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Abstract—We present a new comprehensive theory for explaining, exploring, and using pattern as a visual variable in visualization.
Although patterns have long been used for data encoding and continue to be valuable today, their conceptual foundations are precarious:
the concepts and terminology used across the research literature and in practice are inconsistent, making it challenging to use patterns
effectively and to conduct research to inform their use. To address this problem, we conduct a comprehensive cross-disciplinary
literature review that clarifies ambiguities around the use of “pattern” and “texture”. As a result, we offer a new consistent treatment
of pattern as a composite visual variable composed of structured groups of graphic primitives that can serve as marks for encoding
data individually and collectively. This new and widely applicable formulation opens a sizable design space for the visual variable
pattern, which we formalize as a new system comprising three sets of variables: the spatial arrangement of primitives, the appearance
relationships among primitives, and the retinal visual variables that characterize individual primitives. We show how our pattern system
relates to existing visualization theory and highlight opportunities for visualization design. We further explore patterns based on
complex spatial arrangements, demonstrating explanatory power and connecting our conceptualization to broader theory on maps and
cartography. An author version and additional materials are available on OSF: osf.io/z7ae2.

Index Terms—Pattern, texture, visual variables, retinal variables, data visualization, Jacques Bertin.

1 INTRODUCTION

Visualization design at its very core relies on the mapping of data
values to visual variables. Visual variables, also referred to as visual
channels, are attributes of graphical elements—referred to as “marks”
or “symbols”—whose appearance can be manipulated to encode data
[72]. The visual variables that we draw upon are much studied and
include position, hue, and size [5, 6]. Their effectiveness ranking
has been the subject of much research and discussion in our field
[26, 31, 61, 64, 69] with scope for encoding nominal, ordered, and
numeric data [80]. Among the available visual variables is one that
researchers have called pattern [59], typically featuring repetitive dots
or lines . Visualization designers often use these patterns when
color is either limited or already encodes other data dimensions (e. g.,
[5, 6, 11, 12, 22, 28, 43, 55, 78, 82, 87, 91]).

When patterns are described as visual variables, researchers
also refer to them as texture. This interchangeability of the terms “pat-
tern” and “texture” may arise from the blended use of both terms in
everyday language and the use of “texture” as a translation of Bertin’s
visual variable “grain” in the English translation of his seminal and
highly influential work [5, 6]. To add to the confusion, however, the
term texture has a diverse set of meanings in visualization research
that goes beyond an understanding of texture as pattern . Re-
searchers working on 3D representations, for example, often use texture
for surface or volume characteristics of 3D objects, represented as real-
istic images [50, 57]. These textures typically have different
visual characteristics and encoding goals from the more structured
repeating patterns that are used as a visual variable in abstract data rep-
resentations . Even in the specific context of visual variables used for
abstract data representations, researchers may interpret the term texture
as a variation of a specific dimension of a pattern, such as “granularity”
(Bertin’s “grain” in French) , the spacing between the repeated
elements , or the elements’ shape . This méli-mélo de
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terminologie, we argue, prevents the research community from inves-
tigating pattern as a visual variable or using its encoding effectively.
Research on patterns and their practice of use is difficult to compare
and situate in the absence of a consistent terminology. We consider
this situation to be a theoretical irritant with practical implications—a
persistent blind spot that we aim to address with our work.

Our re-reading of the literature [20,59,72,92] leads us to a consistent
terminology, in which we use the term “pattern” to describe a compos-
ite visual variable that consists of graphical primitives that can
also serve as marks for data encoding. Our first contribution is an
in-depth discussion and clarification of the terms texture and pattern
in light of existing interpretations around both terms, to address the
inconsistent terminology problem. As our second contribution, we
introduce a new pattern system that extends the conceptualization of
pattern and its potential variations. This system builds upon our termi-
nology to describe a design space in ways that can be used for encoding,
exploration, and experiments. We identify three sets of attributes of a
pattern: the spatial arrangement of primitives, the appearance relation-
ships among primitives, and the individual appearance characteristics
of primitives. Furthermore, we examine more complex spatial arrange-
ments of primitives, using the concept of pattern as a theoretical lens to
compare, explain, and connect different types of visualizations and to
uncover new design opportunities.

2 TEXTURE AND PATTERN

Researchers often use the terms pattern (e. g., [53, 59, 88]) or texture
(e. g., [44, 91, 94]) to describe a visual variable characterized by re-
peated elements . Although both terms can make sense and are
understandable, Carpendale [20], in her discussion of visual variables,
suggests to use the term texture for “apparent surface quality of the
material like wood or marble” and to use pattern for “repetitive use
of shape variations.” We consider Carpendale’s recommendation rea-
sonable and useful1 due to two main issues associated with the term
texture: (1) compared to pattern, the term texture has a broader meaning
in visualization and related fields, can refer to different concepts (as
we show in Fig. 1 and Fig. 2), making it less precise; and (2), even
when texture specifically refers to a visual variable, it is subject to
different interpretations, even post-Carpendale [20], as can be observed
by comparing various publications that use the term [52, 53, 83, 88].
Below we discuss the first of these issues and clarify the use of texture
and pattern in the visualization literature, and explain why pattern is
a more suitable term for this type of visual variable. We address the
second issue in Sec. 3.
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(a) (b) (c)

Fig. 1: Textures in (a) surface rendering [14], (b) volume rendering [57],
and (c) flow visualization [67]; all images © IEEE; used with permission.

(a) (b) (c)

Fig. 2: Patterns used in the visualization community that are called
“texture,” from (a) [91], (b) [22] , and (c) [44]; (a) and (b) © IEEE, (c) cb

CC BY 4.0; all images used with permission.

2.1 Texture: Surface characteristics
The term texture is often used to describe an object’s “visual or tactile
surface characteristics and appearance” [70]. In computer graphics,
especially in work that relates to rendering, texture is a widely used con-
cept. In this context, it essentially refers to a data structure that stores
characteristic information (visual or other). It is typically represented
as a multidimensional array. Through texture sampling, we obtain the
necessary data from the texture and map it onto the corresponding
location of the object. The visual texture that we ultimately observe
on the object is the result of the rendering process [7, 21]. From an
appearance standpoint, textures are often closely related to real-world
materials, have a sense of depth and realism, and often look continuous.

Leveraging techniques from computer graphics, researchers in 3D
visualization use texture, for example, to depict materials of a model’s
surface (e. g., Fig. 1(a)) or to define a volume’s visual characteristics
(e. g., Fig. 1(b)). In flow visualization, researchers also use techniques
that rely on textures, such as Line Integral Convolution (LIC) [16] or
spot noise [90], to represent the directionality, magnitude, and other
attributes of vectors or tensors (e. g., Fig. 1(c)).

Texture is also used to refer to surface characteristics in other visu-
alization-related fields beyond computer graphics. It is recognized as
one of the seven elements of art, denoting the characteristics of an ob-
ject’s material [35]. In the visual arts, visual textures are called implied
textures (in contrast to actual textures, which are tactile), e. g., to create
a simulated appearance of physical materials [35]. In computer vision,
researchers study texture analysis techniques (e. g., texture segmenta-
tion and classification) to enable computers to recognize objects and
understand scenes [86]. In the vision sciences, researchers study texture
perception to understand how humans perceive surface qualities [79].

Carpendale [20] brings multiple perspectives together in her discus-
sion of visual variables for data visualization. She specifically discusses
the possibility of using surface materials (i. e., the computer graphics
interpretation of texture) as a separate visual variable [20, Table 9], and
illustrates it with examples using photographic images [20, Table 11].
In this case, a (texture) image is applied to a chart element, and what
we read is both the chart element’s value and the information in the
image. Because both the visual appearance and the information encod-
ing in these examples differ from the visual variable examined in our
work, we recommend using the term texture for this visual variable in
line with Carpendale’s suggestion—yet a more specific term such as
“surface material texture” would make for a clearer distinction.

2.2 Pattern: Repetition and structure
A body of research and practice that has its roots in cartography and
statistical graphics interprets texture in a different manner. In Fig. 2
we show examples of this type of “texture.” Researchers map data

dimensions to the graphical features of these textures. These textures
typically feature clearer and more distinguishable repetitive elements
than those textures used in computer graphics rendering. even though
they may carry meaning through mimetic properties, they are generally
unrelated to surface materials.

