploration before

workflow generation. VisFlow is a graphical workflow editor similar to Tableau Prep but

supports adding visualizations as a part of workflow nodes. VisFlow and Tableau Prep do

not support exporting the generated workflows outside their environments. Tableau Prep

and VisFlow workflows do not support semantic interactions and rely on rules for selecting

the data. Further, both tools include the dataset in their workflow, making reapplying

workflows difficult. A downside of such explicit workflow modeling systems is that they

are more akin to graphical programming than to open exploration and refinement of

datasets, which comes with the usual burdens of programming: High complexity and a

steep learning curve.

B2 [19] is a Jupyter extension that aims to bridge the gap between interactive visualiza-

tions and computational environments. The strength of the B2 approach is that it integrates

the interactive visualizations directly in the notebook and provides tight coupling between

code blocks and the visualizations. B2 currently supports selections; any further data

transforms require coding. Further, the selections are limited to brushing and do not

capture the semantics behind the selection. B2 supports limited provenance tracking for

interactive selections by generating code snippets to reflect the visual selection. The code

snippets are time-stamped to keep track of the order. Older snippets are automatically

commented out, which adds clutter to the code blocks. The lack of explicit tracking

makes maintaining parallel data analysis approaches difficult. Combining our approach

of semantically capturing selections and provenance tracking with B2’s tight integration

of code and interactive visualization would be possible.
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5.5 Validation
We use three strategies to validate our approach: Usage scenarios, demonstrating the

usefulness of our techniques in a realistic scenario (see the following section); synthetic

datasets to demonstrate the robustness of reusing analysis workflows; and interviews with

professional data analysts (Section 5.5.2).

5.5.1 Usage Scenario: Outlier Countries for COVID-19

We analyze outlier countries concerning COVID-19 metrics. The dataset [124] includes

various COVID-19-related metrics for multiple countries worldwide. COVID-19 data at-

tributes change frequently and are a good way to demonstrate our approach since selec-

tions and conclusions must be robust to updates in data. Let us look at a scenario for

which we want to investigate countries with an aberrant trend in the number of new

cases and deaths related to COVID-19. We start with data for January 2021 and load a

scatterplot for new monthly cases versus new monthly deaths. We immediately see that

many countries are far from the cluster of countries close to the origin. We then select a

few of these countries using a paintbrush selection. The system computes predictions and

suggests an outlier-based selection (see Figure 5.8(a)). We use this suggestion to refine

our selection. We switch to different months of the dataset to see if the selection is applied

correctly. We are happy with the selection, so we filter out everything but these items to

focus on these outliers.

We then categorize the outliers. We select all the countries with high monthly cases and

high monthly deaths with a rectangular brush and categorize them as countries with “High

Deaths–High Cases.” We then select countries with low monthly cases but high monthly

dates and categorize them as countries with “High Deaths–Low Cases” and proceed to

“Low Death–High Cases” (Figure 5.8(b)). We switch to different datasets and verify that

the categorization is applied correctly. When we are satisfied with the result, we approve

the interactions in the provenance history. Figure 5.8(c) shows an extreme example, June

2021, where cases and deaths in most countries are much lower, clustering close to the

chart’s origin — applying the categories (Figure 5.8(d)) results in several outliers being

unassigned, hinting at the fact that even moderate COVID activity is an outlier in that

version of the dataset.
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After curating the provenance history in a Categorize Outliers workflow, we store it

in the workflow database. We then move to a Jupyter notebook to load this workflow and

analyze these newly categorized countries. We can create a histogram of the categorized

countries stacked by region to get an idea about how different regions were affected

by COVID-19; where we see that high deaths have shifted to South American countries

in June, which were barely affected in January and that South American countries are

predominantly in the High-Deaths–Low-Cases category.

5.5.2 Feedback Session with Data Practitioners

We evaluated our method through interviews with four data practitioners from differ-

ent domains — nursing (P1), public health (P2), surgery (P3), and chemical engineering

(P4) — who regularly do data analysis. We first interviewed them about their current data

analysis process. We then introduced the participants to the principles of our technique

and gave them a live demo of the prototype tool and the Colab notebook, after which the

participants were asked to give feedback on the techniques and speculate how they could

be applied in their work. We have analyzed the transcript of the interviews and grouped

the responses into themes, which we describe below. The interview questions and tran-

scripts of the interviews are available as supplementary material at https://osf.io/djb8p/.

5.5.2.1 Provenance Tracking

Our participants used different tools to analyze their data, but all participants reported

that they frequently explore alternative analysis approaches. Participants who use scripts

report that they use comments and code blocks to keep track of the different analyses they

do. One participant who used Tableau mentioned the limited utility of the undo/redo

stack in keeping track of diversions in the analysis process. The participants particularly

liked the provenance-tracking approach we demonstrated in our prototype tool. P1 said

that “I do like the, the branching piece from here because it’s visually a lot easier than to

click the back button, or forward button, because it also is telling me a little label of what

changed with that.” and P3 said that “I definitely liked the way it branches. I think that’s a

super cool aspect of it. And then being able to kind of settle on one sort of branch analysis

I’d be able to explore like, that is really powerful.”

https://osf.io/djb8p/
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5.5.2.2 Capturing Semantics

Our participants expressed varying sentiments about the semantic selection ap-

proach [2] we leverage in this work. P3 said that “Yeah, I think that’s super smart.

. . . they’re saying, here’s what I think is a cluster, and then the program is saying, ‘okay,

looks like this is what you’re trying to define. Is that correct? That would be really

helpful.” Although all participants acknowledged the usefulness of semantic selections,

two participants, who have a strong statistics background, mentioned their hesitation in

relying on the predictions without detailed information about the algorithms and the pa-

rameters used in the prediction — information our system captures but does not currently

provide easy access to. P2 said that “. . . I wanted to understand what was happening in the

background.” P4, whose data analysis relies on the segmentation of microscopy images,

wanted the ability to add domain-specific models to the prediction system.

5.5.2.3 Visual Data Wrangling

Participants expressed interest in using visualization to directly interact with the data

for selection, creating groups, and labeling. P1, for example, said that “. . . you do regroup-

ing in Python, but then you always forget your variable name. And then you’re always

looking through your data frame for what is it type of thing, where Tableau, it’s easy to do

the groupings, and it just kind of makes a new variable right underneath it.”

5.5.2.4 Workflows

All participants agreed that reusable workflows would be useful in their analysis. P4,

for example, said “I definitely think it will be applicable because most of the time, we

actually don’t inherently change the method itself. . . . So I definitely can see this to be

helpful.” When asked whether they would like to create workflows or curate workflows

after an analysis explicitly, the participants noted that their data analysis sessions often

start with an open-ended exploration of data to detect interesting patterns. P3 described

their analysis process as “definitely more exploratory.” Participants liked the ability to

curate their workflows from an existing analysis session: “I like this, because it’s much

more natural” (P1).
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5.5.2.5 Bridging Between Tools

Participants were excited about the potential of using the workflows as a bridge be-

tween their different tools. P1, who switches between different tools frequently, mentioned

the need to repeat certain steps as they switch: “. . . replicating essentially a lot of the

filters and the sorting . . . ”. The current approach of this participant usually involves

modifying the data in one tool and then loading the modified data in a different tool.

On demonstrating the use of workflows in the Python notebook, P1 said, “great to be able

to click on the Select 53 points, and then see the all code, you know, to that would do the

53 points.”

5.5.2.6 Collaboration with Domain Experts

P2 and P3 worked with clinicians and were interested in the applicability of our

technique as a means of collaboration. They work in R and SAS heavily, whereas their

clinical collaborators have no familiarity with scripting tools. P3 said that “I work with a

lot of clinicians, a lot of doctors, and they are interested in research, but they don’t have

much research background, right. And this would be something that I think would be

really, really beneficial for them, because they are going to be, they’re going to want to do

a lot more kind of looking at the data and sort of touching the data, and it’s going to be

really important that they have that log where they can come back, give me data to just

sort of reflect on.” and “If they were able to show me their workflow, and I was able to go

through and see, how it progressed, I think that would be really helpful.”

Overall, our participants expressed positive sentiments regarding our techniques to

capture reusable workflows and thought they would be helpful in their current analysis

environment. P1 said that “I think it’s great. I would love to see how you would implement

this in Tableau”. They were most excited about the provenance tracking and the ability to

bridge between interactive visual analysis tools and computational environments.

