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Fig. 1: Composition options and designs for cell microscopy visualizations. (a) Composition options for integrating visualizations in
one view. First, a primary data type and visual encoding are chosen as the host visualization, and then additional data is added via
composition as client visualizations. (b) The Tree-First Design uses a node-link diagram for the primary encoding (green), nests time-
series in the nodes (orange), and superimposes cell image data at regular intervals and on demand (violet). (c) The Time-Series-First
Design employs a line chart for the time-series data (orange) and superimposes topological data (green) and image data (violet) on
demand. (d) The Image-First Design superimposes tree data and time-series data (cell movement) in the same coordinate system as
the images.

Abstract—How do cancer cells grow, divide, proliferate, and die? How do drugs influence these processes? These are difficult
questions that we can attempt to answer with a combination of time-series microscopy experiments, classification algorithms, and
data visualization. However, collecting this type of data and applying algorithms to segment and track cells and construct lineages of
proliferation is error-prone; and identifying the errors can be challenging since it often requires cross-checking multiple data types.
Similarly, analyzing and communicating the results necessitates synthesizing different data types into a single narrative. State-of-the-art
visualization methods for such data use independent line charts, tree diagrams, and images in separate views. However, this spatial
separation requires the viewer of these charts to combine the relevant pieces of data in memory. To simplify this challenging task, we
describe design principles for weaving cell images, time-series data, and tree data into a cohesive visualization. Our design principles
are based on choosing a primary data type that drives the layout and integrates the other data types into that layout. We then introduce
Aardvark, a system that uses these principles to implement novel visualization techniques. Based on Aardvark, we demonstrate the
utility of each of these approaches for discovery, communication, and data debugging in a series of case studies.

Index Terms—Visualization, Cell Microscopy, View Composition.

1 INTRODUCTION

Time-series cell microscopy is an essential method to understand the
behavior of cells in the life sciences and plays a large role in the study
of cancer. One way to better understand this disease is to collect data
with a microscope on cancer cells as they grow and divide. Micro-
scopic images of the cells growing and dividing form the raw data
of many derived analysis methods. Once cells are segmented to find
their boundary and tracked over time, time-series data of derived cell
attributes can describe how cells change over time. Finally, identifying
cell divisions and recording the parent-child relationship produces an
inheritance tree that describes the lineages of cells.
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Collecting such data can be challenging; it requires expertise in con-
structing and programming automated microscopes, physically prepar-
ing experiments in the lab, implementing machine learning and algo-
rithms to perform image analysis, and analyzing the derived data. As
with any complex data acquisition and processing pipeline, things can
go wrong at any step. Consequently, it can be challenging to determine
if and where errors exist, analyze the results, and communicate them.

For complex multimodal data, forming conclusions using one type
of data can be difficult or impossible. For example, if a sudden decrease
in cell size is observed, it is impossible to determine if that change
represents a real biological phenomenon (the cell dying) or an error
in the data (a segmentation failure) without reviewing the image data.
An expert can often distinguish these possibilities when reviewing
image data, but matching the observed effect in time-series data to the
right cell in the right image is tedious with current methods. When
constructing tree visualizations for lineage data, we run into a similar
issue: matching nodes in the tree to time-series or image data is difficult.

There are two main contributions in this paper. First, we describe
design principles for composite visualizations of images, time-series,
and tree data by choosing a primary encoding and embedding the
secondary data types within it. Next, we apply these design principles
to our data (cell images, time-series data, and lineages) and implement
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it in an open-source visualization system we call Aardvark.1 Aardvark
includes three novel visualization designs that make the correspondence
between data types easy to understand. We demonstrate the utility of
this technique for data exploration, quality control, and communication
with three case studies using cancer cell microscopy data.

2 RELATED WORK

Our work is related to visualizations of cell microscopy data, multivari-
ate trees, and imaging data. To our knowledge, no prior work combines
all three of these modalities into one framework.

2.1 Cell Biology Visualizations
Many visualization tools are tailored to the life sciences. For in-
stance, genomics [42, 43, 57], connectomics [1, 4, 71], and histol-
ogy [27, 33, 68, 74] have utilized visualizations. Kerren and Schreiber
argue that integrating diverse data modalities into a single visualization
system is valuable [30]. One common data type from biology, imaging
data, is well-suited for visualizations due to the visual nature of the
data [73]. Visualizations of imaging data have been applied to subcel-
lular structures [14,70]. However, for our use case, we are interested in
the analysis of whole cells, not subcellular structures. Visualizations for
single-cell analysis can be utilized in different ways. Polyphony [13]
uses visualizations to help researchers annotate cell types. This work
differs from ours in that it does not include images of cells, and it
focuses on cell-type annotation. However, it illustrates why fully auto-
mated approaches are insufficient for this domain. Single-cell analysis
can also be applied to drug screening by measuring the differences in
cell populations when exposed to different drugs. Screenit [19] is a visu-
alization approach for doing this type of high-content screening. More
general frameworks for analyzing and visualizing single-cell data are
also available. CellProfiler [11] is a system for cell image analysis, and
CellProfiler Analyst [28] extends the base system to support data explo-
ration with visualizations . SpatialData [45] links images of cells and
their positions to their derived attributes. Finally, Vitessce [29] provides
multiple linked visualizations for exploring and analyzing single-cell
data. However, none of these frameworks provide a visualization that
combines time-series, trees, and imaging data.

Live cell microscopy tracks cell development under a microscope.
The idea of visualizing these tracks has been around for at least two
decades [18]. In the last decade, automation of data collection and
tracking has become more prevalent [24, 47]. Our collaborators use
commercial systems — such as Livecyte [2] and HoloMonitor [65]
— as well as code developed within their labs. These systems use
quantitative phase imaging (QPI) to measure the mass of individual
cells [51]. Our previous work, Loon [35], visualized this QPI data;
however, Loon does not consider lineages. Pretorius et al. have defined
six classes of visualizations for live cell microscopy data [59]. Our
approach utilizes three of these classes (spatial embedding, temporal
plots, and lineage diagrams) along with the raw imaging data.