We describe this use of “texture” as pattern—a concept that empha-
sizes aspects different from texture. The term “pattern” originated from
the same root as “patron,” derived from the Latin patronus, meaning
“protector” or “defender” [27]. It evolved to signify “an example to be
copied” [27], emphasizing the repetition of elements—rather than the
tactile or perceived feeling of a material (i. e., a texture). Note that the
term pattern is not limited to visual elements, it is a structural concept
that can be applied to the abstract2 as well as the physical world.3

We focus on the visual aspects of pattern. The emphasis on repetition
and structure makes the concept of pattern particularly suitable for
describing visual variables in the form of structured marks that repeat
to fill space, capturing both their composite encoding and abstract
appearance. As Wilkinson [98] in his discussion of visual variables
mentioned, “these [visual variables] are not ones customarily used
in computer graphics to create realistic scenes. They are not even
sufficient for a semblance of realism.” Nevertheless, patterns can also
characterize a surface, suggesting that we can view patterns as a specific
type of “texture,” one that describes a surface with distinct primitives
and structured arrangement. When the repeated elements in a texture
are clearly identifiable, the texture takes on the characteristics of a
pattern. This overlap between the two concepts may explain why some
researchers use the terms pattern and texture interchangeably.

2.3 Summary

The term “texture” is used differently in different visualization contexts,
with meanings derived and used in computer graphics and in abstract
data representation having some similarities, but important differences.
Both can characterize a surface and add visual complexity. Texture
often describes the appearance of a surface and its material properties,
while pattern emphasizes the repetition and structure of elements that
involves semiotics and is frequently used in abstract data representa-
tions. We acknowledge the overlap of the terms texture and pattern
and are sensitive to other researchers’ use of both terms. In our case
of using it as a visual variable, however, we suggest that pattern is a
more precise term than texture, as patterns rely on repetition and are
not usually meant to suggest surface material.

3 PATTERN AS A VISUAL VARIABLE: THREE INTERPRETATIONS
UNDER THE TERM OF “TEXTURE”

While pattern is a more precise term if we think of it as a visual variable,
we frequently see “texture” in lists of visual variables. This use of “tex-
ture” to describe a visual variable can be traced back to Bertin’s seminal
book, Semiology of Graphics [5, 6], in which he introduced the first
set of visual variables—“texture” among them. Subsequent literature
has continued to use this term (e. g., [20, 64]), however, with different
interpretations. It has been referred as the variation of granularity in
a pattern (e. g., [5, 6, 52]), the spacing of a pattern (e. g., [29, 83]), the
shape variation of a pattern, or a pattern in its entirety (e. g., [53, 88]).4
This inconsistency has its roots in the translation of Bertin’s book,
which we carefully unpick as follows.

3.1 Grain: The original term Bertin used

The French term “grain” is the original word that Bertin used to describe
the visual variable [6], which William J. Berg translated to “texture” in
the English version of this book [6]. Bertin defined the visual variable
as follows: “at a given value, the [granularity]5 represents the number
of separable marks within a unit area.” In the “texture” palettes from
his book that we reproduce in Fig. 3, the variation of granularity along
each horizontal palette involves changing both the size and spacing
of primitives simultaneously, while maintaining a given ratio of black
to white. As a result, the average value of each square stays constant.
This effect is similar to what can be achieved by zooming in or out of a
pattern or through photographic reduction [5, 6].
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Fig. 3: Bertin’s diagram
for granularity variation, de-
scribed in French as “Horizon-
talement: grain. Verticalement:
valeur et forme” [our transla-
tion: horizontal: granularity.
vertical: value and shape] [5]
and in English as “texture is
given horizontally; value and
shape [pattern] vertically” [6];
image © EHESS, used with
permission.

Fig. 4: Citation of the translator’s note (with redrawn images similar to
the original ones) in the English edition of Bertin’s book [5].

Researchers questioned the translation of Bertin’s French “grain”
variation to the English term “texture,” suggesting that “grain” or “gran-
ularity” would be more precise translations. MacEachren [59], e. g.,
suggests that the English term “grain” may be better to describe this
variation, as it is similar to the grain in film. Similarly, Wilkinson [98]
said that Bertin “really means granularity (as in the granularity of a pho-
tograph).” Carpendale [20] also noted that this variation more closely
relates to a variation of granularity and directly referred to it using the
English term “grain.” Between “grain” and “granularity,” we recom-
mend using “granularity” in English, based on the rationale that it is
not the “grain” itself that varies but rather the size of the grain, which
is more accurately described by “granularity.” In English, moreover,
“grain” can refer to the longitudinal structures of wood fibers (i. e.,
“wood grain”), potentially conveying a sense of direction. The concept
of direction, however, is not implied in Bertin’s (French) grain, leading
us to argue that “granularity” is a better translation.

3.2 Spacing: A misinterpretation in Bertin’s book
Another interpretation of the word “texture” refers to the spacing of
primitives in a pattern. Spacing between primitives can affect density—
the smaller the spacing, the more densely packed the primitives. This
variation is called “spacing” by Brewer [10] and Slocum et al. [83],
“density” by Mackinlay [64], or “frequency” by Chung et al. [24].

The interpretation of “texture” to relate to spacing may arise from a
misinterpretation in a translator’s note in the English version of Bertin’s
book, which we reproduce in Fig. 4. As we had just discussed, for
Bertin changes in granularity (French: “grain,” translated in Fig. 4 to
“texture”) require that a constant average value is upheld. The transla-
tor’s note, however, refers to the difference between Squares A and B
as a change in “texture” (i. e., “grain” in French or, for us, granulatity).
Yet, A and B do NOT share the same average value, as A has a lower
black-to-white ratio than B. Therefore, A and B would not constitute
a change of the (French) “grain” for Bertin. Instead, if we see the
black lines as primitives of the pattern, we can see from the figure that
A and B differ only in the spacing between primitives, changing the
black-to-white ratio while maintaining the primitive shape (cf. Fig. 3).

3.3 Pattern: Not only shape variation
“Pattern,” largely in the sense we have established in Sec. 2.2, is a
third term often used interchangeably with “texture” when referring
to a visual variable—a confusion stemming both from the semantic
overlap discussed in Sec. 2 and from the translator’s interpretation of
Bertin’s work. In the original French edition [5], Bertin described the
vertical change between corresponding “palette” entries in Fig. 3 is
a variation of “value and shape” (French: “valeur et forme”). It is
unclear if this interpretation was supported by Bertin, but the English
translator of the book amended this statement to “value and shape
[pattern]” [6]. This amendment seems reasonable: we can see in Fig. 3
that the differences between palette entries on each column are not
just differences in value and shape, but also include differences in size
of the elements, spacing between the elements, etc.—which are all
variations a pattern can have. In the translator’s note we just mentioned
(Fig. 4), however, the translator explained that “a difference in ‘pattern’
is essentially a difference in shape.”6 Carpendale [20] adopts this
interpretation, defining pattern as “repetitive use of shape variations
(the use of marks upon marks),” and equates the impact of using the
visual variable pattern in visual interpretative tasks with the visual
variable shape. This interpretation captures the emphasis of pattern on
repetition well and the notion of “the use of marks upon marks” touches
an apparent inconsistency of Bertin’s use of visual variables, which we
discuss in Sec. 4.2. The variations of patterns, however, should not be
limited to the change of shape as we just discussed for Fig. 3.

3.4 Summary and our recommendation
“Texture” has multiple interpretations, and when used without clarifi-
cation or diagrams in the context of abstract data representation, its
meaning is often ambiguous. We therefore recommend reserving “tex-
ture” for surface materials and using “pattern” to describe the visual
variable that features structure and repetition . Given the many
subdimensions of patterns, they should be described comprehensively
and consistently. To support this, we propose a consistent and expres-
sive descriptive terminology in the remainder of the paper.

4 ADDITIONAL RELATED WORK ON PATTERN VARIATIONS

To fully understand what truly constitutes a pattern, we first review
previous work on identifying subdimensions of pattern, then highlight
an inconsistency in Bertin’s use of visual variables—one that inspires
our development of a comprehensive description of pattern.

4.1 Pattern description from two perspectives
Researchers have investigated variations of pattern from two perspec-
tives, corresponding to the encoding and decoding processes. In en-
coding, designers use visual variables to represent differences in data;
in decoding, readers perceive these variations and interpret them as
data differences. The description of pattern can thus be approached
from two directions: what designers can control and what readers can
perceive. Research from disciplines with a design focus has proposed
subdimensions of pattern from a design perspective, while research
from the field of vision science has explored dimensions of pattern from
a perceptual perspective. Our proposals draw upon both perspectives.