5.6 Discussion
In this section we will discuss some implications of our techniques and directions for

future research.
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5.6.1 Generalization to Other Visualization Techniques

Our technique is based on capturing interaction provenance as an abstraction that

contains the information required to recreate the interaction (as opposed to a stream of

mouse/keyboard events). We demonstrate the abstraction for common interactions such as

selections, filtering, labeling, categorizing, and aggregation. Our methods are transferable

between visualization techniques if they support equivalent interactions and datatypes.

For example, to add a parallel coordinates plot, we did not have to modify our library de-

veloped initially with scatterplots. The interactions we describe are meant to be examples.

Other types (e.g., selecting a neighborhood in a network or sorting a table) can be included

if captured in the provenance graph, and the library is extended to handle the type of

operations and data. Our current implementation and our choice of algorithms are specific

to tabular data. However, our general approach applies to network, image, or volumetric

data, provided we can identify suitable methods for robust selections.

5.6.2 Certainty of Fit for Reuse

When we apply a selection to a new dataset, we assume an analyst will review the up-

dated selection. Although a review is certainly necessary if the data changes significantly,

minor changes might not require a manual review. We could conceivably compute metrics

about how “sure” we are about a specific operation as it is applied to a new dataset. If, for

example, all points are in the same selection and have moved little, we might not need a

review. If, in contrast, the dataset has changed significantly and the selection is affected,

we could print a warning, emphasizing the need for a review.

5.6.3 Interaction Directly in Notebooks

Visualization libraries such as Altair [16] and B2 [19] have made interactive selections in

visualizations within a Jupyter notebook possible. Papers like B2 [19] explore this approach

thoroughly. Conceptually, our technique can support actions in embedded visualizations;

hence, we plan on extending our library so that selections made within a notebook can

also be autocompleted and extracted into a workflow. Although we expect that other as-

pects, such as compound actions and workflow review, are infeasible to integrate natively

within a notebook, robust, pattern-based selections would enhance an analyst’s ability to

leverage the interactive capabilities of such simple visualizations. Directly integrating the
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interactive visualizations in the notebooks would reduce the friction of switching between

multiple environments while limiting the complexity of suitable visualization approaches.

5.6.4 Alternate Ranking Strategies

Our prototype uses the Jaccard similarity to rank different predictions. The Jaccard

similarity is sensitive to the data size and can be distorted if a large variation exists between

the sets being compared. Our technique can be extended to support alternative rankings,

and we can potentially add a custom ranking approach tailored to a dataset type. For

example, we can modify the Jaccard metric by adding a regularizing parameter based on

the size of the dataset to reduce the penalty for uneven set sizes.

5.7 Conclusion
We have introduced a method to capture interactive actions taken in visualization se-

mantically meaningfully and reuse sequences of actions (workflows) on updated datasets.

In this way, we make actions taken in a visualization just as robust to changes as if they

were implemented in a function in code. We introduce methods that match up selections

between updated datasets that go beyond just reapplying a simple rule, instead leveraging

various pattern-detection algorithms and knowledge about the properties of a prior selec-

tion. We introduce a mechanism to review changes and update workflows if necessary.

Finally, we have demonstrated that this approach also allows us to bridge between an

interactive visualization system and a computational workflow.

Whereas robust workflows could be implemented in code or using graphical workflow

modeling tools, our approach is easier to execute and allows for an unencumbered explo-

ration process. Our prototype and examples show that our approach works for a range of

patterns and datasets that change in significant ways. We believe our approach could also

be transferred to many other types of data and visualizations.
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Figure 5.1: Techniques for reusing the interactions. We can leverage the pattern-based
intent captured in the interaction provenance to map interactions to data operations and
algorithms to automatically apply the pattern on an updated dataset. The pattern-based
interactions can also replace previous interactions like manual selections, supporting the
curation of the provenance. Curated interactions are saved as environment-agnostic work-
flows and can be loaded by a different analysis environment.

Figure 5.2: The process of reusing workflows created in interactive visualizations. Interac-
tions, such as brushes, filters, or selections based on higher level patterns (outliers in this
example), are applied to a dataset. A series of actions can be extracted into a workflow. This
workflow can then be applied to an updated dataset either in an interactive visualization
system or in a computational environment.
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Figure 5.3: A dataset exhibiting clusters is shown in a scatterplot (a). (e) A rectangular
brush selection is used to compute pattern predictions to capture the selection’s semantics.
(b) A ranked list of these predictions is shown to the right of the scatterplot. The analyst
selects the top prediction, which is a cluster, and the system shows an overlay (f) to
visualize the cluster’s boundary. (c) The provenance graph on the right shows the captured
interactions.
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Figure 5.4: Comparing two datasets and reapplying a workflow. (a) The comparison mode
explicitly shows the differences between the two selected dataset versions. The scatterplot
encodes newly added items in the updated dataset as blue triangles , removed items
are shown as red crosses , and items that have shifted positions show a comet-like trail

from their original to their new position. (b) The selection made on the original dataset
moves down to the new cluster and handles new and removed items correctly. (c) The
updated selection.
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Figure 5.5: Reviewing and updating workflows applied to an updated dataset. Continuing
the analysis from Figure 5.3, the analyst loaded a new dataset version where a part of a
cluster broke off and moved down. (a) By default, the system considers these two clusters
to be one larger cluster as the previously selected larger cluster biases the outcome toward
a single cluster. The review interface indicates that certain actions have not been reviewed
for this version of the dataset by showing a question mark (?) next to the node. To select
just the upper cluster, the analyst first confirms the “Add Plot” and “Added Brush” actions,
which are then shown as approved with a checkmark ( ). (b) The analyst then rejects the
“Cluster Selection” action and picks a new cluster prediction that captures their intent.
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Figure 5.6: The workflow editor. An analyst can create a new workflow from the interaction
history captured in (a), the provenance graph, and curate it in (b), the workflow editor
interface, by removing unnecessary actions.
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Figure 5.7: Executing a computational workflow defined in the visualization tool in a
computational environment. (a) We first load the dataset. (b) We load the workflow library
and the workflow we are interested in. We then apply the workflow to the dataset. The
tool plots a preview of the actions. Note that new isSelected and isFiltered Boolean
columns are introduced when a brush and Filter are added in the preview. (c) After the
Filter is applied, the number of rows is reduced from 150 to 108. A visualization of the
result shows the cluster was removed. Visit the notebook.

https://colab.research.google.com/drive/1vAYM6xOG57dRNomBWOdC60ybQw9_Ohd1?usp=sharing
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Figure 5.8: Categorization of countries in a COVID-19 dataset. (a) A scatterplot for January
2021 shows the number of new cases versus the number of deaths. We selected outliers,
capturing countries with many cases, deaths, or both. (b) We filter out all countries except
the selected outliers and categorize the countries. (c) We switch to an updated dataset
for June 2021 and see that the number of cases and deaths has decreased worldwide, but
the pattern-based selection has correctly selected the outliers. (d) The system automatically
applies the range-based categorization to the countries that fall within the previous ranges.
(e) A subsequent analysis in a notebook reveals that the worst of the pandemic has shifted
to South America. Visit the interactive figure and the notebook.

https://reapply-workflows.github.io/reapply-workflows/#/explore?workflow=1631260396517
https://colab.research.google.com/drive/1EpNqN1JuicsauzixhGAv_s9mjP5qijLj?usp=sharing


CHAPTER 6

PERSIST: PERSISTENT AND

REUSABLE INTERACTIONS IN

COMPUTATIONAL NOTEBOOKS

In this chapter, we introduce techniques to achieve goal G5 — bridging the gap be-

tween code and interactions in the computational notebook. Computational notebooks like 

Jupyter exhibit a temporal and semantic gap. The temporal gap arises from the transient 

interactions in the notebook outputs and the persistence of changes in code cells. A lack of 

bidirectional communication between code and interactions causes the semantic gap. Code 

cells can generate interactive visualizations, but the results of the interactive visualizations 

are not accessible in the code. Figure 6.1 shows the contribution of this chapter towards 

the dissertation. The chapter is based on our work [21].

6.1 Motivation and Overview
Computational notebooks allow for narrative data analysis combining code, data visu-

alizations, text, figures, etc., in the spirit of literate programming proposed by Knuth [9]. 