The most closely related live cell microscopy visualization systems
focus on studying how individual cells grow into organisms or the
process of embryogenesis. The mechanisms that drive how humans
and other multi-cellular organisms grow and develop have fascinated
scientists for centuries; visualizations have been part of this journey
from early on and continue to this day [15, 56]. Meyer et al. developed
MulteeSum [49] to compare the embryo development of fruit flies.
However, cell lineages are not collected or visualized in this work; in-
stead, the spatial relationship of cells is utilized. Still, domain scientists
value visualization tools for showing the actual tree information of the
cell lineage [12]. CeLaVi [61] is one such tool that links a lineage
diagram with 3D cell positions. LineageD [25] is another tool that
also supports editing cell lineage labels. However, both determine cell
relationships from a snapshot in time, which differs from our work in
that the full lineage development is recorded. Finally, Pretorius et al.
utilize cell lineages for analyzing cancer growth [58], which makes

1Since these visualizations build on the Loon ecosystem, we have selected
another animal to represent them. The selection of aardvarks has no particular
significance except that the authors like them.

their work the most similar to ours. Their work uses lineages as a way to
characterize differences in ongoing cell development and combines the
tree data of the lineages with the temporal data in a way similar to ours.
However, Pretorius et al. visualize event data instead of time-series data
and do not incorporate images into the visualization.

2.2 Tree Visualizations
The use of trees in visualizations is a well-studied and active area
of research [22, 23, 63, 64]. In addition to the various methods for
visualizing trees, work has been done to combine network and tree
visualizations with other dimensions of data [54]. These approaches
share some similarities with Aardvark, but all differ in key ways.

First, Beham et al. incorporate images of generated geometries into
a radial tree visualization [3]. However, the nodes of the tree lack
time-series data, and although there are some nontemporal attributes,
they are not included directly in the tree visualization.

Visualizations that combine trees with other attributes are more
common in the literature. Nobre et al. visualize genealogy data with
related attributes by aligning nodes of the tree with rows in a table
[52]. A similar approach is taken in Juniper [55] for a more general-
purpose tree plus attribute visualization. Dendrograms linked with
heatmaps [20, 40, 67] also associate trees with attributes. In contrast to
the trees we consider, dendrograms augment the heatmap by indicating
the similarity between rows of attribute data. Phylogenetic trees are
also sometimes visualized alongside a heatmap [6, 32, 36]. Here, the
tree displays the relationships of species to compare them with the
measured attributes. However, for both dendrograms and phylogenetic
trees, no time-series or imaging data is visualized.

Some work has combined temporal data with trees. For instance,
several approaches visualize changes in tree structure [10, 22, 31, 69].
However, we are interested in a single tree structure where attributes
on each node vary over time. Icicle plots [34] are a classic tree visual-
ization technique that is often used for function call profiling, but the
node’s temporal relationship differs from ours. Shreck et al. organize
time-series charts in a space-efficient TreeMap layout [62]. This layout
may be appropriate for hierarchically clustering similar time-series data.
However, our work requires a more direct encoding of parent-child
relationships. A few techniques are more similar to our own. Burch et
al. align a tree with time-series data [8, 9] Similarly, Nobre et al. also
show time-series data in a tree layout [53]. Although both of these
approaches resemble our approach, neither incorporates imaging data.

2.3 Image Snippets
We use the term image snippet or snippet to refer to a region of an
image or video that is cut or snipped from its source and displayed in
other contexts. Snippets are useful for extracting interesting parts of an
image or video, especially if the original image is large or complex.

Small but important regions can be identified and extracted from
high-resolution images. Lekschas et al. apply this principle to high-
resolution images [38] and genome interaction matrices [37]. Ghani et
al. do the same with network visualizations [21]. The image datasets
we work with are not high-resolution; however, extracting individual
cells into snippets enables combining them with other data types.

Complex multichannel images may have too much information to
display simultaneously, requiring an interactive approach. Jessup et al.
use the concept of a scope to interactively display a snippet at a higher
resolution with different channels highlighted [27]. In contrast, our
approach focuses on combining images with their derived metadata,
not on understanding multiple image channels at once.

When interacting with data to either correct errors or modify designs,
snippets can serve as a preview for possible user actions. Choi et
al. show snippets of classification recommendations for microscopy
images [14]. Similarly, Coffey et al. use preview snippets to show
potential design alternatives for medical devices [16]. However, our
approach is focused on the display of data currently present and does
not incorporate modifications to the data.

When there are many images, exemplars can be used to represent an
entire group. Lekschas et al. group similar images into piles and show
an exemplar image on top to represent that pile [39]. In Loon [35],

2



This is the authors’ preprint version of this paper.

Cell 
Division

(c) Tree

Cell Birth Cell Death

Derived Attributes

(e.g., Mass, Size, and Circularity)

(b) Time-Series

(a) Images

Cell Tracking

Cell Division

Time

Fig. 2: Illustration of the data acquisition pipeline. (a) Images of cells (violet) over time are the input data type for the pipeline. (b) Cell segmentation
produces outlines of cells and various derived attributes (orange), such as the area, mass, or shape of the cell. (c) Lineages (family trees, green) of
cells are constructed by observing cell divisions and matching the daughter cells with the parent cell.

exemplar cells are selected for each experimental condition by sampling
from metadata distributions. In our work, we focus on designing a
fundamental detailed visualization for a single lineage.

For long videos, select frames can produce a static array of images
that summarize the most important developments of the video. Lue
et al. use this idea to summarize news videos [41]. Similarly, Yang et
al. identify key frames in surveillance videos [75]. In our work, we
identify key frames in a cell’s development to summarize it.

3 DATA

In this section, we describe the data Aardvark was designed to visualize.
We provide essential details on how data is collected and processed in
a time-series microscopy experiment (Figure 2).