4.1.1 Perception perspective
To be able to use pattern for encoding data effectively, it is vital to
understand how the human visual system perceives such visual stimuli.
Vision science researchers have tried to identify the most important
perceptual dimensions that are useful for humans to judge the difference
between appearance of textures (also known as texture features).

Tamura et al. [85] propose six basic texture features, namely, coarse-
ness, contrast, directionality, line-likeness, regularity, and roughness.
Amadasun and King [2] approximate five perceptual texture attributes
in computational form, namely coarseness, contrast, busyness, com-
plexity, and strength of texture. Rao and Lohse [77] identify a Texture
Naming System with the three most significant dimensions in natural
texture perception: “repetitive vs. non-repetitive; high-contrast and
non-directional vs. low-contrast and directional; granular, coarse and



low-complexity vs. non-granular, fine and high-complexity.” Liu and Pi-
card [56] identify three mutually orthogonal dimensions of texture that
are important to human texture perception, namely periodicity, direc-
tionality, and randomness. Cho et al. [23] extend the perceptual research
and reported four texture dimensions: coarseness, contrast, lightness,
and regularity. Features such as coarseness, roughness, or strength re-
mind us of the interpretation of texture as a surface characteristic, which
is understandable because vision researchers [2, 23, 56, 77, 85] have
primarily focused on natural textures (e. g., the photographic textures in
Brodatz’ album [13]). Yet their work—dedicated to understanding how
humans perceive texture—can nevertheless shed light on using pattern
for data visualization. In particular, Ware and Knight [95, 96] identify
three orderable dimensions for data displays: orientation, size, and
contrast (OSC). Healey and Enns [45] build three-dimensional percep-
tual texture elements, called pexels, for visualizing multidimensional
datasets. Pexels can be varied in three separated texture dimensions,
which are height, density, and regularity, and the color of each pexel.
This perception perspective is highly relevant to the use of pattern as
a visual variable. A pattern description system developed from the
design perspective can be informed by and tested in the context of the
perception literature.

4.1.2 Design perspective

Researchers in design, cartography, and visualization have described
the composite nature of pattern, which has multiple dimensions that can
be varied to encode data. From an architectural perspective, Caivano
[18, 19] describes a system of patterns using the term “texture,” which
we adopt when discussing his system. He classifies “simple textures”
and “complex textures,” defining the former as “the uniform repetition
of a certain element” and the latter as combinations of multiple
sets of these primitives [19]. His simple textures are essentially
described by the relationship of two elements within a tiling (repeating)
unit. He describes texture variation as the shape of texture elements,
organization (relative positions of the two texture elements in the tiling
unit), proportionality (a tiling unit’s width-height ratio), and density
(overall black-to-white ratio). Cavaino, however, does not intend to
use his textures as a visual variable for data encoding. As a result,
not all the dimensions he identified are directly manipulable, and his
composition of simple textures is therefore unsuitable for our purpose.
In addition, we identify two distinct subsets of pattern within his simple
texture classification (see Appx. A for a detailed discussion). Below
we thus develop our own pattern configuration to offer an alternative
that covers a wider design space, specifically aimed at encoding data.

A cartographic angle, expressed in MacEachren’s definitive How
Maps Work [59], considers “‘pattern’ as [a] higher-level visual vari-
able, consisting of units that have shape, size, orientation, texture (in
Bertin’s sense of grain), and arrangement.” In the field of visualization,
Harris [41], in his book on information graphics design, suggests that
“there are many variations” within patterns and lists factors that make
up patterns: “shape of individual elements,” “orientation of individ-
ual elements,” “texture (sometimes referred to as coarseness),” “size
of individual elements,” and “spacing between individual elements.”
Wilkinson [98] wrote that “texture includes pattern, granularity, and
orientation,” but he does not further analyze pattern. Instead, he inter-
prets pattern as being “similar to fill style in older computer graphics
systems, such as GKS (Hopgood et al., 1983) or paint programs” but
does not describe the subdimensions of pattern. In our own previous
work [44] we identify a set of pattern properties (as [sic] “textures”)
but also does not cover all dimensions.

In summary, our reading of this prior work provides us with useful
examples for understanding the various dimensions of patterns, but
none of the individual treatments are comprehensive and the rationale
that supports them is somewhat sketchy. Based on the various authors’
suggestions, we thus provide a systematically defined proposal that
is comprehensive in its consideration of pattern as a high-level visual
variable—developed via a structured, repeated combination of sets of
visual primitives that vary in their visual characteristics to encode data.

(a) (b)

Fig. 5: Size variations from Bertin’s book [5, 6]: (a) Size variations for
three mark types: left and middle show Bertin’s Approach 1, where he
directly adjusted the marks’ size properties (dot size and line width);
right shows Bertin’s Approach 2.2, where he added repetitive dots to
fill the area mark and used the dots as secondary marks—he varied
the dots’ size properties (dot size). (b) Size variation for an area mark
using Bertin’s Approach 2.1, where he added a single secondary mark
(rectangle) and varied its size property (rectangle size). All images
© EHESS (text translated), used with permission.

4.2 Inspiration from Bertin’s apparent incongruity

Bertin himself do not explicitly define or employ the concept of pattern,
but why then do we see many visual encodings we may intuitively call
pattern in his charts or maps? One explanation may be that Bertin
attempts to address an inherent limitations of area marks. Area marks
cannot change in size, shape, or orientation [5, 6, 20, 72], without the
area changing its meaning. For example, we cannot encode an addi-
tional data attribute into the size, shape, or orientation of a region (an
area mark) on a map because these attributes are already used to encode
geographic information. To address this limitation, Bertin invokes the
cartographic tradition, in using a method of adding a single additional
mark with variable visual characteristics or a group of repetitive addi-
tional marks with common visual characteristics. When he does the
latter, he creates a pattern with repetitive tiling of secondary marks
(primitives)—which is why Carpendale interprets pattern as “the use
of marks upon marks.” Bertin explains this encoding by the fact that it
is possible to change the visual characteristics of the constituents that
make up an area: “if the area is visually represented by a constellation
of points or lines, these constituent points and lines can vary in size,
shape, or orientation without causing the area to vary in meaning” [5].
He also makes a similar point for the constituents of a line mark. This
adjustment explains why Bertin could apply all his six retinal visual
variables—including size, shape, and orientation—onto line and area
marks (see his overview in Fig. 21 in Appx. D), and the “constituents”
here equate to the secondary marks (the primitives in the pattern).

Let us take the visual variable size as an example to explain how
he mixes these two approaches. Size is applicable to point and line
marks, but not to area marks. When applying size to point and line
marks, Bertin directly adjusts the mark’s intrinsic properties, such as
the dot’s radius or the line’s width—without introducing secondary
marks (Fig. 5(a), left and middle). We call this Approach 1—Direct
Encoding: changing the graphical properties of the mark itself, which
aligns with the precise definition of a visual variable. For area marks
(such as map regions), however, size is not applicable if the integrity of
the geographic encodings is to be maintained. In this case, Bertin takes
another approach: to introduce new mark(s)—we call this Approach 2—
Secondary Marks, which includes two options: Approach 2.1—Single
Secondary Marks adds one constituent (secondary mark), and Ap-
proach 2.2—Repeated Secondary Marks adds repetitive secondary
marks (“constellation”) to fill the area or line mark. For example,
Bertin shows the application of size to an area mark by adding a rectan-
gle of different size to each area mark (Fig. 5(b), which aligns with the
single secondary marks approach, and this is essentially the approach
favored by Cleveland and McGill in the framed-rectangle charts of their
seminal graphical perception paper [25]), or by repetitively filling each
area mark with circles of varying sizes (Fig. 5(a), which aligns with
the repeated secondary marks approach). In summary, when Bertin can
use a direct encoding, he does so. When this is not possible, he auto-
matically switches to using secondary marks, yet without clarification.
In his discussion, unfortunately, he does not clearly explain why and
when to select single or repeated secondary marks.

The secondary marks that Bertin adds to the marks are typically
point- or line-marks, as more visual variables can be applied to them
than to area marks. With repeated secondary marks, Bertin, in fact,



creates point-based and line-based patterns as we understand it, and so
that is ultimately why we see many pattern examples in Bertin’s book.