Data visualizations in computational notebooks are treated as outputs, similar to text 

or data tables. As notebooks are code-based, they are (conceptually) reproducible and 

reusable [90]. The downside of notebook-based approaches is that they require program-

ming skills to use and that data wrangling operations can be time-consuming to get right 

and may require consulting reference material even for experienced programmers. On a 

spectrum of usability to complexity, programming lies on the complex side, yet it can be 

applied in generic contexts. On the other side of the spectrum are specialized interactive 

visualization tools. Interactive analysis tools can make advanced operations simple but 

lack generality: They are good at specific tasks but lack other desirable characteristics, 

such as broad applicability, reusability of analysis processes, reproducibility, etc.

It is unlikely that there are data analysis solutions that are simple yet equally expressive
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as programming languages, yet certain data operations are much easier to achieve in inter-

active and visual interfaces than they are in code. We postulate that hybrid, well-integrated

solutions can be a significant improvement over the current, mostly isolated state of

programming versus interactive visualization. A hybrid solution would allow skilled data

analysts to use simple and effective interactive approaches when appropriate and fall back

to expressive code-based operations for tasks that cannot be efficiently completed with

interactive tools.

Recent developments in computational notebooks have led to increased support for in-

teractive outputs in notebooks. However, these new approaches to integrate visualizations

with code are typically one-way streets: Plots are generated to inform the analysts and tell

a story, but they cannot be leveraged to manipulate the data. Libraries like Vega-Altair [16],

Plotly [125], bokeh [17], and IPython widgets [18] can be used to create interactive visual-

izations as outputs, but typically do not support data manipulation: The code cells cannot

access interactions such as selections and filters. Analysts can use interactions to explore

the data but must write code to manipulate the data. Furthermore, there is a mismatch

between the persistence of code-cells and actions taken in interactive outputs. Changes to

code cells are persistent across notebook saves, and the cells can be re-executed to get the

same results. However, interactions taken in visualizations are transient and are not saved

even across cell re-executions. To make insights based on interactive analysis permanent,

extensive documentation of the interactions themselves is required, which is a burden to

analysts [20].

Recently, systems like B2 [19] and Mage [103] introduced solutions to address the

barrier between interactions and code by generating code for interactive selections. As

our primary contribution, we introduce a new principle for integrating interactions with

code based on provenance data. As illustrated in Figure 5.2, Persist tracks actions taken

in interactive visualizations that are specified in code and apply them to a dataset. This

dataset can then be used in subsequent analysis. Actions tracked with Persist are fully

reproducible and reusable: When re-running a notebook, all actions are applied. Even up-

dating a dataset or the visualization itself is possible as long as the actions are meaningful

in the new context. Compared to generating code, using provenance associated with the

visualization has several advantages: First, unlike for code, there is no “gap” between
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the actions taken in a visualization and the injected code that is located in another cell.

Second, manual changes to generated code pose challenges in keeping the visualization

and the code in sync. Third, excessively generated code can lead to clutter, and finally,

provenance enables easy branching and iteration, which is important when exploring data

interactively.

We implement Persist as a minimal layer on top of existing interactive visualizations.

As a proof of concept, we instrument arbitrary Vega-Altair plots: Except for a single line

invoking Persist, no changes to the plots are necessary. We inject a suite of useful data

operations (such as filters, labeling, categorization, changing data types, and changing

values) that can be triggered either with direct manipulation, a toolbar, or a combina-

tion thereof. We also provide a custom interactive data table that enables a range of

manipulations that can be tedious to achieve in code but are natural in an interactive

system. Persist is an open-source JupyterLab extension. The source code is available at

https://github.com/visdesignlab/persist.

We evaluate the efficacy of Persist by comparing it to the traditional code-based ap-

proach in a user study with eleven participants skilled in Python and Pandas. The study

focused on data cleaning and manipulation operations. The results show that participants

were consistently faster, could complete the tasks more often when using Persist, and rated

their perceived workload as lower. Participants also expressed a preference for Persist over

code-based approaches for all tested operations.

6.2 Persist Walk-Through
To demonstrate how data analysis with Persist works, we describe an analysis session

following an analyst as they work on a Utah avalanche dataset [126]. This analysis session

is also available in the supplemental materials. The dataset contains reported instances of

avalanches in the Utah mountains. After loading the data, the analyst starts by creating a

Persist-enabled Vega-Altair scatterplot of the Elevation feet (the altitude at which the

avalanche occurred) versus Vertical inches (the thickness of the avalanche) columns

of the dataset. This visualization helps in identifying the general data distribution and

potential outliers. The analyst notices that some records show elevations below 2,000 and

above 15,000 ft, which are outside Utah’s elevation range (2,300–13,500 ft) and concludes

https://github.com/visdesignlab/persist
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that these must be erroneous entries (see Figure 6.2(a)). Using a brush, the analyst selects

these points and uses the Remove Selection button in the Persist toolbar to remove the

selected points (Figure 6.2(b)). Persist tracks all the interactions in a provenance graph

(Figure 6.2(c)) and automatically creates a variable that holds the resulting dataframe.

Next, the analyst uses the updated data to explore monthly avalanche trends by cre-

ating a composite Vega-Altair plot containing a bar chart for avalanches aggregated by

month and the scatterplot from the previous analysis (Figure 6.2(d)). The bar chart reveals a

seasonal pattern, with avalanches peaking in February. The analyst creates a new category

called Avalanche Season with three options, Start, Middle, and End using the Add Category

button on the Persist toolbar. They now brush ranges in the bar chart and assign them to

one of the avalanche season phases using the Assign Category button from the toolbar.

The chart’s color-encoding automatically updates to show the new data. In the dataset,

Persist automatically created a new column in the dataframe that reflects the interactions

applied in the bar chart.

To examine the data in a tabular format, the analyst employs the Persist Table (see

Figure 6.3). This reveals some data artifacts, such as extraneous semicolons in column

headers. They correct these in the table by directly editing the affected column header.

6.3 Persist Principles
Persist can be used with any supported interactive output in Jupyter with minimal

changes to code. It does so by wrapping interactive components in a layer that (a) tracks

interaction provenance, (b) makes data operations available through a GUI, and (c) ap-

plies these operations to the data structures, as shown in Figure 5.2(c). Next, we lay out

the implementation-independent design principles of Persist before discussing concrete

design and implementation in the next section.

6.3.1 Injecting Operations

Persist listens to native operations of a component, such as selection, and injects opera-

tions into the component, as illustrated in Figure 5.2(d), where a toolbar was added to the

native Vega-Altair chart. Persist can also listen to keyboard events or direct manipulation

events if the component supports them.
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6.3.2 Tracking Provenance

Persist captures the interaction events from the interactive component it observes and

translates the events into meaningful operations that Persist can track and operate on

where necessary. It also injects a provenance visualization widget into the notebook, as

illustrated in Figure 5.2(e) and shown in Figure 6.2(c). The provenance graph documents

all the steps taken and can be used to navigate back in history and to create branches.

6.3.3 Transforming Data

Based on the provenance information, Persist applies the operations to a dataframe

in sequence, as illustrated in Figure 5.2(f). Different operations map to different dataset

manipulations. For example, selections create a new Boolean column indicating whether

an item is selected; other operations might change values, delete rows, re-order columns,

etc. Persist maintains one dynamic dataframe that represents the active state of the user

interface. That means that this dataframe is updated every time a new operation is added,

but also if the history is used to navigate to a previous state or a different branch. This

dataframe can then be used in subsequent code cells, as shown in Figure 5.2(g), with the

changes being illustrated in Figure 5.2(h). Persist also enables users to explicitly create a

static dataframe for every provenance state. In this way, one interactive component could

be used, e.g., create two separate dataframes with different subsets of rows which both can

then be used in the notebook.

6.3.4 Updating Interactive Components

Operations can change how data is best displayed in the interactive components,

illustrated by the arrow connecting Figure 5.2(f) to the scatterplots. For example, a chart

should update after a filter was applied (removing or graying out the data points) or

after a category was assigned (changing its color or shape). We distinguish between two

scenarios: 1) The change is to the data, but no additional “channel” has to be encoded,

which is the case, for example, when filtering. In this case, we can just use the original

chart specification and re-render with the new data. 2) The change in the data has created

an additional “channel” that should be encoded. For example, when a category is assigned

to a data point, that category could be shown with color. The label should be displayed in

the chart when a data point is labeled. We do this by updating the chart specification to
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encode these additional attributes, either as a visual channel or as a tooltip.