Our collaborators take several steps to collect and process cell lin-
eage data. First, Images of cells are taken repeatedly over the course of
hours to days (Figure 2a). Next, cells are segmented to find their bound-
aries, resulting in segmentations. Cell segmentations are then tracked
over time, resulting in cell tracks that ideally capture the lifetime of a
cell. Attributes, such as mass, area, shape descriptors, fluorescence, and
spatial positions, are derived from these segmentations. These derived
attributes over time and cell movement comprise the Time-Series data
(Figure 2b). Finally, when a parent cell divides into two daughter cells,
that division is identified, and the relationship between the cell tracks
is recorded. This Tree of cell relationships includes the start and end
time at each node. We refer to a tree as a cell lineage (Figure 2c).

We illustrate our work with three datasets that utilize cell lineages to
inquire about fundamental scientific questions. Each dataset contains
2,000–100,000 cells, 30–4,500 cell tracks, and 4–156 lineages. The
largest lineages for each dataset are tracked 5–13 generations and con-
tain 9–219 cell tracks. The imaging data contains 200–3,000 imaging
frames at a resolution between 160x160 and 800x800. The total size of
the datasets ranges between 380 MB and 1.25 GB. We will describe
the individual datasets in more detail in Section 8.

4 DOMAIN TASKS

This work results from a four-year and ongoing collaboration with the
Zangle Lab and the Judson-Torres Lab [35]. The first author attended
group meetings and worked closely with graduate students and postdocs
in these labs, formatting data and debugging code. Furthermore, while
designing and implementing Aardvark, the authors met on a recurring
basis to discuss ideas and feedback on the tool. A static version of
this visualization has already been utilized in domain-specific work
submitted for publication [77] by our collaborators. Throughout this
collaboration, we identified the following domain goals.

4.1 Quality Control Tasks
Ensuring data quality is a difficult but crucial task. We identified
four subtasks that are useful to discuss separately but are inherently
intertwined, as issues with one aspect of the data tend to affect others.

QC-Segmentation Although cell segmentation techniques are improv-
ing, it is an ongoing challenge largely because cancer cells are
highly heterogeneous — they come in many shapes and sizes,
which makes a one-size-fits-all algorithm difficult to construct.
Cells can also overlap, and debris can influence tracking. There-
fore, domain experts must review segmentations to ensure that
the current algorithm performs within expectations.

QC-Attributes Once cells are segmented, attributes of the cells can
be derived. The types of attributes that can be measured depend
on the particular instrument. Common attributes include mass,
fluorescence, or a measure of roundness. These attributes are
used, for instance, to see if different drugs affect cells’ change
in mass. Ensuring that the attributes are calculated correctly is
essential for sound conclusions based on these analyses.

QC-Tracking To measure cell changes over time, a segmented cell
has to be tracked across frames, which can be challenging since
cells can move out of frame or divide. Common issues include
recording two different cells as one incorrect merged track or
temporarily losing track of a cell, resulting in broken tracks.

QC-Lineage To study how cells proliferate, it is necessary to track cell
lineages by identifying cell divisions and recording the correspon-
dence between the parent and daughter cells. All the problems
with segmentation and tracking can influence lineage tracing, but
there are additional hurdles. For example, an algorithm can miss
a cell division or record an incorrect division.

4.2 Discovery Tasks
Our collaborators want to study cell growth and propagation and the
factors that influence it. In the following section, we list representative
domain tasks they are interested in.

D-Propagation When cells divide, they do not always split their cell
material evenly between the two daughter cells. When this hap-
pens, how does it affect later generations? For instance, if one
cell receives a small amount of a particular protein, will later
generations continue to be deficient in this protein, or will they
bounce back and return to normal levels?

D-Cell Cycle Cells go through “phases” in their lifetime, referred to as
the cell cycle. For example, cells get rounder and more compact
shortly before division. However, there are also cell attributes
where the pattern before division is unknown and of interest.

D-Changes Generally, cells grow and change gradually. Thus, devia-
tions from this behavior, such as drastic changes in cell morphol-
ogy, are of interest to our collaborators. For instance, a large drop
in mass can indicate that a cell is dying.

D-Comparison Identifying differences between cells is a common
goal. For instance, analysts might ask how cancer cells respond to
different drugs or how different branches of a cell lineage develop
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differently to the same drug. To answer this question, domain
scientists may want to identify divergences in any of the available
data types across conditions, even between branches of a tree.

D-Synchrony Healthy cells generally have roughly the same lifespan:
two daughter cells born at the same time should undergo phases
of the cell cycle synchronously. In contrast, unhealthy cells or
cells exposed to drugs may exhibit more heterogeneity. Therefore,
determining the synchrony of cells is of interest.

4.3 Communication Tasks
Our collaborators need to share their findings with their peers. Com-
municating findings of complex data, as described in this paper, can
be as challenging as quality control and discovery tasks. We designed
Aardvark with communication in mind and list specific tasks below.

COM-Explain Scientific work often involves complex experiments,
ideas, and data. In particular, the data for cell microscopy includes
multiple data types that each tell one part of the story. Distilling
these data types into figures for use in papers and presentations is
critical to conveying the main concepts.

COM-Trust Understanding the message that authors are communicat-
ing is not enough. Readers must also have enough information
to make a judgment about whether they trust the findings. Here,
trust means that the audience can see evidence that supports their
belief that the findings in the work are correct. We focus only on
trust in the data, not the myriad of other factors that affect trust.