Bertin’s mixing of the two methods actually blurs the meaning
of visual variables. As Wilkinson [98] points out, “Bertin uses size,
shape, and orientation to characterize both the exterior form of objects
(such as symbol shapes) and their interior texture pattern (such as cross-
hatching).” Bertin’s approach does not fully explore or clearly articulate
the full emerging possibilities of patterns. We can, in fact, apply pattern
across all visual variables and mark types, but Bertin reserved pattern
for situations where visual variables were not applicable to certain
types of marks. In addition, Bertin simply keeps the secondary marks
arranged in a regular grid and ensures that each secondary mark was
exactly repetitive. Similarly, Carpendale [20] equated a variation in
patterns to the variation in shapes constituting them, as we discussed in
Sec. 3.3. Inspired by these perspectives and having established their
apparent inconsistencies, we systematically explore the opportunities
for explanation and for visually encoding data offered by this new
comprehensive description of ‘pattern.’

5 PATTERN AS A VISUAL VARIABLE: A DESIGN SPACE

This position enables us to establish a new pattern system—based on
the design perspective and with the goal of identifying and exposing
the basic parameters that can be exploited to encode data. We con-
ceptualize this system as follows: A pattern has a group of primitives.
Primitives are graphical elements whose visual attributes can be ma-
nipulated to encode information; they can thus be considered “marks.”
To differentiate these marks from the graphical elements (mark) to
which patterns are applied, we refer to the latter as host symbols. We
thus define a pattern as a composite of constituent marks (primitives)
applied to a host mark (host symbol). For consistency, throughout the
remainder of this paper, we use the terms primitive and host symbol
to refer to these two respective levels of marks. Transitioning from
a symbol as a single mark to a symbol that contains a composite of
(possibly repeating) primitives that constitute a pattern then introduces
new visual attributes. These attributes arise from the composite nature
of the pattern, specifically the relationships among its primitives.

Our approach sees pattern as a set of rules for describing the primi-
tives, i. e., parameters that define their attributes, variation, and relation-
ships. By following these rules, we can generate expressive patterns
that fill a host symbol. We identified three sets of rules that are key
to this process and that also serve as attributes by which a pattern can
be characterized: (1) spatial arrangement of primitives (Sec. 5.1), (2)
appearance relationships among primitives (Sec. 5.2), and (3) the reti-
nal visual variables applied to each individual primitive that define its
appearance (Sec. 5.3). We now discuss how these attributes can be
varied to characterize a pattern. The fact that they can be deliberately
and systematically exploited for encoding data enables us to speculate
that they have a scope as “visual variables,” and we begin to explore
their capacities for representing information.

5.1 Spatial arrangement of primitives: Lattice
Spatial arrangement attributes describe how the primitives of a pattern
are spatially positioned and repeated to fill the space occupied by a
host symbol. In theory, any algorithmic method for arranging visual
elements could define such spatial arrangements. We begin, however,
with a pattern type that is commonly found in existing visualizations—
characterized by the regular arrangement of primitives along or across
the host symbol . We can use a lattice structure to describe this
regular arrangement, which consists of a set of regularly spaced points
that can extend infinitely in space. Each point, known as a lattice point,
represents a predefined position for a primitive within the pattern (Fig. 6–
1 , rows 1 and 2). We follow a method used in crystallography [36]

to define a lattice, whose central idea is to identify the unit cell of
the lattice. The unit cell is the smallest unit of a lattice and the entire
lattice can be generated by the repetitive tiling of the unit cells. We
call the parameters that define the unit cell and thus the lattice structure
“lattice parameters.” Each lattice has a unique set of parameters, such
as θ , a, and b for oblique lattices7 or θ = 120° and a for hexagonal
latices. These parameters are the spatial relationship attributes for

characterizing a pattern. Although the discussion of lattices relates
to their use in crystallography [36] and in tiling [51], we take a more
general approach here and say that all lattice definitions are allowed—
including nonuniform ones. In this section, we focus on uniform regular
lattices as examples for explaining the spatial relationship attributes of
patterns. We discuss patterns composed of primitives arranged in more
complex or non-lattice structures in Sec. 7.

5.1.1 Define lattice: Dimensionality and unit cell shape
Lattice dimensionality. The number of lattice dimensions affects the
parameters that are required to define the lattice. We can organize
the primitives of a pattern for 2D visualizations into either 1D or 2D
lattices (rows 1 and 2 in Fig. 6). It is important to note that the lattice
dimensionality (1D or 2D) differs from the number of dimensions that
the pattern itself occupies (along a line or across an area), as well as
from the number of dimensions of the host symbols onto which the
pattern is applied (point, line, or area). The lattice dimensionality is
determined by the number of directions in which the lattice can extend.

The first two rows of Fig. 6 illustrate the two types of patterns
possible in 2D representations, to which we refer as point-based and
line-based patterns, respectively. Point-based patterns are based on 2D
lattices, in which the lattice points are often equally spaced, extending
in two directions (2nd row in Fig. 6). In contrast, line-based patterns rely
on 1D lattices but with linear primitives that (usually) extend to infinity
(1st row in Fig. 6). Both types of patterns, however, can be used on all
three types of host symbols—areas, lines, and points—because all three
mark types are represented by a host symbol with areal extent.8 If we
apply the lattice to line host marks (1D elements), we can either treat
the line as a linear host symbol with a (small) extent perpendicular to
its major direction, or as a form of selection that picks a single direction
from a 2D lattice or that limits the lengths of the line primitives for a
1D lattice (also see Fig. 12 in Appx. C).9

Unit cell shape. The shape of the unit cell characterizes the lattice
type. In a 1D lattice, the unit cell is simply a line segment (essentially
a distance) between two adjacent lattice points. In a 2D lattice, the unit
cell can take many tessellating shapes, including triangles, rectangles,
hexagons, and more complex geometries with nonrepetitive tilings
(e. g., [74, 84]). The lattices and patterns that result in the latter case
are not grid-based. In this section, we mainly use the square lattice as
examples to illustrate different pattern variations. Note that we refer
here to the overall geometry of the unit cell. Some shape variations can
be derived through geometric transformations (e. g., shearing a square
into a parallelogram), which we discuss next.

5.1.2 Transform lattice: Affine transformation
The lattices can further be transformed through affine transformations,
such as translation, shearing, scaling, and rotation, to achieve arrange-
ments suitable for specific application contexts (Fig. 6– 2 ). Due to the
inherently infinite repetition of a lattice, a translation usually only leads
to limited visual changes.10 Shearing, in contrast, affects the shape of
the unit cell, e. g., converting a square lattice into an oblique lattice,
and is thus often considered together with the unit cell shape. Among
the various affine transformations, lattice scaling and rotation are often
used for encoding data, and we discuss them in detail next.

Scale: Size of the unit cell. Scaling changes the spacing between
lattice points and, thus, the unit cell size. The spacing can be modified
either uniformly across both directions or independently, the latter
facilitating directional variation in the pattern. Independent adjustments
in the width and length of the unit cell can significantly affect the
directionality of the resulting lattice pattern. For a 1D lattice, in contrast,
variations in spacing are constrained to a single dimension—along the
line of the lattice. In both 1D and 2D cases, however, a variation of the
spacing between primitives affects the area of the unit cell, which in
turn influences the density of primitives in a pattern.11

Rotate: Orientation of the lattice. Rotation varies the orientation
of the lattice.12 For a pattern arranged in a 2D lattice (Fig. 6, 2nd row),
it is important to distinguish between the orientation of the lattice itself
(Fig. 6– 2 ) and the orientation of the primitives within it (Fig. 6– 4 ,
retinal variables–orientation).13 If both the primitives and the lattice
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Fig. 6: Procedure for creating a pattern by describing three sets of pattern attributes: (1) the spatial arrangement of primitives (Sec. 5.1), (2)
the appearance relationships among primitives (Sec. 5.2), and (3) the retinal visual variables applied to each individual primitive that define its
appearance (Sec. 5.3). We illustrate the attributes with pattern samples constructed both with a lattice (Sec. 5) and without one (Sec. 7).

are rotated by the same angle, this can intuitively be described as a
rotation of the entire pattern (Fig. 14 in Appx. C).14

5.1.3 Place primitives: Positional regularity
So far, we have established a set of predefined position points for the
primitives within the pattern—the lattice points. When we place the
primitives onto the lattice, however, they may deviate from these pre-
defined positions (Fig. 6– 3 ). To describe the extent of this deviation,
we adopt the concept of positional regularity, introduced by Morri-
son [71].15 This variable describes the degree to which primitives can
deviate from lattice points, ranging from strict adherence to the grid
via structured irregularity to a fully random placement within the mark.
For a 2D lattice, the deviation can occur in either one direction of the
unit cell or both directions (Fig. 15 in Appx. C). For 1D lattice patterns,
the placement along the lattice line is affected. Positional regularity
is not an atomic variable and has subdimensions, including its range
and its dispersion level. Range describes how far we can deviate from
the predefined point, and the dispersion level can be understood as the
standard deviation or entropy of the deviations among all primitives.