6.3.5 Re-Execution

When a Persist-enabled cell is re-executed, Persist reapplies the interactions from the

beginning to restore the interactive analysis done by the analyst. Therefore, Persist fills

the temporal gap by making the interactions persistent as well as supporting revisiting

previous interactions. The interaction provenance saved by Persist is output and data

agnostic. Every entry in the provenance can be thought of as a line of Python code. If

the Persist-enabled cell is re-run with updated data, or even changes to the visualization

code, Persist will still attempt to apply the interactions to the new output and dataframe.

In this manner, analysts can, for example, update their styling or even change their visual

encoding choices while retaining their interactive workflow. Persist interfaces with the

output visualization to track interactions and update it in response. Therefore, the types

of interactions and complexity of interactions Persist can handle are limited by the visu-

alization and the interface it provides. However, there are scenarios where the operations

may not be compatible with the changed data or changed visualization. If either of them

is incompatible, Persist will raise an error similar to Python. If, e.g., an interaction deletes

the column that the updated Vega-Altair chart uses, the chart breaks and may be unusable.

An analyst can use the interaction history to undo such an action.

6.4 Persist Design
The previous section described the principles behind Persist. Here we describe our

concrete implementation of these ideas in the Persist prototype, including a description

of the supported operations, the interactive components we provide, and the UI choices

we made. To demonstrate the flexibility of the Persist library, we implement two different

visualization options: 1) an interface to arbitrary Vega-Altair charts and 2) an interactive

table that can be used to view and manipulate dataframes directly.

As part of the Vega-Altair integration, we inject the Persist toolbar, shown in Fig-

ure 6.3(a). Selection is natively supported by Vega-Altair charts. The toolbar adds options to

rename columns, remove columns, label items, filter items, and categorize items. It also provides

an interface to general Persist operations, such as undo/redo (traversing the provenance
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graph), resetting all operations, and deleting all dynamic datasets.

The Persist Table, shown in Figure 6.3, uses the same toolbar and hence supports all

the same operations as Vega-Altair charts. In addition, the table enables operations through

direct manipulation by either interacting with the column headers (Figure 6.3(e)) or with

individual cells (Figure 6.3(f)). These actions include sorting items, renaming columns, editing

values, and reordering columns. Additional operations could be easily added, such as find and

replace.

Persist also adds a dataframe manager at the bottom of all Persist-enabled views (Fig-

ure 6.3(c)). Here, analysts can view existing dataframes (including the dynamic dataframe

discussed before) and create new dataframes based on the current state of the visualization.

The manager also provides buttons to copy the dataframe name and inject a new code cell

that prints the dataframe into the notebook. Based on this interface, analysts can easily

transition between Persist-enabled visualizations and Python code that uses the created

dataframes.

All Persist-enabled components are also accompanied by a provenance visualization,

rendered as a tree (Figure 6.3(d)). Any interaction in the toolbar or the visualization creates

a new node in the graph. Analysts may revisit any captured step in the graph, updating

the visualization. Any existing dataframes associated with the current step are visible, and

their name can be copied or inserted into a new cell. Analysts can bookmark steps they

deem important or add annotations. Additionally, a separate tab displays a summary of

interactions leading to the current state instead of the entire provenance graph, if desired.

6.5 Implementation
Persist is a JupyterLab extension designed to work with JupyterLab 4 and Jupyter

Notebook 7 interfaces. Persist uses the Notebook API to access the cell metadata for

persistence. Since Persist saves the interaction provenance directly in the notebook, the

interactive analysis can be shared along with the notebook. Other notebook frontends like

VS Code Jupyter and Google Colab do not support the Notebook frontend API directly.

Persist uses the Trrack [1] provenance tracking library, which we developed previously.

Persist can be installed with pip install persist ext.

The Persist extension package contains two modules: The first is the JupyterLab
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Code Cell extension which augments the CodeCell API with Persist-specific features like

managers for provenance and generated datasets. The cell extension is developed with

TypeScript and React. The second module is the PersistOutput widget developed using

anywidget [127], which is an abstraction over the popular JupyterWidgets [18]. The Per-

sistOutput widget contains the core Persist module, the interfaces for Vega-Altair charts,

and the custom data table UI. The widget backend is developed in Python, and the front

end uses TypeScript, React, and Mantine React Table.

6.6 Evaluation
We evaluate Persist by comparing it with traditional Pandas-based data analysis in

Jupyter in an empirical, lab-based study. Our goal was to find out if using the Persist

extension made the data analysis faster, accurate, and reproducible and, additionally

collect preferences and opinions from participants with experience in data analysis. Our

hypotheses were:

• H1-Speed: That participants would perform the tasks faster in the Persist condition.

• H2-Correctness: That most participants will be able to complete most tasks, but

Persist would result in fewer incorrect solutions.

• H3-Completeness: That using Persist would result in fewer skipped tasks.

• H4-Reproducibility: That using Persist would result in more reproducible note-

books.

• H5-Workload: That participants would have lower subjective workload using Per-

sist.

• H6-Helpfulness: That participants would find Persist helpful.

An overview of the study tasks, design, analysis, and results is given in Figure 6.4. We

recruited 11 participants who have experience in data analysis using Jupyter notebooks

and Pandas (4 identified as women, 7 as men). We recruited from our local student

pool; our participants included undergraduate (2) and graduate students (4 PhD and

5 Master’s). The self-reported experience on a 5-point Likert scale for Python was 3.6

(σ = 1.12), for Pandas was 3 (σ = 1.26), and for data wrangling was 3.18 (σ = 0.87).

Seven participants had experience using data analysis in research or an industry setting.

The study was deemed exempt from full review by the University of Utah IRB (00167331).
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6.6.1 Procedure

The study employed a within subject design using two datasets: Avalanche records

from the Utah Avalanche Center [126], and Video Games sales data from the Corgis

Dataset Project [128]. The tasks involved data cleaning and data manipulation, such as

(1a) removing columns not required for analysis, (1b) fixing column names to remove

stray characters, (1c) changing the data type of a column, (2a) removing outlier records,

(2b) removing records within a range, (3a) deriving a categorical column based on a

numerical column, and a final task (3b) where participants looked at a plot with the

new derived column to answer a question. Participants were given a prepared Jupyter

notebook for each condition that contained instructions about each task and included

boilerplate code, such as imports and data loading. Also, all visualization code (for both

conditions) was given so that participants only had to execute data manipulation steps. See

the supplemental material for the notebooks used. Each participant completed these tasks

under both the Persist and traditional Pandas conditions. Tasks were matched between

the datasets but varied slightly to fit each dataset. The order and dataset assignment were

randomized using a Latin square to counterbalance any effects of datasets and order of

conditions.

The study began with an introduction that included disclosures that the screens and

room audio were recorded and their notebook would be analyzed, after which we obtained

consent. This was followed by a survey where participants reported their experiences with

Python, Pandas, and data wrangling. Following this, participants performed the main data

analysis tasks under each condition. For the Persist condition, the participants were first

given a 15-minute tutorial about Persist, followed by a hands-on session in the tutorial

notebook. For the Pandas condition, participants were permitted to use any resource to

find help, including using their own laptops to use search engines, consult documentation,

or employ LLMs like ChatGPT for help. Participants could skip any task if they felt they

could not proceed; if a participant skipped, the experimenter loaded a prepared dataset

so that they could proceed with subsequent tasks. After each condition, the participants

completed the NASA TLX [129] questionnaire to assess their subjective workload. Upon

completing the tasks, participants filled out a poststudy survey and completed a semi-

structured debrief interview to discuss their experiences with Persist. Each session lasted
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approximately 1 hour and 45 minutes. Participants were compensated with a $30 gift card.

6.6.1.1 Measures

We measured time to completion for each task (using post-hoc video analysis), task

correctness (correct, partially correct, skipped, wrong), reproducibility of the notebooks by

attempting to re-execute them after the session, and subjective performance (using NASA

TLX [129]). We also record preferences and feedback in a survey and a semi-structured

interview.