4.4 Task Abstraction
These domain goals can be mapped to abstract visualization tasks. The
most fundamental task for any of these is the synthesis of the three data
types: Relating data elements between the three types and visualizing
them together is the primary visualization challenge we address in this
paper. In combination with this synthesis, there are three tasks: ana-
lyzing the topological structure of the cell lineage, viewing the trends
of the cell attributes, and understanding the spatial relationships of
cells. These abstract tasks can address the different domain goals. For
instance, errors in the lineage data can be identified by examining
the topology and cross-checking it with the cells spatial relationships.
Similarly, understanding how cell attributes change over generations
requires viewing trends in those attributes and investigating how those
trends relate to the topology. Consequently, these visualization tasks are
the primary drivers for our design principles (Section 5) and Aardvark
designs (Section 6). We illustrate how these choices tie back to the
lower-level tasks in the case studies (Section 8)

5 DESIGN PRINCIPLES FOR VISUALIZING TREES,
TIME-SERIES, AND IMAGES

In this section, we describe design principles for integrating three types
of cell microscopy data (trees, time-series, and images). Understand-
ing the full picture of cell development requires analyzing all these
data types together. Consequently, our visualization designs must also
represent the different data types together. In our design process, we
adopt Javed and Elmqvist’s design space for composite visualizations.
According to them, composite visualizations “combine multiple visual-
izations in the same visual space” [26]. We use this design space and
describe considerations about how to choose visual encodings. We then
introduce three designs (tree-first, time-series-first, and image-first) that
implement these design principles for our data and tasks.

As part of our design process, we first identify a primary data
type and select a visual encoding suitable for that data type. This
primary encoding serves as the host visualization. Next, the secondary
data types are embedded into this chart as client visualizations,
and visual encodings are selected. We use a combination of superim-
posed views and nested views (Figure 1a) for our client visualizations,
depending on the affordances of the host view. Superimposed views
place the client visualization within the same space as the host view.
Nested views nest the client visualization within the marks of the host
visualization. In addition, when it is necessary to minimize overplotting

in the host visualization, we show detailed charts on interaction, which
we consider superimposed detail on demand views.

The choice of primary data type for a visualization depends on the
analysis task. Although all three types are required for most analyses,
some questions still prioritize certain features of the data. For instance,
an understanding of the cell lineage topology will benefit from an
explicit rendering of a tree diagram showing cell division. Alternatively,
comparing the growth curves of multiple cells benefits from showing
them in a line chart. Finally, spatial relationships of cells and their
movements are best shown in a view that prioritizes the images of cells.

In practice, the choice of visual encoding and composition is not
strictly sequential but iterative and interleaved. For example, when
choosing a visual encoding for the host visualization, we ask the ques-
tion of whether the encoding can accommodate the desired composite
views. The layout and appearance of a node-link tree visualization, for
example, can be modified to make space for nested or superimposed
composite views without occlusion. Similarly, the choice of a visual
encoding may limit the options available for client visualizations. For
example, if the primary data type and host visualization is a space-
filling image, any composition will lead to overlap. In this case, small
and unobtrusive client visualizations or on-demand superimposition are
good choices. Finally, host visual encodings should be chosen to work
within the constraints of the clients, which typically have reduced space.
For example, it might be prudent to choose compact visualizations that
are still useful if just a few pixels are available.

Since our collaborators are interested in all these questions and more,
we designed three composite visualizations, each encoding a different
primary data type. Furthermore, each visualization can be juxtaposed
and linked. The rest of this section discusses the high-level design
decisions for each of these composite views, and the next section gives
details for their instantiation in Aardvark.

5.1 Tree-First Visualization Design
The tree-first visualization (see Figure 3) uses the tree data type as the
primary encoding. The nodes of the tree represent not only topology but
also the lifetime of cells. Time-series charts are then nested inside the
nodes of the tree diagram. Finally, images are superimposed along the
time-series chart as space allows, and user-selected images are shown
on demand. The composition of this view is illustrated in Figure 1(b).

We use an explicit node-link representation for our tree data. The
horizontal alignment and width of nodes are determined by the start and
end times of cell tracks. Assuming correct data, these times correspond
to the cell’s birth and division or death. The height of the node and the
space between nodes can be adjusted based on analysis needs.

Nesting Time-Series. Within the node, we nest charts
visualizing time-series data. As nodes are positioned and sized accord-
ing to their birth and death time, the embedding and comparability
of time-series data is straightforward.Various choices are available to
encode the time-series data, such as line charts or color maps, but we
use horizon charts [60] to encode the data. Horizon charts scale to
vertically compact spaces, which is important for visualizing large trees
and showing multiple time-series simultaneously (Figure 10). The

Fig. 3: Schematic of the tree-first visualization design. The primary data
is the lineage, i.e., the tree capturing the relationship between the parent
and the daughter cells (green). The horizontal sizes of the nodes are
scaled to correspond to the cells’ lifetime. A time-series dataset (orange)
is nested, and cell images (violet) are superimposed, either using an
automatic selection algorithm (left) or on demand (right).
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redundant encoding of discrete bands using color further increases
scalability for cases when the chart is only a few pixels high, at which
point color is the dominant visual encoding. A second advantage of
using redundant color in the tree is that color-coding along tree nodes
is often familiar to domain scientists, unlike horizon charts.

Superimposed Images. We include images of individual
cells superimposed along the horizon charts to provide context for
the time-series and topology data. Cell images are clipped from the
image data based on segmentation information. Since the images
are a secondary data type in this view, their size and position are
constrained by the host visualization. Thus, it is generally impossible
to show every cell, and a selection strategy to choose exemplars must
be employed [35]. We considered various sampling methods, including
sampling frames evenly throughout the cell’s lifetime. This approach is
useful if cells change gradually throughout their life. However, regular
sampling may miss a critical development that occurs in the span of a
few frames. Therefore, we developed an alternative approach to select
exemplars based on importance metrics computed from the other two
data types. Different metrics are conceivable, but we employ two for
our use case. The first is based on highlighting topologically relevant
frames (D-Cell Cycle): we include frames right before or after cell
division (at the beginning and end of the node). The second metric is
based on changes of features of cell attributes, so that cells undergoing
rapid change are included (D-Changes), or errors can be identified
(QC-Lineage) as seen in Figure 4.