5.2 Appearance relationship among primitives
Our intended comprehensive treatment of pattern as a visual variable
requires us to consider not only the spatial relationships between prim-
itives but also how primitive groups appear within the pattern. For
noncomposite marks, describing their graphical attributes—such as
shape, size, and color—is sufficient. These attributes are what Bertin
refers to as the “retinal variables.” We cannot, however, directly manip-
ulate each primitive’s retinal variables in a pattern because patterns are
used to fill host symbols. Depending on the size of the host symbol, the
same pattern may contain different numbers of primitives. As a result,
we cannot set the attributes of each primitive individually. Instead, we
define rules for the primitives’ attributes, and the pattern is then gener-
ated accordingly to fill the host symbol. We thus need to establish rules
that describe the relationships between the primitives’ appearances, no
matter how many of them appear in a pattern. For common patterns
with repeated primitives, e. g., this rule is simply “all primitives look
the same.” Our consideration of patterns as composite marks that vary
in defined ways to encode data opens up a large design space, revealing
more and new possibilities with combinations of graphical attributes
that can serve as new ways to encode data. We discuss these next,
describing the internal variation in the appearances of primitives.

5.2.1 Number of primitive groups
Number of primitive groups describes how many distinct combinations
of visual variable variation, or styles of primitive, are used within a

pattern, with each group depicted using a unique encoding or encoding
combination. Traditionally, patterns with a single repeated primitive
have been the most widely used, meaning that one or more visual vari-
ables are applied consistently across all primitives used in a pattern to
encode data (Fig. 6– 4 : “identical mapping”). The pattern’s composite
nature and the enabling nature of today’s digital technologies (e. g.,
SVG), however, allow us to be more expressive than is required by this
consistency: We can vary visual variables to associate and differentiate
subsets of the primitives in a pattern (Fig. 6– 4 : column “grouping,
ratios”). Intuitively, internal variation in patterns allows us to visualize
a new data facet and represent it within the mark. We can use the
variable primitive group count to encode the number of categories asso-
ciated with the facet (e. g., [49]). Its application, however, is broader:
as the number of primitive groups is an attribute just like any other
visual variable, it can encode various types of data. It is ordered as it
represents a numerical count, making it useful for encoding ordinal
data. When using it, however, it is important to ensure that the number
of primitive groups is not excessively large to maintain discriminability.

5.2.2 Ratio between the groups
If a pattern comprises multiple primitive groups (and only then), the
primitive count can differ between groups, to which we refer as the ratio
between groups. Fig. 6– 4 : column “grouping, ratios”) and Fig. 17(b)
in Appx. C show examples for variation in this variable. It can encode
ordered data due to its numerical nature.

A straightforward way to use this facet is to form primitive groups
and encode categories (i. e., keys). All purple primitives, for instance,
encode data for category A, and all yellow primitives encode data for
category B. If these categories have a certain distribution (e. g., 50%
of data items are of type A, and 50% are of type B), then we could
reflect this split in the primitive group ratio. Fig. 7(a) (reproduced
from Bertin’s book [5, 6]) shows a good example of using the variable
to encode the distribution of categories. It shows three categories of
data for France, with differently colored primitives that encode data by
region. Here, the width—1D size—of each colored primitive encodes
the proportion of the respective category. Fig. 8 shows another example,
employing the number of groups of primitives to encode the number of
categories (IsoType, [39, 73]). The ratio between groups (indicated by
line width) encodes the percentage of each category.16

5.2.3 Distribution style of different primitives
The distribution style of each group refers to how we arrange each
primitive group within a pattern (Fig. 6– 4 , column “distributions”).
We should differentiate it from the spatial arrangement of primitives as
being the allocation of primitive variations to predefined positions in



(a) (b)
Fig. 7: Examples of using regular arrangement pattern with internal
variation. Within the patterns, the variations (a) show a facet of data
(described in Sec. 5.2.2), (b) based on geographical data (described in
Sec. 7.1); both images © EHESS (text translated), used with permission.

Fig. 8: Map of nationality distribution in NYC [75] from 1895, It depicts the
distribution of different nationalities across sanitary districts in Manhattan.
The designer used line pattern with variations in orientation to distinguish
the city districts and used patterns on each line to distinguish different
categories. p The image is in the public domain.

the pattern. Here, we discuss how to further specify which primitive
belongs to each group after having defined all primitives’ positions.

Fig. 6– 4 (column “distributions”, rows 1 and 2) shows different
choices of distribution style applied to a consistent spatial arrangement
of primitives, both for 1D lattice patterns (row 1) and for 2D lattice
patterns (row 2). There can be regular arrangements (left part of column
“distributions”) or irregularly dispersed ones (right part of the column).
Within the former, the primitives within the same group can be clustered
together (the top example, respectively), as also in the IsoType image
in Fig. 25 in Appx. E. Alternatively, the primitives of the pattern within
each group can also be dispersed (bottom examples), resulting in a
uniform distribution, as also exemplified in Fig. 8. The regularity,
clustering, or dispersion of primitive groups can be used to differentiate
patterns, and may also have ordinal or numeric encoding possibilities,
ranging from regular to irregular, to clustered, to dispersed.17

5.3 Retinal visual variables on each primitive
So far we have used two sets of parameters to describe the relationships
between groups of primitives in a pattern: their spatial and group ap-
pearance relationships. After establishing these rules, we still need to
discuss the choice of retinal variables to characterize the appearance
of primitive groups to complete our systematic description of pattern
encodings. The patterns , e. g., are identical in their spatial and
appearance relationships (they have the same two pattern groups, same
number of primitives in each group, same distribution style, and same
primitive positions) but differ in the choice of retinal variables used to
characterize the groups. The first uses hue to differentiate, which
could encode categories; the second uses size, which could encode
quantities. The choice of these retinal variables has a profound impact
on the appearance of the pattern and we thus now explore the appli-
cation of retinal variables to primitives within a pattern as well as the
additional parameters and effects that arise from their use.

5.3.1 Retinal variables for primitives
Bertin [5, 6] used the term “retinal variables” to describe the graphical
attributes that “elevate marks above the plane,” and pointed out that
these variables are independent of position. Following Bertin’s defini-
tion, we use the term retinal variable to describe nonspatial graphical
attributes. Here we apply these attributes, however, to the individual

primitives that we locate on our lattice to create the specific pattern, as
distinct from the variables we discussed in the Sec. 5.1 and Sec. 5.2.

Bertin identified six initial retinal variables: shape, size, orientation,
value, color, and texture (granularity). Granularity, notably, comprises
two subdimensions: size and spacing, as we discussed in Sec. 3.1.
Granularity is thus a composite visual variable rather than an atomic
one. Strictly speaking, size also comprises two independent compo-
nents—width and length (more in higher-dimensional space). Similarly,
Bertin’s color combines hue, saturation, and value/lightness, where
the last component is essentially the already included value. By remov-
ing these ambiguities as well as granularity, we are left with shape,
size (1D size), orientation (primitive-level orientation), and color (hue,
saturation, value/lightness). Unlike the spatial arrangement and group
appearance relationship discussed before, these retinal variables are not
new variables specific to patterns. This list can thus be extended to
include any visual variable that is applicable to individual marks. For
instance, researchers have added variables such as resolution, trans-
parency, and crispness. For non-static charts, the list can also include
motion parameters [59, 93]. Past work (e. g., [5, 6, 59, 72, 80]) has in-
vestigated the use of these variables and proposed guidelines on their
syntactics for mapping (such as which variable is suitable for which
type of data). When applied repetitively to primitives, however, these
variables can produce new effects, as we discuss next and in Sec. 6.

5.3.2 Regularity of retinal variables
Similar to positional regularity (Sec. 5.1.3), any of the mentioned retinal
variables can be applied with a varying degree of regularity. These
regularities are, in fact, a secondary characteristic for each of the retinal
variables at the primitive level, for which we show examples in Fig. 6
(column “varied mapping”). For variables that can carry numerical
values (e. g., size, orientation, value, lightness), similar to positional
regularity, we can quantify the range using the maximum deviation and
the dispersion level using the standard deviation. For variables that do
not carry numerical values (e. g., hue, shape) the quantification of range
and dispersion level depends on the variable. For example, we can use
entropy to describe the degree of their regularity.18

5.4 Transform and fit pattern
We can now apply transformations to the pattern, such as stretching or
wrapping19 and fit it to the host symbol (Fig. 6– 5 ). For doing the latter,
we may add further steps such as adjusting the relative position between
pattern and host symbol, cropping, omitting incomplete primitives, or
adding a halo next to the border of the host symbol.