6.6.1.2 Pilots, Analysis, and Experiment Planning

We conducted four pilots to evaluate tasks, different conditions and datasets, ex-

perimental setup, and our procedure. Due to the limitations of null hypothesis signifi-

cance testing, we base our analysis on best practices for fair statistical communication

in HCI [117] by reporting confidence intervals and effect sizes. We compute 95% con-

fidence intervals and effect sizes using Cohen’s d to indicate a standardized difference

between two means. We also supplement our analysis for the time values by including

p-values from Wilcoxon signed-rank tests (given the non-normal distributions of our data

and the within-subjects design). We use a Bonferroni-corrected significance threshold of

p = 0.0071. We do not compute statistical tests for correctness, as we expected most

participants to be able to complete all tasks given the well-defined objectives based on

common data manipulation patterns, our participant inclusion criteria (experience in data

wrangling), and the ability of participants to use arbitrary reference materials. We also

do not perform statistical tests on our perceived workload measures and other survey

responses due to the complexity of analyzing subjective scores and our relatively low

number of participants.

6.6.2 Quantitative Results

Each participant attempted 14 tasks in this study, equally distributed between two

conditions. Task 3b, which involved interpretation from a pre-generated plot, was identical

between the two conditions, so we expected results to be consistent between conditions

and excluded it from condition-specific discussions below.

Figure 6.5(a) shows the time participants require for the tasks, means, 95% confidence
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intervals, and statistical information. Participants completed all tasks more quickly using

Persist, with means being about 3x lower in the Persist condition, confirming H1-Speed.

For all tasks that were different in the conditions, we observe a significant relationship,

with a very large to huge effect size [130]. Moreover, the data shown in Figure 6.5(b) indicate

that the Persist condition resulted in fewer errors (albeit overall correctness was high).

Of the 77 tasks undertaken with Persist, only one was partially wrong, and another was

incorrect. No tasks were skipped. Conversely, in the Pandas condition, two were incorrect

and one was partially correct, while eight tasks were skipped, lending some support to

H2-Correctness and H3-Completeness.

Upon revisiting the notebooks after the study for re-execution, we found four from the

Pandas condition that could not be entirely executed due to errors: Manually bypassing

some cells was necessary to complete the run. However, most of these cases also coincided

with skipped tasks. Additionally, re-executing one notebook revealed an incorrect dataset

state, despite the answer being correct during the study. In this case, it was necessary to

execute a specific cell twice to get the correct results. In contrast, all 11 notebooks associated

with tasks conducted using the Persist extension demonstrated seamless functionality,

exhibiting no errors upon re-execution, making the participant sessions more consistently

reproducible, lending support to H4-Reproducibility.

The results of the subjective workload assessment are shown in Figure 6.6. We omitted

the physical demand metric from these results as it was not relevant to our study context.

Figure 6.6 presents the empirical CDF plot for both conditions, revealing consistently

higher levels of effort, mental demand, temporal demand, frustration, and lower per-

formance associated with the Pandas condition. These findings suggest that participants

felt more efficient and less burdened while performing tasks with Persist, confirming

H5-Workload. In the poststudy survey, participants assessed the helpfulness of Persist in

completing various tasks such as renaming columns, deleting columns, changing column

data types, interactive selections and filtering, categorizing, and navigating to prior states

in the interaction provenance (history). On a 5-point Likert scale, where five denotes ‘very

helpful’ and one signifies ‘not helpful,’ all participants consistently rated the helpfulness

of Persist as either 4 or 5 for every task, with a single exception, as shown in Figure 6.7,

lending support to H6-Helpfulness.
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6.6.3 Qualitative Results

Here we report on the follow-up interviews, summarizing and providing quotes for

context. Quotes are edited for grammar; refer to the supplemental material for full tran-

scripts. During the debrief interview, participants were asked about the learning curve

of the extension, given the short time they had to familiarize themselves with Persist.

Participants expressed that Persist was easy to learn, and the appropriate icons and tooltips

helped them discover the features required for a particular task. P4 recalled, “I couldn’t

remember what button it was, but it only took me one second to find it.”

Participants were asked about their preference between Persist and Pandas. They

expressed that they preferred using Persist for most tasks because of the ease of using

interactions. P8 described their experience with Persist as “what you think—you can just

do it right away.” P1 skipped Task 3a in the Pandas notebook but completed it successfully

with Persist. They said, “that was kind of hard for me to write in code. By using the

interactive tool, it was super easy.” P6 was one of the most experienced participants who

performed the Pandas tasks the fastest. When discussing the preference between Persist

and Pandas, they said, “[with Pandas] I know what I want to do, but I still get stuck,

because of the [. . . ] syntax. But with Persist, I don’t have to write anything.” While all

participants preferred Persist for most of the tasks, some participants had concerns with

interactive selections. These concerns stem from the task instructions giving precise num-

bers, and hence participants were required to accurately select something with a mouse,

whereas in code, they could put in exact values. P6 said, “. . . I’m just just not comfortable

with visual selections. Because, as you know, there are edge cases with human errors.”

P11 had worked as a data scientist in industry. They commented, “the selections part—I

felt it’s rough around the edges. [. . . ] if there are many cluttered points [. . . ], I can’t nail the

selection exactly.” However, they later added, “apart from that point, if there are anomalies

or outliers, it’s extremely helpful.”

Our goal with Persist is to enable seamless switching between code and interactions,

allowing the analyst to use the best tool for the job. Therefore we asked participants about

their thoughts on switching between Persist and Pandas. P2 responded, “maybe there are

some features which are not present in this and we might want to use the code. So it is

helpful to have both things.” We also asked participants if they would like to use Persist
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in their own data analysis. All participants showed interest in adopting Persist. P6 said, “ I

actually really find it helpful and I’m planning to use it on my own research.” P3 responded

“I would definitely use it, because I felt it’s really intuitive.” Participants also brought

up the interaction provenance and ability to traverse between the states. P11 said, “the

thing I really liked about is version control, which shows the history of all operations [. . . ]

and also saves the changes [. . . ] into a data frame.” P8 described in detail their struggle

with creating multiple temporary variables, copies of notebooks, and out-of-order cells

that happen as part of exploratory analysis, “I do want to say that when you are working

on a larger project, you tend to create so many variables [. . . ]. So instead of that, I would

definitely want to highlight how you don’t have to [create new named variables] for every

small change that you make [in Persist], you just have to [create a name] for the one that

you wish to retain.”

6.6.4 Study Discussion

Our results unambiguously demonstrate that participants were, on average, signif-

icantly faster using Persist than using standard data frame operations, validating H1-

Speed. We also have some evidence to support H2-Correctness, H3-Completeness, and

H4-Reproducibility, although the overall low number of errors, skipped tasks, and not-

reproducible notebooks indicate that a more powerful study is necessary to make definite

statements on these hypotheses. While we haven’t conducted statistical tests to evaluate

H5-Workload, we think the evidence from the NASA-TLX survey and the interviews un-

ambiguously supports that participants do have lower subjective workload using Persist

than using data frame operations. Similarly, our survey data and the qualitative interviews

validate H6-Helpfulness. Looking closer at the data for completion times, it is noticeable

that the Pandas condition has a higher variance in completion times, while the Persist

condition has minimal variation. This could indicate that Persist is easy to learn and can be

consistently applied, while the ease of using Pandas operations depends on the analysts’

experience. Almost all participants had to look up syntax for most Pandas operations.

It is notable, that even the more proficient participants in our study expressed that they

found Persist helpful. We conclude that a tool like Persist can significantly speed up the

workflow of most somewhat proficient data scientists, while still being an appreciated tool
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for experts, thereby contributing to making computational data analysis accessible to a

wider audience.

Another interesting observation is comparing the completion times of the two filter

tasks (2a and 2b). While the difference in the Persist condition is negligible, the difference

in the Pandas condition is large: Cutting the average from 520 seconds to 224 seconds.

We observed that this speed-up is because participants copied the code they had written

for Task 2a when completing 2b. This observation makes us consider whether we should

provide functionality to copy workflows created with Persist [3].