Superimposed Images on Demand. Although a data-
driven selection strategy for exemplars provides a good starting point for
showing relevant cells, some scenarios benefit from showing additional
cells on the fly. Hence, we provide two methods to show superimposed
cells on demand. First, free-form selection along the timeline enables
an analyst to show any frame for a cell. Second, we provide keyframes
on demand before and after selected cells. The latter is useful to observe
the different stages of the cell cycle around an important point, such as
a division. If the main frame shows a cell in the process of division, the
prior frame will show the cell just before it divides, and the subsequent
frame will show the newly divided cells.

5.2 Time-Series-First Visualization Design
The time-series-first visualization prioritizes the derived cell attributes.
Attributes of interest commonly vary between studies (e.g., mass, fluo-
rescence, shape), yet the analysis tasks for these time-series are similar.
The most fundamental task is understanding the change of an attribute
for a single cell over time. For instance, an analyst may ask, is a cell
growing or shrinking? Next, the analyst may want to understand the
behavior of a group of cells. Are all cells growing, shrinking, or is
there diverging behavior? Line charts are well suited for this detailed
comparison of time-series data and thus serve as our host visualization
(see Figure 5). The questions about cell attributes usually extend across

Cell Division

Large Changes

Fig. 4: Illustration of cell snippet selection. Cells snippets are extracted
and shown at the beginning and the end (far left and far right) of the life of
a cell. Additional snippets are shown when a large change in an attribute
is detected. In this example, the attribute experiences a sudden drop.
The associated cell image indicates that the reason is a cell division that
was missed by the algorithm.

Fig. 5: Time-series-first visualization design showing attributes of individ-
ual cells as line charts (orange). As cells divide, the original cells’ line
ends, and new lines representing the daughter cells begin. Topological
information about lineages is shown using superimposed on-demand
composition for selected cells (green): the selected cell is connected
to its parent with a dashed line. Lines corresponding to ancestors and
descendants of a selected cell are also shown in bold. Cell images are
shown using superimposed on-demand composition by rendering a cell
image at a selected time-point (violet).

generations. For example, analysts might ask whether a parent’s charac-
teristics are predictive of the daughter cells’ attributes (D-Propagation),
e.g., For cells that grow quickly, do their progeny also grow quickly?

Superimposed Tree on Demand. A node in the line
chart is represented by a continuous line. Hence, the node positions of
the tree are determined by the attributes. As a consequence, plotting
connections between nodes can result in visual clutter. Therefore,
we do not attempt to show full topological information in the time-
series-first view but instead show ancestry and descendants through
superimposition on demand by connecting the end of one cell’s line
with the start of their daughter cell’s line in the chart (see Figure 5 in
green). To emphasize this relationship, we also display ancestors and
descendants of a selected cell in bold.

Superimposed Images on Demand. Since line posi-
tions are driven by the data they represent, they cannot be arbitrarily
repositioned. This constraint leads to challenges embedding images
within the chart without obscuring the primary data type. Therefore,
we chose to show cell images only when users select a specific feature
in the data and then superimpose the image on demand in the form of a
tool-tip visualization (see Figure 5 in violet).

5.3 Image-First Visualization Design
The image-first visualization, illustrated in Figure 6, uses the image data
as the primary encoding. Images are especially useful for reviewing the
spatial relationships of multiple cells and how cells move through space.
For experiments that track cell lineages, combining all three data types
is necessary to understand the relationship between cell movement
and cell divisions. As an image view is a space-filling visualization,
adding composite views will lead to occlusions. Hence, we choose
to superimpose attributes that fit into the same coordinate space over
embedding nested visualization thumbnails.

Superimposed Time-Series. Cell movement can be re-
duced to a trajectory of the cells’ center of mass, resulting in a time-
series of locations. Since this time-series data shares the same spatial
coordinates as the image data, the trajectories can be superimposed on
the image. This approach of superimposition hence follows the “eyes
over memory” guideline of visualization design [50] of explicitly show-
ing a temporal relationship in a static image, over-relying on a temporal
animation, where viewers would have to memorize prior locations.

Superimposed Tree. Cells in an image commonly are
closely related, and understanding that relationship is important for
many analysis questions. To show these relationships directly in the
image data, we superimpose the lineage tree on the images (see green
marks in Figure 6). We use a node-link representation where the node
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Fig. 6: Image-first visualization showing a full image with multiple cells
(violet). Time-series data, in the form of cell location over time (orange),
is superimposed, enabling analysts to understand movement over time
in a static image. Lineage trees are also superimposed (green), showing
relationships between cells.

positions are determined by the cells. Note that only the “leaves” of
the tree can exist in an image; the parent cells have divided and do
not exist anymore and are instead represented as circular marks. We
also considered alternative layouts, such as implicit tree layouts [64],
but found that the node-link representation best shows the relevant
topology. Note that the tree uses a partially fixed layout, since the
positions of the leaves are given by the cell location (parent cells can
be freely placed). This restriction will make the topology less evident
in most cases, illustrating the tradeoffs present when embedding these
secondary visualizations in their client view.

5.4 Juxtaposition
Each of these composite visualizations has its strengths and weaknesses.
Juxtaposing all three views together creates a system that can tackle a
wide range of analyses. Linked and brushing ties the data elements to-
gether across these views. Since each view shows every data type, there
are many opportunities to link data elements together. For instance, if
a secondary data type is superimposed on demand in multiple views,
triggering one view to show the superimposed chart should trigger all
views. In our designs, images are superimposed on demand in the
tree-first view and the time-series-first view. Thus, when a snippet is
shown in the tree view, the same snippet is shown in the time-series
view. However, the same principle for linking applies even if the data
types, visualization encodings, or composition techniques differ.

6 AARDVARK DESIGN

In the previous section, we described our design process and the high-
level design decisions of choosing visual encodings and view composi-
tions to integrate the different data types. These designs are intended
to be transferable to, and instructive for, other similar scenarios. In
this section, we provide details on how we instantiated these designs
in our prototype, Aardvark, and provide sufficient details to ensure the
reproducibility of our implementation. Figure 9 shows examples of
how these designs are implemented in the tool.