6 INTERACTIONS AMONG VARIABLES

Beyond these three sets of variables that characterize the pattern we
also need to discuss the interactions among the variables.

6.1 Dependency between variables
Retinal variables are independent of variables in spatial and appearance
relationships, but when they are used in the context of patterns they
are constrained by the texture context. Size, e. g., is influenced by the
spatial arrangement. Theoretically, a graphical element’s size can range
from 0 to infinity, but in the context of a pattern a primitive cannot
have 0 size and increasing the size of primitives beyond a certain point
(dependent on lattice configuration and primitive shape) will lead to
overlap, which can mask the retinal properties of the primitives or make
their characteristics difficult to determine, and ultimately may result in
a solid fill (2D or 1D) or thick line (1D).20

Dependencies also exist between retinal variables. A primitive’s
shape, e. g., affects both the range and the possible step size of its
orientation. A round primitive is invariant to orientation. The more
elongated the shape is, however, the better we can perceive its orien-
tation [5, 6]. Orientation variation on line patterns thus works well.21

Reliable hue detection, however, is challenging for small primitives.

6.2 Using multiple visual variables to encode data
Bertin [5, 6] introduced the concept of combination of variables but
primarily focused on retinal variable combinations. The application



of multiple variables in patterns beyond retinal variables, however, ex-
tends his explicit discussion; we can find examples in his own work.
Bertin’s grain, e. g., is a combination of primitive size and spacing,
with the latter two varying consistently across all primitives. As we
introduce the concept of multiple groups of primitives within a pattern
(Sec. 5.2.1), however, when there is more than one group, we can either
covary multiple retinal variables using the same method of primitive
grouping (e. g., Fig. 19(b) in Appx. C), or we can decrease covariation
by using different methods of primitive grouping (e. g., Fig. 19(c) in
Appx. C). With each additional visual variable, we gain an “extent
of co-variation” channel that can convey information. This can be an
emergent phenomenon (discussed in the next section) and can implicitly
encode which visual variables are more closely correlated. In addition,
when discussing the retinal variable shape, Bertin presents patterns em-
bedded with semantic meaning (Fig. 22 in Appx. D). These examples,
however, vary not only primitive shapes but multiple visual variables.
Hatching patterns used in technical and architectural drawing similarly
use multiple variables, such as some of those in Fig. 23 in Appx. D.

6.3 Emergent phenomena
Directly manipulating the pattern attributes we discussed may affect
the appearance of the pattern beyond the attributes we control. These
emergent phenomena are a result of the composite nature of pattern and
can affect value, shade and shape and result in optical illusions.22

Patterned area value: Following Bertin’s definition of value while
reserving this concept for individual marks or primitives, we propose
to use the term “patterned area value” to specifically describe the ratio
of black (or colored) to white—across an entire applied pattern. Bertin
controlled value akin to traditional halftoning [89], which creates the
illusion of various shades of gray by adjusting the lattice size and
primitive shapes of numerous black dots on a white background. Given
its composite nature, a pattern can inherently produce a patterned area
value that aligns with the logic of value as perceived from halftoning
(or from stippling [30, 65]). Even though patterned area value is thus
emergent and cannot be controlled directly,23 we need to pay attention
to it when encoding data—specifically because value variation is a
dominant variation for conveying order [5,6]. It is important to identify
which independent pattern parameters affect the patterned area value.

Among the variables we discussed, both orientation (at the primitive
and lattice levels) and carefully designed shape variation (i. e., maintain-
ing a constant number of black pixels) can keep the area value constant.
In addition, employing combinations of variables can also preserve
patterned area value, such as simultaneously adjusting primitive size
and spacing (i. e., Bertin’s granularity variation). Size variation by itself
usually affects patterned area value, only the special case of changing
the subparameters width and height in opposite directions can maintain
constant value. Conversely, an isolated variation of spacing or of the
individual primitive’s value also directly affects patterned area value.

Understanding which visual variables can be used without causing
patterned area value variation can help us to reason about the encoding
of data. One recommended use of patterns [92], for instance, is to
overlay a pattern on a color encoding to represent a bivariate scalar
field, with one data dimension mapped to pattern and the other to
color. Using this concept, Retchless and Brewer [78] compared eight
ways to show uncertainty (Fig. 26 in Appx. E). Among them, most
participants preferred the design with a dot pattern overlaid on color

High
certainty

Low
certainty (Fig. 26(g)) using positional regularity to encode uncer-

tainty. Yet Ware [92] pointed out that, when patterns are overlaid on
color, the bandwidth of luminance is shared between the two. When
using a pattern to represent one of the bivariate variables; therefore, the
(ordered) data dimension should be represented by a pattern variation
with a constant patterned area value, to minimize its impact on the
perceived value of the color layer, e. g., instead of .

Regional shade: If all primitives in a pattern are the same color,
the regional shade is simply the color of the primitives mixed with the
(white) background. If there are multiple color primitives, however, we
introduce a regional shade to the pattern. Incorporating internal hue
variations among different primitives (e. g., some primitives are blue
whereas others are yellow) can result in a different regional hue (e. g.,
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Fig. 9: Symbol map exam-
ple, edited version (regions A
and B added and changes
for space efficiency: legend
moved moved to inside the fig-
ure) based on a map about Pop-
ulation and Taxation in Castille
from Bertin’s book [5,6]. A and
B can be considered as pat-
terns, whose primitives encode
geographic information. Image
from [6], © EHESS (text trans-
lated), used with permission.

green) due to color mixing, similar to color halftoning .

7 MORE COMPLEX SPATIAL ARRANGEMENTS

Our exploration of the pattern design space also helps us see gaps for
exploration and situate and relate existing methods and practices. In our
discussion so far we explored patterns based on a regular arrangement
of primitives. The regular lattice provides a convenient and consistent
framework for expressing the spatial arrangement of primitives within
a pattern. Bertin explored this approach and it is broadly accepted
in the community for encoding data using patterns—yet many other
possibilities exist. We can use, for instance, irregular or nonuniform
lattices: Many line dot patterns used to encode lines [9] are defined
by irregular spacing and, while lattice crystallography is constrained
by nature, visualization design is not.24 Fundamentally, we thus only
need a set of rules for organizing primitives in space—a lattice or any
other algorithm that can define the positions of primitives across a
given area. In this section, we discuss two representative examples of
more complex spatial arrangements that go beyond regular lattice-based
configurations: data-driven patterns and nested patterns.

7.1 Data-driven patterns
When we use a lattice to arrange primitives, their position has not been
used to encode data—but our pattern system does not prevent us from
doing so: we can use each primitive position to encode data directly.

One intuitive approach is to encode geographical position directly
(Fig. 6–last row) as the position of each primitive, yielding symbol
maps. Yet the created appearance is less intuitively a “pattern” in the
canonical sense. Consider, e. g., the symbol map in Fig. 9, in which
each dot represents a city and its geographical location on the map.
When we read an individual dot we can interpret a city’s population
(from the dot’s size) and its tax rate (from the dot’s value). When we
look at regions, such as Region A, highlighted with a red frame on
the map in Fig. 9, we see a pattern emerging consisting of a group of
dots—the pattern’s primitives. We can see that the pattern of Region A
has internal variation and conveys comprehensive regional information.
From the pattern, we can discern (1) where the cities are located in this
region (from the dot positions), (2) how many cities there are (from
the dot density), and (3) what their characteristics are (with dot size
representing population and value representing tax rate). (1) and (2) are
emergent variables that come from geographic information, which uses
arrangement-level visual variables, whereas (3) is directly encoded on
the primitive-level. This pattern also allows us to compare different
regions. We can see, e. g., that the pattern in Region A is different from
the one in Region B, and we can find that the taxation levels within
Region A may have a greater diversity compared to those in Region
B. We can also seek ‘patterns’ across the map that have similar visual
characteristics to that of Region A. When we read the map, we can
thus visually select different patterns at multiple scales and multiple
places concurrently to understand geospatial data based on the emergent
visual patterns. This process aligns with MacEachren’s [60] goal of
cartographic visualization: to “assist an analyst in discovering patterns
and relationships in the data” at multiple locations and multiple scales.