One critique of our study design could be that we tested tasks and operations that we

expected would perform well with Persist, but didn’t test tasks that can’t be completed

with Persist alone, and that hence, the benefits of Persist shown in the study are not

surprising. We counter this by stating that we did test a representative set of operations,

but also acknowledge that there are operations that are just easier to execute in code,

such as when using regular expressions, or when applying complicated conditional data

transformations. Yet the point of Persist is that it allows a seamless transition between

interactivity and code, allowing analysts to use the right tool for the job without incurring

the costs usually associated with switching between analysis modalities. Hence, we believe

that our study demonstrates that Persists is an overall valuable addition to the data science

tool-kit.

6.7 Discussion and Limitations
Most data analysis systems are either useful in a narrow context (specific) and easy

to use (such as simple interactive charts, or systems designed for a specific workflow), or

general and complex (such as programming languages). This relationship is illustrated in

Figure 6.8. Most visualization systems fall somewhere in the middle between these tools:

It takes effort to learn to use a general-purpose visualization tool, yet it can be used for

many things. The complex–specific quadrant is undesirable, while the easy-to-use–general

quadrant is likely impossible to populate. We believe that Persist fills a unique niche

by seamlessly bridging between the usability–specificity and the complexity–generality

quadrants, thereby allowing some operations that would usually be in the domain of

programming languages to be executed with easy-to-use interactive systems, while not
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reducing the overall generality of the data analysis approach.

However, we recognize that Persist has limitations. While data operations on pandas

and similar tools are scalable to large datasets with millions of rows, Persist is limited

w.r.t. scalability by what can be plotted in a reasonable way. While scalable visualization

solutions like VegaFusion exist, they are not implemented in our prototype. Scalability

of the interaction provenance is also a concern. Long iterative analysis can result in

unwieldy provenance graphs. We could develop more sophisticated approaches for man-

aging large interaction provenance, such as query-based retrieval of states of interest [52],

automatically chunking multiple interactions as a higher level interaction, or features like

undo-as-delete [45] to avoid short stray branches when recovering from mistakes. Persist is

currently limited to our custom table and Vega-Altair charts. However, since the ecosystem

for interactive visualizations in Python is small, we expect it to be feasible to extend our

approach to libraries such as Bokeh and Plotly. Similarly, Persist is currently limited to

pandas dataframes and doesn’t yet implement all reasonable operations for dataframes.

We believe an abstraction to SQL would open up compatibility with other data structures

such as DuckDB and other databases. While poststudy interviews indicate that Persist is

easy to pick up after a short tutorial, we cannot discount the possibilities of non-experts

facing certain hurdles. Interactive analysis is not yet common in notebooks, so an interface

like Persist can add to the learning curve of notebooks for novice analysts.

6.8 Conclusion and Future Work
We have introduced Persist, an approach for bringing data operations to interactive

visualizations in notebooks and seamlessly bridging the gap between interactive visual-

izations and code. While we believe that Persist is useful right now in day-to-day data

analysis, there are several immediate extensions we want to implement. Low-hanging fruit

would be to include other operations or to improve how the Persist views are shown in

“preview” mode, e.g., when a notebook is rendered in static form on GitHub. Also, Persist

is currently limited to Jupyter and cannot be used, for example, in Visual Studio code.

One aspect that Persist doesn’t simplify is chart creation. Combining Persist with the

chart creation technology shown by others [19], [131] would be desirable. Also, the Persist

principles could be used for changing the visualizations, e.g., by removing or changing
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titles, visual encodings, etc. In that case, operations would have to be applied to the input

visualization instead of the data frame.

Finally, while we have compared Persist to traditional analysis, it would also be inter-

esting to compare it to alternative code-generating approaches, such as B2, so that we can

develop a better understanding of the trade-offs of both approaches.
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Figure 6.1: Interaction provenance for interactive visualizations in notebooks can be used
to save and replay the interactions. Doing so enables the persistence of the interactions
in the notebook, addressing the temporal gap arising from the transient nature of inter-
actions. Mapping the interactions to data operations allows updating of the underlying
dataframe, enabling the use of interaction results in code, addressing the semantic gap
due to one-way communication between code and interactive visualizations.

Figure 6.2: Examples of how Persist is used for data manipulation. (a) An analyst creates
an interactive Vega-Altair scatterplot showing the elevation and depth of avalanches. They
notice the outliers in the elevation and proceed to select the outliers and remove them (b).
(c) The interactions are tracked in the provenance graph, and Persist creates a dataframe
containing the updated data. (d) In a follow-up cell, they use the cleaned data to create
a composite Vega-Altair chart with an interactive bar chart showing avalanche records
aggregated by month next to the scatterplot of elevation versus depth. Using the Persist
UI, the analyst wants to categorize avalanches by season. The colors indicating categories
were added without modification to the visualization code, and again all steps are tracked
and applied to the dataframe.
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Figure 6.3: The Persist Table is an interactive data table that can be used for manipulating
data frames. (a) The Persist toolbar is also injected into Vega-Altair charts. (b) The pagi-
nated table. Analysts can interact with the (e) headers, rows, or (f) individual cells. (c) The
Dataframe Manager serves as the interface between the dataframes maintained by Persist
and subsequent code. (d) The Provenance History view enables browsing the history,
branching, annotating states, creating dataframes for specific states, etc. A summary view
(not shown) gives a textual description of active operations.
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Figure 6.4: Illustration of study tasks and conditions, design, analysis, and results.
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Figure 6.5: Time and correctness results. (a) Overview of task completion times for 
both conditions in seconds. Raw values are shown in jittered dot plots; the solid dot and 
lines show the mean and the 95% confidence intervals. The colored numbers show the 
lower and upper bound of the confidence interval and the mean respectively. The plot is 
clamped at 20 minutes (1200 seconds); data points exceeding 1200 seconds are shown as 
triangles. Statistical information is provided above the plots in gray. Persist was at least 
three times faster in all tasks where it was used (note that Task 3b–Analysis was a 
visual analysis task identical in both conditions). All the differences are statistically 
significant with “very large” to “huge” effect sizes [130]. (b) Overview of task correctness 
across conditions. In the Persist condition, 75 of 77 tasks were completed correctly, 1 was 
partially correct, and 1 was wrong. In the Pandas condition, 66 of 77 tasks were 
completed correctly, 1 was partially correct, 2 were wrong. In 8 cases, participants 
could not come up with a solution and skipped the task.
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Figure 6.6: Subjective workload as measured by the NASA TLX shown as an empirical cu-
mulative distribution function (eCDF), where the index of participants is on the y-axis, and
the score is on the x-axis. Low values are “good” in all cases (low effort, low frustration,
etc.) For performance, a low value is on the scale “Good (0)” to “Poor (100).” Averages
for both conditions are shown with a lighter line. The Persist condition was rated “better”
across all dimensions, mostly with margins of about 50 points on average. The exception is
performance, where participants rated their performance with Persist by about 30 points
better than with Pandas.

Figure 6.7: Histograms of ratings for the helpfulness of Persist for tasks on a 5-point
Likert scale, where 1 corresponds to “not helpful,” and 5 corresponds to “very helpful.”
Participants find Persist helpful or very helpful across tasks. For filters, one user expressed
a preference for entering precise queries and rated Persist lower.
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CHAPTER 7

DISCUSSION

In this chapter, we will first reflect on the implications of our contributions to this

dissertation and then look at the wider impact of our work on interactive visual analysis.

Finally we will reflect on the challenges and limitations of our techniques and directions

for future research in addressing the challenges.

7.1 Toward Literate Visual Analysis
For an analysis to be reproducible, the steps of the analysis and the data should be

available for independent verification. Therefore, we must share the process and narrative

to make visual analysis reproducible.

For visual analysis, the process is made up of the sequence of interactions — the inter-

action provenance — made by the analyst. Most visual analysis tools lack the capability

to capture the interaction provenance, and when available, it is often limited for tasks

such as a linear undo/redo stack or non-reproducible logs. To capture the interactions

in visual analysis, in Chapter 3, we introduce the provenance tracking library Trrack [1].

Trrack can manage non linear provenance as branches in the provenance graph, therefore

supporting non linear interaction provenance. Trrack also supports replaying the captured

interactions.

Sharing the analysis narrative is a much larger challenge. One aspect of the narrative

is the pattern-based intent, which depends on the data, but other high-level aspects of

reasoning rooted in the domain knowledge play a more important role in the narrative.