6.1 Tree-First Visualization Details
Tree Layout. Several user-configurable options determine the tree

layout, allowing analysts to balance priorities between data types. A
generously spaced layout will ensure enough room above each horizon
chart to display the images for that cell. Alternatively, a dense layout
will produce a compact view of the tree structure but will display fewer
image snippets. Similarly, adjusting the height of horizon charts is
a tradeoff between a larger tree with more detailed time-series data
and a more compact tree showing less detail. The choice between a
detailed and dense view is not binary but rather a spectrum that balances
priorities between the three data types.

Cell Snippet Extraction. Cells are extracted from the source im-
age by centering the cell and copying a constant number of pixels
around the center. The number of pixels is the same for all cells so that
the display size and scaling are consistent across snippets. One side
effect of this approach is that the cell boundary may not fit completely

(a) Center Cell (c) Display (b) Clip Out of Bounds

Fig. 7: Clipping of cells with large peripheral features. Some types of
cells have features that extend far beyond the cell core. Rendering the
whole cell within a small embedded view would result in barely visible
features. To address this problem, we (a) first determine the center of
the cell, (b) then clip the features outside of the bounds of the core, and
(c) display the clipped cell with indicators that features have been clipped
(red).

inside the region that is extracted, which frequently happens if cells
have elongated shapes. In this case, we indicate where the cell is cut
off with red lines (Figure 7). These snippets are then placed above or
below the horizon chart, depending on available space.

Interaction. Aardvark supports superimposed charts on demand
in a few ways. Hovering on the horizon chart will show the snippet at
that time point, and the cell boundary clipping is disabled, so the full
segmentation outline can be seen. Selecting a time point will pin the
snippet in place. Hovering on existing snippets will show the previous
and next snippets, even beyond the cell track (Figure 9f).

6.2 Time-Series-First Visualization Details
The line chart view within Aardvark supports different modes of aggre-
gation — from visualizing individual cell attributes to population-wide
aggregation. In the time-series-first visualization (Figure 9b), time is
always mapped to the x-axis, and attributes are mapped to the y-axis.
Selecting a line will show a snippet of that cell above the line (Fig-
ure 9d). If a line is selected, lineage information is displayed for cells
with direct relationships to the selected cell through explicit rendering
with dashed lines or emphasis and color highlighting, as described in
Section 5.2. To help distinguish between different branches of progeny,
the two subtrees of the selected cell are assigned a different color.

6.3 Image-First Visualization Details
Aardvark supports four imaging layers. The base microscopy images
record pixel intensities that can have different meanings (mass, flu-
orencense, etc). A colormap is applied with an adjustable range so
the signal in the data can be highlighted while reducing noise. Cell
boundaries are displayed with an outline. Cell trajectories are shown
as a line that fades into the past, as shown in Figure 9h. Cell lineages
are displayed with a node-link diagram where internal nodes represent
cell ancestors. Figure 8 illustrates this process across four generations.

6.4 Across View Interaction
There are many interactions across views in Aardvark, most impor-
tantly based on selecting a cell. Selecting a cell also selects a cell track,
selects a time or image frame, and selects a cell lineage. In Aardvark,
each view has special logic for how to display a selected cell, track,
lineage, and time. All these selections are highlighted. In the tree-first
visualization, the selected cell snippet is displayed (Figure 9d). All cell

(a) Founder Cell (b) 2nd Generation (c) 3rd Generation (d) 4th Generation

Fig. 8: Image views illustrating cell division across four generations and
the overlaid cell lineages.
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(a) Tree-First (b) Time-Series-First

(c) Image-First

(f) Divergent Growth 

(d) Selected Cell 

(d) Selected Cell 

(f) On-Demand 
Superimposition 

(e) Selected Time

(h) Movement 
Traces

(e) Selected Time(g) Cell Division

Fig. 9: The three visualizations as implemented in Aardvark. (a) The tree-first view shows cell growth and cell image snippets. The node at level
two at the top is highlighted in orange. (b) The time-series-first view shows the highlighted cell in orange. The daughters of the selected cell show
different growth behavior as evident from both the line chart and the horizon charts. (c) The image-first view shows the four leaf cells in the tree. The
exact frame is highlighted by a vertical line in both the tree and time-series view. The lineage and the spatial movement are also shown.

snippets in the selected track have their cell boundary highlighted. The
horizon chart of the selected track and its connecting lines are high-
lighted. Finally, a vertical line indicates the selected time (Figure 9e).
In the image-first visualization, the cell boundary is highlighted if the
selected cell is in the current frame. Otherwise, if the selected cell’s
progeny are in the current frame, the node and connecting edges in the
tree representation are highlighted (Figure 9c). In the time-series-first
visualization, the selected cell is shown as a snippet (Figure 9d). The
line corresponding to the selected cell track is highlighted, as are the
edges directly connected to the selected cell. Finally, the selected time
is indicated with a vertical line (Figure 9e).

6.5 Other Views

Aardvark includes other useful views. Tables provide access to raw
values for cells, tracks, and lineages. Sorting data columns provides
a means to select lineages with specific characteristics. Displaying
dataset metadata provides basic context and sanity checking for a
dataset. Finally, the visualization interaction state is tracked and
displayed for state recovery and provenance [17].

7 IMPLEMENTATION

Aardvark is implemented as an open-source front-end application avail-
able with demo datasets at https://aardvark.sci.utah.edu/.
Imaging and metadata are fetched from a file server that can be specified

to support various setups. For example, the demo datasets associated
with this paper are stored on an AWS S3 bucket, but the tool can also
be configured to access files stored locally.

Aardvark uses various libraries and web technologies: TypeScript,
Vue 3, Pinia, and Quasar comprise the base framework and UI library;
deck.gl serves as the base WebGL framework for the image and lineage
charts. Components from Viv are used to load and render standard mi-
croscopy image formats as layers in deck.gl [44]. These are combined
with custom deck.gl layers developed for this project.