We note that data-driven arrangements are not limited to accurate ge-
ographic locations (Fig. 31(a)); they can also be inaccurate geographic
(i. e., transformations applied to accurate geographic locations, e. g., to
avoid overlap between dots, Fig. 31(b)), or gridded geographic (e. g.,



Fig. 7(b) and 31(c) show an application of this type of pattern). In
addition, such arrangements can even be nongeographic—derived from
statistical data (e. g., [38]). Fundamentally, we encode the positional
information of primitives relative to coordinate axes. In maps, we use
geographical locations, but for a scatterplot, e. g., the point positions
are the data’s x- and y-dimensions. We can thus use a similar way to
interpret emergent “patterns” on scatterplots. Our pattern system allows
us to describe and differentiate patterns in such cases and facilitates
further research on how people can accomplish data analysis tasks at
these different pattern levels and with different pattern characteristics.

7.2 Nested patterns
As we discussed in Sec. 5, our pattern system characterizes a pattern by
setting the rules for: (1) spatial relationships of primitives (Sec. 5.1), (2)
appearance relationships among primitives (Sec. 5.2), and (3) retinal
visual variables that define the appearance of each individual primitive
(Sec. 5.3). For the last of these rules we can also treat patterns them-
selves as retinal variables and use a pattern as primitives of another
pattern—a “nested pattern.” The primitives of the base pattern then
serve as host symbols for the new pattern. We can characterize the new
added pattern using the same three sets of rules from our overall system
and, for the retinal variables of its primitives, we can again add another
layer of pattern. We thus provide the possibility of adding multiple
layers of additional patterns ad infinitum.25

By varying how spatial relationships are defined, we can construct
both lattice-based and data-driven nested patterns. Notably, either
type can serve as the spatial rule for both the base pattern and the
added pattern. A two-layer nested pattern thus yields four possible
configurations: (1) lattice pattern on lattice pattern (e. g., Fig. 8); (2)
lattice pattern on data-driven pattern (e. g., Pattern A in Fig. 9); (3) data-
driven pattern on lattice pattern (this configuration is less common, but
we illustrate it in Fig. 30 in Appx. C: a regular grid pattern hosts a dot
pattern based on geographical data); and (4) data-driven pattern on data-
driven pattern (e. g., Fig. 29 in Appx. E), where we can consider the
entire map as a base pattern, and the small maps are the added pattern,
and both of which use position to encode aspects of geography).

Our new pattern system thus offers a theoretical lens through which
we can not only discover new design possibilities but also compare, ex-
plain, and relate different designs, to theoretically connect and perhaps
understand idioms that we usually separate with different names.

8 BRINGING IT ALL TOGETHER

We deeply engaged with and discussed Bertin’s use of texture and its
various translations, interpretations, and applications and noted incon-
sistencies. This leads us to recommend avoiding the term “texture” in
lists of visual variables, and to instead discuss the use of granularity,
spacing, and shape of pattern primitives. Patterns are ultimately a
composite visual variable that consists of a series of expressive com-
ponents whose design space we explored. We are not the first to
have attempted this exploration but our pattern system provides a new
unifying angle. Specifically, we identified three sets of attributes of
patterns. First, spatial arrangement relationships of pattern primitives
distinguish how pattern primitives are arranged, either through a static,
dynamic, or irregular lattice or modified by data parameters. This
conceptualization of arrangements encapsulates previously proposed
pattern parameters [10, 24, 64, 71, 83] such as density or regularity. Sec-
ond, group appearance relationships introduce internal variation within
patterns as a novel concept that includes the number of primitive groups,
ratio between groups, and distribution style. Our group appearance
relationships allow us to categorize and discuss pattern visualizations
by Bertin and others. Examples in Fig. 17(b) and 18(a) in Appx. C
also remind us of waffle charts, BallotMaps [100], or proportion vi-
sualizations more generally. Finally, we discussed the use of retinal
variables on pattern primitives. Although retinal variables as such have
been investigated before, we introduce new variables made possible by
patterns, specifically the regularity of the retinal variables and the visual
effects caused by using retinal variables repeatedly. Based on our three
attribute sets we further discussed the use of multiple variables and the
creation of patterns through more complex spatial arrangements.

Our design space is deeply generative—it is easy to conceive of
pattern variations using any of our dimensions. Existing examples (e. g.,
Fig. 7(a) and 8 as well as Fig. 25 in Appx. E) demonstrate the potential
of patterns in encoding data, making them worthy of further exploration.
Creative design experiments are needed to establish possibilities and
rigorous empirical work required to understand how these variations are
perceived. One aspect that we have not at all touched upon, however, is
the use of patterns decidedly not for encoding data. Think, for example,
about the use of non-lattice arrangements or intentional irregularity in a
lattice-based pattern being used simply for aesthetic purposes—to make
the visualization more interesting. Fig. 35 and 37, for instance, vary the
dot placement in an even yet irregular fashion, which shows the overall
density well yet in a visually more interesting fashion than a regular
lattice-based placement—linking our system to approaches used in
non-photorealistic rendering on stippling [30, 65] and non-repetitive
patterns (e. g., [4, 47, 65, 81, 99]). Also parameters other than position
can be manipulated purely for aesthetic purposes, such as line width to
simulate hand-drawn lines as in traditional data graphics [3, 102].

The degree to which such uses of pattern for aesthetics [42] are
effective should be further investigated, as well as their effect on read-
ability [15]. In addition, we need to study the encoding size of types of
pattern variations—that is, how many different variations of a texture
are even noticeable by a viewer. Any of these metrics can be applied to
a number of specific questions. For example, it would be interesting to
explore whether regular patterns create more readable visualizations
than random placements or if and how semantically resonant patterns
can be created with abstract pattern designs [58]. Specifically intriguing
is the use of combinations of patterns with other retinal variables as
well as nested patterns. We see few examples of their application in
practice. Is it because they are a bad idea? Because common visualiza-
tion libraries do not allow or facilitate pattern encoding? Or because
people have lacked the conceptual framing to explore and advocate for
or study their use? Ultimately, our design space is thus also evaluative.
It aids in the design of studies comparing different pattern parameters
to ultimately build up a more comprehensive understanding of what
makes patterns interesting, effective and appreciated. In addition, given
the limited pattern support in current visualization tools (Appx. F), one
could build a more flexible pattern library for based on our pattern
system to support pattern design and empirical studies.

Finally, having described a wide design space, we do not know
the various limits of the use of patterns. As we use more parameters
and visual variables for encoding in composites, the resulting intricate
patterns are unlikely to be easily interpretable or reliably decoded.
Like hand-drawn stipple images, or efforts to convey surface material
characteristics, the properties of patterns may then become more akin
to those of natural textures [62, 63], suggesting that our system may
have potential for bridging conceptual, linguistic, and perhaps practical
gaps in data visualization design.
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Reframing Pattern:
A Comprehensive Approach to a Composite Visual Variable

Appendix

In this appendix we provide additional figures and some detailed discussion that we could include in the main paper due to space limitations or
because it was not essential for explaining our approach.

A CAIVANO’S SYSTEM FOR TEXTURE DESCRIPTION

From the field of architecture, Caivano [18, 19] adopts a design ap-
proach to describe patterns (although under the term “texture”). He
classifies simple textures and complex textures, defining the former as
“the uniform repetition of a certain element” and the latter as combina-
tions of multiple sets of simple textures [19]. His simple textures are
essentially two elements within a tiling unit. Caivano constructs his
simple texture through the tiling of a texture unit (the minimal entity
for repetition; see Fig. 10 (b)). In Caivano’s model, a texture unit
comprises a pair of texturing elements (see Fig. 10 (c)). He then treats
texture as a tripartite variable, including size of the texture elements,
directionality (the unit’s width-height ratio), and density (the overall
black-to-white ratio). Later [18], he refines his theory to describe pat-
tern variation through the shape of texture elements, organization (the
relative positions of the two texture elements within the tiling unit),
proportionality (the tiling unit’s width-height ratio), and density (the
overall black-to-white ratio).

Cavaino, however, did not intend to use texture as a visual variable
for data encoding. As a result, not all the dimensions he identifies are di-
rectly manipulable, and his composition of simple textures is unsuitable
for our purpose. In addition, we interpret Caivano’s classification such
that a simple texture should be the most basic form of texture—without
any subsets of textures (“uniform repetition of a certain element”). If
a texture is a combination of multiple sets of textures, we should cat-
egorize it as a complex texture. Upon analysis of Caivano’s simple
texture composition, however, we identify two subsets of texture within
it, which appears to contradict our interpretation of his definition of a
simple texture. Fig. 10(d) illustrates the two subtextures identified in a
simple texture according to Caivano’s composition, with blue and red
highlighting, respectively. We thus develop our own pattern configura-
tion and offer an alternative that covers a wider design space of pattern,
specifically aimed at encoding data, which we present in Sec. 5.