In Chapter 4, we introduce techniques to make the captured interaction provenance

semantically meaningful. Our techniques semiautomatically capture the pattern-based

intent of the analyst for selections and enable annotation of the captured provenance by

the analyst. Capturing semantically meaningful provenance and the analysis narrative in

the form of annotations can allow for independent reproduction and verification of the
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visual analysis, thus building trust.

Our techniques for capturing semantically meaningful interactions and annotations

open a path toward a literate visual analysis framework. Knuth proposed the paradigm

of literate programming [9] as a way to write computer programs that are readable by

humans and compilers. The crux of the literate programming approach is the co-location

of executable code (the process) with the exposition of the program logic (narrative). This

idea of literate computing has also been extended to visualization and data analysis. The

idea of literate visualization, as proposed by Wood et al. [132] aims to capture the design

rationale behind the visualization design (narrative) along with the executable code for the

visualization (the process). Mathisen et al. [133] propose the paradigm of literate analytics

where the goal is to capture the data analysis narrative, which includes insights about the

method and the data (narrative) along with the analysis and the results (the process).

A reproducible visual analysis session includes the provenance of the interactions (the

process), the semantics of the interactions, and the analyst’s annotations (the narrative).

Following the literate paradigm, a reproducible visual analysis moves us closer to realizing

a literate visual analysis framework. Such a framework would document the step-by-step

process of visual analysis and include the analyst’s narrative, including relevant domain

knowledge.

Our approach to capturing the narrative of the visual analysis involves the analyst

manually annotating the interaction provenance. However, this comes with its own chal-

lenges. The annotation process requires added effort on the part of the analyst, often lacks

guidance, and is ad-hoc, making it difficult to analyze programmatically.

A framework for capturing the annotations in a structured manner can go a long way

in addressing this challenge. In their work on literate visualization, Wood et al. [132]

present the idea of “narrative schemas” for structuring the design exposition during

visualization design. Narrative schemas specify different parts of the narrative document

coupled with rules for using them. Schemas can be structured in the form of Socratic

“dialogue” with questions to prompt the designer or with a more formal framework like

“visualization algebra.” The idea of schemas can be extended to prompt the annotations

in the interaction provenance. Prior research on capturing structured annotations like

the SVC (subject-verb-complement) structure proposed by Vanhulst et al. [134] can be
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adapted for creating a schema. Schemas can also be created by extending the knowledge

externalization frameworks like the implicit error framework by McCurdy et al. [135] or

the Data Hunches framework by Lin et al. [136].

Making visual analysis reproducible is just the first step toward the paradigm of literate

visual analysis. We believe that a combination of strategies like provenance tracking,

inferring interaction intents, structured annotations, and storytelling [50] to combine data

analysis and reporting is the way to achieve literate visual analysis.

7.2 Reusable Workflows as Templates
A reusable visual analysis can be applied to an updated dataset and yields similar

results. We must meaningfully apply the captured interaction provenance to an updated

dataset to reuse the analysis. Further, the interactive analysis process is often iterative, and

the captured provenance can contain multiple branches. It is often desirable to only reuse

parts of such interaction provenance.

In Chapter 5, we introduce techniques to reuse the captured interactions on an updated

version of the dataset. Further, our techniques support curation to extract parts of the

interaction provenance as workflows for later use. These curated workflows are analogous

to functions in computational data analysis in that they can be defined once and reused

multiple times.

However, an important distinction between these workflows and functions is that

functions can be parameterized. Therefore, functions are highly adaptable to changes in

the data. Workflows based on semantically meaningful interactions, while more robust to

dataset updates than workflows based on mouse/keyboard interactions, might still not be

reusable on datasets with large changes or from a different domain. Our workflow capture

technique relies on tracking view specifications, downstream selections, and transforms.

Applying the dataset to an unrelated dataset will almost always result in incorrect results.

We address this issue by introducing a review process by the analyst. However, after

determining that the reapplication of the interaction was incorrect, the analyst must man-

ually fix the workflow. It would be valuable to have the system recommend alternatives

when the analyst marks the interaction as incorrect. Developing this approach would

require the system to understand the changes to the dataset, which becomes a harder
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challenge if the new data belongs to a different domain altogether.

We also see potential in using workflows as templates for recurring tasks, such as data

cleanup on datasets generated by the same instrument, although for different experiments.

Going back to parallels between the workflows and functions, parts of workflows can be

parameterized where the analyst can specify any changes to these parts when using the

workflow. Parts of the workflow, like the dimensions on which the interactions are done

or the algorithm and hyperparameters used by a pattern-based interaction, are ripe for

parameterization. For example, an analyst could reuse the templatized workflow on a new

dataset by updating the selection operation to select the correct outliers in the new data but

reuse the downstream data transforms like filters or aggregates.

Programming-by-example (PBE) systems like Wrex [100] and FlashExtract [137] have

demonstrated the utility of generating code from interactions for data analysis and wran-

gling tasks. A common approach in PBE is to synthesize code from interactions and then

edit the code to remove parts that are not required or for a new context. Our techniques

above can be extended to curate the interaction provenance to keep only the required

parts before generating the code. Templatized workflows could further augment the code

synthesis by adapting the interactions to the new context and only then generating the

code.

7.3 Interactions as Shared Representations
As discussed in Chapter 6, data analysis systems can range from easy-to-use and task-

specific systems to highly flexible and hard-to-learn systems. Tools like Tableau or PowerBI

are easy to learn but are limited in the possible analysis by built-in interactions. In contrast,

programming environments like Python or R provide a steep learning curve but support

a wide variety of analysis tasks with a potential for extension using libraries. While it is

likely impossible to have a single system that combines ease of use and high-flexibility in

a single system, it is more practical to use a combination of user-friendly, task-specific

systems for certain tasks and more versatile, code-based systems for complex, ad-hoc

tasks. In practice, transitioning between various systems is challenging due to a lack of

compatibility in porting the analysis between different tools.

In the realm of software development, Application Programming Interfaces (APIs)
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serve as a solution to similar challenges. APIs act as contracts that define the rules and

methods for different pieces of software to communicate and interact. Drawing inspiration

from this, a well-structured representation of analytical steps could serve a similar purpose

in exchanging data analysis steps. Such a representation would enable different analysis

systems to understand and apply analysis steps from other systems, much like APIs allow

for interaction between software. By establishing a standardized ‘API’ for data analysis, it

would be possible to transfer data, context, methodology, and insights from one analytical

tool to another, enhancing the overall reproducibility and reusability of the data analysis

process. In Chapter 5, we discuss our contributions to facilitating such exchanges [3]. Our

techniques capture interaction provenance and enable its reapplication within the same or

different analysis environments using the interaction provenance as this ‘API’ or a shared

representation between our visualization prototype and a Jupyter Notebook.

The shared representation sits between the interactions and data operations, allowing

the translation of one to another. However, our implementation serves as a proof-of-

concept to show the value of developing such a shared representation between different

tools. Generalizing this approach presents huge challenges. Different tools support differ-

ent interactions and operations, so creating a single API representing every combination is

infeasible.

Future research could look into grammars and composability to address this challenge.

Grammars have firmly found their place for creating arbitrary visualizations [138] by

composing smaller units of a visualization. The most popular example of such a grammar

is Vega/VegaLite [139]. Similarly, a grammar of basic interactions and operations could

be developed with support for composing complex interactions and operations from the

basic ones.
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7.4 Supporting Iterative Analysis
in Computational Notebooks

Computational notebooks are a hybrid approach to data analysis by combining the

expressivity of programming languages with the interactivity of visual analysis. Despite

their strengths, there are gaps between interactive outputs and the code cells in the com-

putational notebooks. Two gaps identified by Wu et al. [19] are — 1) the semantic gap,

where the code generates the interactive visualization, but the results of the interactions

are not accessible in the code, and 2) the temporal gap, where the code and its outputs are

persistent, but the interactions are lost on cell re-execution or notebook restart.

In Chapter 6, we present our contribution — Persist — to address these gaps by leverag-

ing the interaction provenance as a shared abstraction between the code and interactions.

Persist uses the interaction provenance for updating the visualization and the underlying

dataset, allowing access to the updated dataset as a Pandas dataframe. Persist also directly

saves the interaction provenance in the notebook metadata and automatically replays it

when reloading the notebook or re-executing the cell.