We use utility functions from the D3 library [5] and the D3 Flex-
tree plugin, which extends the tree layout module of D3 to produce
a compact layout with variable width nodes [72]. Finally, the Tr-
rack library is used to record and display interaction provenance [17].
For a complete list of libraries and the full source code, refer to
https://github.com/visdesignlab/aardvark.

8 CASE STUDIES

Aardvark was designed with our long-term collaborators (who are also
co-authors), who have real data and real scientific questions [66] related
to cancer cell development. The following case studies are selected
examples collected over the course of the collaboration intended to
illustrate the utility of our design with real data.
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(c) Missed 
Divisions

(a) Correct Division

(b) Segmentation 
Errors

Fig. 10: Shows on example of (a) correct division, (b) multiple segmenta-
tion errors resulting in rapid changes in the attributes, and (c) two missed
divisions. Immediately before the missed division, mass and sphericity
increase, but then, one of the children is incorrectly tracked as its parent.

8.1 Quality Control: Cancer Triggering Microenvironments

This dataset is part of a study that examines the difference between the
development of benign moles and melanoma [46]. Understanding the
steps that initiate malignant disease could reveal potential chemopreven-
tative strategies for skin cancer. The study exposed healthy human skin
cells to a chemical that simulates the environment skin cells experience
when exposed to the sun (UV radiation).

As a first step, we browse lineages that exhibit a large drop in mass
and show it in the tree-first view. Since our image selection prioritizes
data points with large changes (D-Changes), image snippets at points
of change are automatically shown in the tree-first view, which quickly
reveals why the drop in mass occurs. Some instances occur because
the cell moves out of the imaging view (QC-Tracking). Some occur
because part or all of a nearby cell is incorrectly included in the cell
(QC-Segmentation). Some occur because a cell divides, but tracking
is incorrectly connected to one of the daughter cells (QC-Lineage,QC-
Tracking). Understanding which of these errors occurs requires a
combination of all the different data types. The tree-first view is well
suited for quickly making these identifications. In Figure 10, several
errors can be seen in one lineage. This figure shows two cell attributes
in the horizon charts (mass and sphericity), which are informative for
quality control because their behavior within the cell cycle is well
understood (QC-Attributes). The first cell division recorded in this
example appears correct (Figure 10a). The image segmentations are
in alignment (QC-Segmentation), and the cell attributes show the
expected response — cell mass increases throughout the cell’s life, and
cells are spherical just before and after division (D-Cell Cycle). In the
second generation, there are similar patterns in the attributes, but closer
inspection reveals different reasons and types of errors. Figure 10b
shows a sudden change in mass. Inspection of the cell images reveals
that this is a segmentation artifact from a cell “limb” being excluded
and included in different frames. Figure 10c highlights two missed
divisions. In both cases, mass and sphericity increase and then suddenly
drop. Inspecting three frames at this point reveals that the cell divided,
and one of the daughter cells is tracked incorrectly as its parent cell.

QC issues can also be identified in the image view. Segmentation
errors can be spotted by matching the segmentation outline to the image.
Divisions can be validated using the superimposed tree and location
data. Figure 11a shows a clipped example of a correctly identified
division. The two cells are connected, indicating that they share a
parent, and the location traces show that they both came from the same
origin. Figure 11b shows an example with similar image and location
trace data, but the tree connection is missing. Navigating to an earlier
frame reveals that these cells are from a common parent.

These examples illustrate the variety of issues that can be quickly
identified in Aardvark as a first step toward addressing them.

(a) Correct Division

(b) Missed Division

Fig. 11: Reviewing tracking of cell divisions in the image view. (a) A
correctly tracked division can be identified by the visible tree indicating
that the cells are siblings and the location traces showing that they
originated at the same place spatially. (b) The lack of a tree indicates
that no division was recorded, yet the location tracks show that they did
indeed originate at the same place.

8.2 Data Discovery: Automated Cell Lineage Tracking

Producing cell lineage data is challenging. Automated systems can
be error-prone, and manual reconstruction can be time-intensive. This
dataset is from work that demonstrates a technique for producing high-
quality lineages automatically [76]. In short, this technique separates
individual cells into small microwells where they can grow and divide
in isolation. These microwells ensure that cells remain within the
microscope’s view and that all cells within a microwell originate from a
single founder cell. The data shown in this paper is focused on a single
microwell containing a mouse leukemia cell lineage.

Before interpreting the data collection and processing results, a
critical first step is to verify that the lineage data is correct. For this
dataset, lineage tracking is expected to eventually fail when the number
of cells in the microwell leads to cells overlapping in 3D, which makes
them impossible to reliably separate. A question our collaborators are
asking is, hence, how many generations can be accurately tracked. We
can approach this question in Aardvark by iteratively exploring the
dataset for an individual lineage. The tree-first view provides an initial
overview of the data (Figure 9a). The default view shows that every cell
starts at roughly the same mass and has a similar growth rate, which is
expected for this dataset (QC-Attributes). Image snippets of the cells
are automatically shown for each division point. Selecting a snippet
just before cell division reveals the next frame (Figure 9f), which makes
it easy to verify that the three cells (parent and two daughter cells) are
recorded correctly (QC-Lineage). Interactively expanding the width of
the tree allows more space for additional snippets to be shown. These
snippets can be quickly scanned to verify that the segmentation and
tracking of the cell is consistent (QC-Segmentation,QC-Tracking).

After verifying the quality of our dataset, our collaborators start
investigating biologically interesting patterns. They select a cell in
the second generation (Figure 9d), which updates the time-series-first
view to show part of the lineage tree (Figure 9b). The distinct coloring
of the two branches reveals a difference between them (Figure 9f, D-
Propagation). Our collaborators conclude that data such as these could
be used to assess drivers of asymmetric division and heredity by, for
example, using genetic mutants of key growth regulation pathways.