We previously compared the Persist approach with the B2 approach proposed by Wu

et al.[19] for addressing the semantic and temporal gaps. Wu et al. [19] discuss a third

gap in computational notebook — the layout gap — that stems from the differences in the

linear nature of a notebook and the non linear iterative nature of the interactive analysis.

Iterative analysis with code often results in a messy notebook with out-of-order cells or

fragile bits of copy-pasted code [140]. In the study by Chattopadhyay et al. [89], data

scientists echo the sentiments about messy notebooks and further express concerns with

the visualizations being limited by the boundaries of the cell output. The B2 systems

address the layout gap by moving all the visualization outputs to a common dashboard,

taking them outside the linear flow of the notebook. Interactions output their generated

code independent of the original code cell that generated the visualization. The Persist

approach of creating branches in the provenance to support alternate analysis paths sup-

ports basic iterations within the cell but does not contribute toward addressing the layout

gap directly. Combining the B2 approach of collecting visualizations like a dashboard with

Persist’s powerful interaction provenance can potentially effectively support iterations in

the analysis.
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Our discussion of the Persist technique largely focuses on sequentially executed note-

books like Jupyter. Reactive notebooks, like Observable [13], automatically update in re-

sponse to execution in any cell. Reactive models address issues like out-of-order execution

states that notebooks inevitably reach during iterative analysis. Further research is needed

to evaluate how the Persist approach of capturing per-cell provenance fares with the

reactive model, where a cell change can propagate to multiple cells.

7.5 Role of Analysis Provenance
Analysis provenance plays a crucial role in ensuring transparency and reproducibility

in research. In this section, we will discuss the role of provenance in data analysis, its

implications, and the future questions it raises.

7.5.1 Improving Transparency and Collaboration

Provenance provides a detailed record of the data analysis process, which is invaluable

for reproducibility. It allows other researchers to understand precisely how results were

derived, making replicating studies and validating findings easier. This transparency is

crucial in scientific research, where reproducibility is a cornerstone of credibility. In a

team setting, provenance can help experienced researchers validate work done by the

junior researchers. On the other hand, provenance can serve as an educational tool for

new researchers. By examining the provenance of a data analysis, researchers can learn

from the methodologies and thought processes of more experienced researchers. This

aspect is particularly beneficial in collaborative projects where team members may need to

understand and build upon each other’s work.

7.5.2 Misusing Analysis Provenance

While provenance promotes transparency, it could also be misused. For example, P-

hacking is the act of manipulating the data analysis until statistically significant results are

obtained. This practice can lead to misleading conclusions and distort the scientific record.

Provenance records can facilitate such manipulations by making it easier for researchers to

track multiple analyses and only selectively report on favorable ones. Developing ethical

guidelines and tools to detect and discourage such misuse is essential. However, doing so

is hard and remains an open research topic.
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7.5.3 Provenance as a Part of the Publication Process

Publication venues in fields like preclinical or applied research encourage the prac-

tice of preregistration because it is valuable for transparency, rigor, and reproducibility.

Preregistration is the practice of regsitering the study design, hypothesis that are tested,

and plans for the analysis before data collection or analysis. Preregistration helps distin-

guish between prediction and postdiction [141], and address data-driven manipulation

of results. Similarly, it is common to share the data and analysis scripts/code with the

publication to enable replication studies and validate the original published analysis.

Incorporating analysis provenance in the publication process can aid in validating

published results. Journals could require the submission of analysis provenance alongside

manuscripts. This requirement would allow reviewers to assess the methodology and

data analysis process more thoroughly, leading to more rigorous and reliable scientific

publications.

A key challenge in incorporating provenance in research and publication is the lack

of standardization. Different fields, analysis tools, and data types require different prove-

nance models. Developing universal standards or adaptable frameworks for provenance

tracking could be a huge undertaking but would greatly benefit the scientific community.

Meanwhile, there are also solutions with lower technical and organizatinal hurdles that

could be implemented. For example, a provenance tracking library could generate a

report for the analysis, showing intermediate states as screenshots and documenting the

interactions, in a widely readable format like PDF. Measures such as digital signing could

be adopted to ensure the validity of the generated reports.
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CONCLUSION

Interactive visual analysis leverages our perceptual capabilities and is intuitive com-

pared to computational analysis, which is flexible but requires programming knowledge

and has a steep learning curve. However, visual analysis falls short on the reproducibil-

ity and reusability front. Reproducibility plays a critical role in establishing trust, and

reusability offers a way to improve efficiency and standardize analysis processes. Visual

analysis steps cannot be easily captured, replayed, and reused. A hybrid analysis approach

allows us to leverage the easy-to-use interactive analysis and flexible code-based analysis.

However, the hybrid analysis approaches have their own challenges. Using multiple anal-

ysis tools is difficult, given the lack of compatibility between various tools for sharing

the analysis steps. Computational notebooks do a good job of combining interactive and

code-based analysis but have semantic and temporal gaps between the two paradigms.

In the hybrid approach, the interactive analysis parts lag behind in reproducibility and

reusability, thereby reducing reproducibility and reusability for the entire analysis.

In this thesis, we propose using interaction provenance — the sequence of interactions

in an analysis — to improve the reproducibility and reusability of visual analysis. We

introduce a software library and multiple techniques to capture, reproduce, and reuse the

interaction steps. We demonstrate our techniques with prototype systems and evaluate the

techniques with a combination of expert interviews, crowdsourced study, and in-lab study.

Figure 8.1 summarizes out contributions towards the goals described in Chapter 1.

To address the challenge of effectively capturing and replaying the interaction prove-

nance in interactive visualizations, we developed the Trrack library [1]. Trrack is a prove-

nance tracking library for web based applications and is instrumental in capturing in-

teraction provenance for interactive visualization prototypes we use for demonstrating

our other techniques. The library can also replay the interactions, thereby improving the
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reproducibility of the captured interactions.

The interactions captured by Trrack are based around keyboard/mouse events and

lack information on the semantics of the interaction. Therefore, our next step was to

develop techniques for capturing the analyst’s rationale behind the interaction. We do

so by automatically capturing the pattern-based intent of the analyst and allowing the

analyst to annotate the interaction provenance in order to externalize their domain knowl-

edge. Having access to interaction provenance and the analyst’s rationale in the form of

pattern-based intents and annotations further improves the reproducibility of the captured

interactions.

As our next step, we devised techniques to utilize these semantically rich interactions to

reapply interaction provenance on updated datasets. We also explored curating segments

of interactions into reusable workflows, demonstrating their application across updated

datasets and different analytical environments. These techniques improve the reusability

of captured interactions and demonstrate the potential of interaction provenance to enable

analysis spanning multiple tools and environments.

Our final contribution to this thesis is the Persist technique, which bridges the semantic

and temporal gaps between code cells and interactive outputs in computational notebooks.

We demonstrate Persist with a JupyterLab plugin that tracks the interaction provenance

for interactive visualizations within notebook cell outputs. This provenance is then used

to update data and visualizations, allowing access to the results of the interactions in

downstream code cells. Persist stores the captured provenance in the notebook and replays

them when the cell is re-executed, thereby enabling the persistence of the interactions

alongside the code. Thus, Persist effectively bridges the interaction-code divide, improving

computational notebooks’ overall reproducibility and reusability.

In this dissertation, we explored various techniques for improving the reproducibility

and reusability of visual analysis. Our techniques demonstrate the role interaction prove-

nance can play in doing so. We also demonstrate how our techniques can bridge gaps

between different analysis environments and tools. Our work leaves behind interesting

research threads that can be pursued, such as annotating the interaction provenance to

externalize analysts’ knowledge, developing a standard for communicating analysis steps

between multiple tools, and developing a literate visual analytics framework.
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Figure 8.1: A summary of our contributions in the dissertation. In Chapter 3, we discussed 
our first contribution — Trrack — which is a provenance tracking library [1] that captures 
and replays the interactions (G1). In Chapter 4, we discussed techniques to make the 
interaction provenance semantically meaningful [2] by semiautomatically capturing the 
analysis intent and analyst annotations (G2). In Chapter 5, we discussed techniques for 
curating and reusing the interactions on an updated dataset by mapping the interactions 
to data operations and using the interactions in a different analysis environment using 
curated workflows [3] (G3, G4). In Chapter 6, discussed how we bridge the gaps between 
code and interactions in computational notebooks [21] by capturing the interaction prove-
nance in the cell outputs (G5).
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