8.3 Communication: Tumorigenic Cell States

Our collaborators study how skin cancer cells (melanoma) leave the
primary tumor and form new tumors in other organs (metastatic dis-
semination) [77]. Cells that can form new tumors are referred to as
tumorigenic cells. However, cells are not predestined to be tumori-
genic from their genetic material. Instead, the tumorigenic state of a
melanoma cell can change within a cell’s lifetime or across generations.
This state can be measured by engineering the cells to express a fluo-
rescent marker, mCherry, under the control of a specific promoter. Low
levels of mCherry indicate that the cell is in a tumorigenic state. In
this dataset, a combination of automated and manual processing was
used to construct several lineages. These lineages illustrate how this
tumorigenic state can change across generations.

Figure 12 shows an example of this effect: A distinct asymmetry in
the tree topology is apparent in the tree-first view (compare the long
lifetime of the cell in Figure 12b with the short lifetime of its sister
cell and its descendants (Figure 12a). The cells in the top branch are
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(a) Short Cell Lifetimes

(b) Long Cell Lifetime

(c) Low mCherry 
(Tumorigenic)

(d) High mCherry

Fig. 12: Example of the emergence of tumorigenic melanoma cells in a single lineage. Notice the distinct asymmetry of the tree: cells in the top
branch (a) live about half the time before they subdivide compared to the cells in the bottom branch (b) — cancerous cells tend to grow faster than
benign cells. The embedded horizon charts show mCherry, a fluorescent marker of tumorigenesis normalized by cell mass. Low mCherry indicates a
tumorigenic cell. We observe a distinct differentiation between the cells in (c) the top branch (low mCherry) and (d) the bottom branch (high mCherry).

subdividing in about half the time as those in the bottom branch (D-
Synchrony, D-Comparison). Within the tree-first view, the normalized
abundance of the fluorescent marker is shown, mCherry / Mass. This
marker shows the relative amount of mCherry in the cell independent
of its total mass, the latter of which varies throughout the cell lifetime
(D-Cell Cycle). Since the horizon charts are nested within the tree
structure, it can be seen that the later generations of the top branch end
the experiment with a lower amount of mCherry / mass (Figure 12c).
The short division time and low mCherry values indicate that this top
branch of cells has transitioned into a tumorigenic state. This example
illustrates how, within a single lineage, some, but not all, cells transition
into a tumorigenic state. A similar figure from an earlier version of
Aardvark is included in a preprint [77] (COM-Explain, COM-Trust),
illustrating the value of Aardvark for scientific communication.

9 DISCUSSION AND LIMITATIONS

In this work, we have focused on visualizing data that combines trees,
time-series, and images, where all the data is derived from the primary
data type: time-series microscopy images. A major theme throughout
this work is that understanding this data holistically requires under-
standing how these three pieces of information fit together.

Scalability. Our work has limitations, particularly when scaling to
large trees with over a few hundred nodes. Although constructing trees
of this size for cell lineage tracing is technically difficult, it is conceiv-
able for similar datasets from other domains. In such cases, displaying
the entire tree with all cell images may not be feasible. To mitigate this
problem, we enable interaction to adjust tree size and spacing. We also
show only one tree simultaneously. Showing multiple trees would be
useful for comparing or exploring a collection of lineages. We leave
dedicated approaches for multiple lineage comparisons to future work.

Generalizability. Our work is relevant to those interested in cell
microscopy data, but other domains with similar data combinations
could benefit from our approach. Satellite imaging of Earth can have
derived attributes from the images or be associated with data collected
on Earth in similar regions. A subdivision of regions could produce a
tree relationship. Astronomy imaging tracks and analyzes the change of
celestial bodies. Analyzing data from smart cars could combine imag-
ing and sensor data. Finally, physics simulations that track attributes,
positions, and shapes of objects under different conditions could also
use elements of our designs. More broadly, although this combination
of data types is specific, combining data types is not. In particular, de-
riving secondary data from an imaging modality is a widely employed
approach across disciplines. In biology, imaging is often combined
with other approaches to reveal the complex mechanisms that comprise
organisms. Our work would be a useful reference for problems that
have a similar combination of data types. Yet, we argue that our design
principles could still be applied to other data type combinations. For
example, the process of selecting primary and secondary data types,

their encodings, and their composition could be leveraged for any com-
bination of data types. This framework for reasoning about the design
options helps navigate the complex space of these multimodal datasets.

Evaluation. We considered several strategies for evaluating Aard-
vark. Since it is a specialized tool with a limited number of expert
users, a quantitative evaluation is difficult. A quantitative study with a
broader audience could potentially be performed for certain isolated
components of our system. However, evaluating the full system in this
way lacks ecological validity. Alternatively, we considered evaluating
the tool with our current users. Since they have codesigned the tool
with us and are authors of this paper, a study is susceptible to demand
characteristics [7], i.e., introducing bias to give positive scores or feed-
back. Therefore, we decided that, in order to ensure the rigor [48] of
our design study, we report factually on different scenarios where the
tool has provided utility for our collaborators.

10 CONCLUSION AND FUTURE WORK

In conclusion, this work examines three distinct data types (trees, time-
series, and images) that are interwoven to create a complex multimodal
dataset. We describe our design principles for combining these com-
plex, disparate data types into intuitive composite visualizations. We
use these principles to implement an open-source visualization tool,
Aardvark. We demonstrate the utility of Aardvark to perform quality
control, data analysis, and communication tasks with three case studies.

We plan to continue our collaboration with multiple potential re-
search directions in mind. Providing a command line interface to create
a static version of the lineage diagrams would help our design reach a
wider audience of users, as past experience has shown that scientists
tend to prefer tools that neatly fit into their workflow. On the flip side,
developing Aardvark into an integrated system that combines image
analysis (segmentation, tracking) with visualizations would allow us
to identify errors in the data and immediately fix them, potentially
improving the parameterization of the image analysis algorithms.
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