B TERMS TRANSLATED AS “PATTERN” IN BERTIN’S BOOK

In the translator’s note (Fig. 4), the translator mentions that “pattern”
is the English equivalent for the French word “texture.” However, in
the book, the term “pattern” is not actually translated from “texture”
in French. The translator translated the following French terms from
Bertin’s book [5] into English as “pattern”:
“Semis,” which means “seedbed.” Bertin extends this term to refer

to a “dot pattern.” He consistently uses it in phrases like “semis
régulier (a regular pattern)” or “semis de point (a dot pattern),”
but it always refers to something similar, as shown in Fig. 11.
In the Lexicon of the book [5], “semis” is explained as “Type
d’imposition qui disperse, sur le plan, les éléments d’une variable,”
which translates to a type of graphic that spreads the elements of
a variable across a plane. “Imposition” in Bertin’s book refers
to a graphic type (e. g., a map). This reflects the characteristic
regularity of patterns, which are governed by rules of arrangement.
Here, “semis” serves as the rule for generating a pattern in terms
of the spatial arrangement of graphical primitives across a plane.

“Baguettage/ligne” refers to a single line but is translated as “line
pattern.” Similarly, “pointillé” has been translated as “dot pattern,”
although it actually means “dotted” and, by extension, can denote
a dotted line.”

“Trame” is a term used in drawing or technical drawing, with a
meaning similar to “hatching,” a specific type of pattern used

(a) (b) (c) (d)

Fig. 10: Recreated schematic drawing based on Caivano’s diagram of
composition of a simple texture [18,19]. (a) A texture, (b) a texture unit,
(c) a texture element, (d) two subsets of textures identified from this
simple texture composition, colored blue and red, respectively.

Fig. 11: Examples of “semis” from Bertin’s book. [5,6]; © EHESS (text
translated), used with permission.

in technical drawing for indicating materials. The word “trame”
also conveys a sense of a grid. In Bertin’s book, it appears in
phrases such as “des trames mécaniques” (mechanical hatching)
and “des trames préfabriquées” (prefabricated hatching), refer-
ring to preprinted hatchings. Fig. 23 shows examples of these
preprinted hatchings.

C ADDITIONAL FIGURES FOR OUR NEW PATTERN DEFINITION

Fig. 12–20 illustrate some aspects of our new pattern definition in more
detail, beyond our summary in Fig. 6.

D ADDITIONAL FIGURES FROM BERTIN’S BOOK THAT WE USED
IN OUR DISCUSSION

This section includes supplemental examples (Fig. 21–24) from Bertin’s
book [5, 6], to which we referred in our discussion in the main pa-
per. Specifically, Fig. 21 shows Bertin’s six retinal visual variables
as they are applied onto line and area marks (as well as point marks).
Next, Fig. 22 shows an example by Bertin for patterns with an embed-
ded semantic meaning—here from the field of cartography—that have
achieved the status of symbols in this domain. More generally, specific
hatching patterns are often used in technical and architectural drawing
as we show in Fig. 23 from Bertin’s book. Finally, Fig. 24 shows an
example from Bertin for repeated, regular patterns that can cause a
visual sense of instability, or Moiré effect.



(a) (b) (c) (d)

Fig. 12: Configuration of pattern with (a) 2D primitives on a 2D lattice,
tiling across a 2D area—2×2×2; (b) 1D primitive on a 1D lattice, tiling
across a 2D area—1×1×2; (c) 2D primitive on a 1D lattice, tiling along a
1D line (that fills a 2D area)—2×1×1; and (d) 1D primitive on a 1D lattice,
tiling along a 1D line (that fills a 2D area)—1×1×1. We can apply (a) and
(b) to area symbols, or to point symbols with area (e. g., circles) and line
symbols with width. We can apply (c) and (d) only to line symbols, as
their lattices follow the line symbol’s direction. Here, the primitives are
black. The gray dashed lines and white dots represent the lattice and the
lattice points, which we use only for descriptive purposes and they are
not part of the pattern itself.

ref: (a) (b)

Fig. 13: Variation on (a) shape and (b) size of unit cells.

ref: (a) (b) (c)

Fig. 14: Orientation at different levels, compared to the left: (a) at
arrangement-level, (b) at primitive level, and (c) at both levels (we can
call it orientation of the whole pattern), all with same degrees.

ref: (a) (b) (c)

Fig. 15: Positional regularity variation, compared to the reference on the
left: (a) in both directions or (b, c) only in one direction.

ref: (a) (b)

Fig. 16: The reference (left) has one primitive group: (a) global encoding
with hue & size, with one primitive group; (b) pattern with internal variation
for hue (one subset blue, another subset red), with two primitive groups.

ref: (a) (b)

Fig. 17: Compared to the reference (left), (a) increase of primitive groups
from 2 to 4, with even primitive count per group; (b) variation of the ratio
between each group (from 1:1 to 1:3), with a constant number of primitive
groups (2). Here, the different primitive groups are differentiated by hue,
but any primitive-level variable can be used, i. e., size, shape, etc.

(a) (b) (c)

Fig. 18: Pattern with internal variation with different primitive group
arrangement: (a) grouped, (b) interspersed, and (c) dispersed.

E MORE EXAMPLES OF PATTERNS

This section includes additional examples (Fig. 25–48) from authors
other than Bertin that were partially already discussed in the main
paper—some of which we found via OldVisOnline [103]. Specifically,
the historical example in Fig. 25—created before the the availability of
computers—illustrates the use of pattern groups and of the relationship
of their respective appearances to encode data (by shape and color in
Fig. 25; another example that uses line orientation and secondary line

ref: (a) (b) (c)

Fig. 19: The reference (left) has one primitive group: (a) global encoding
with hue and size, with one primitive group (“combination of variables”
in Bertin’s book); (b) Primitives’ hue and size covary in the pattern, with
same two primitive groups for the two variables; (c) Primitives’ hue and
size do not covary in the pattern, two primitive groups for hue (i. e., two
hues) and size (i. e., two sizes), but they are not the same two groups.

ref: (a) (b) (c)

Fig. 20: Primitive regularity variation, compared to the left: (a) for size,
(b) for orientation, and (c) for value.

Fig. 21: Bertin’s diagram for visual variables across three mark types [5,6].
From left to right, the columns represent point mark, line mark, and area
mark; image © EHESS (text translated), used with permission.

Fig. 22: Bertin’s examples of “patterns have achieved the status of sym-
bols” from [5,6]; image © EHESS (text translated), used with permission.

width is included in the main paper as Fig. 8). Fig. 26, in contrast, is
a recent example that illustrates the use of retinal visual variables on

https://oldvis.github.io/gallery/


Fig. 23: Examples of pre-printed hatchings from Bertin’s book [5, 6];
image © EHESS (text translated), used with permission.

Fig. 24: An example of Moiré effect from Bertin’s book [5, 6]; image
© EHESS, used with permission.

each of the pattern’s primitives.
Fig. 27 and 28 demonstrate what we refer to as patterns based on 1D

lattices (Fig. 27) and 2D lattices (Fig. 28). Fig. 29–31 then showcase
various examples of non-lattice-based patterns.

Fig. 32–34 show historical examples of pattern legends to be used
in visual representations, for example Fig. 32–33 based on density for
encoding increasing value ranges. Fig. 35–37 and 39 use the density of
simple dot patterns to encode values, with interesting aspects such as
a (possible) transition from a density to a position encoding (Fig. 35)
or the use of dot sizes that accurately represent the dot’s referents in
a map (Fig. 37). Fig. 38 then technically does not show a pattern but
each (minute) mark gets only one (square) primitive, but due to the

Fig. 25: Unit visualization (IsoType, [73]) that can be considered to be
using internal variation. Image ‘The Great War’ by Otto Neurath; p the
image is in the public domain.

Fig. 26: Comparison of eight uncertainty representations by Retchless
and Brewer. Most participants prefer (g). Image reproduced from [78,
Fig. 11], used under the Creative Commons Attribution-NonCommercial
4.0 International (cbe CC BY-NC) license.

composition of the marks we see patterns at a coarser (hour) data scale.
Fig. 40 shows a contemporary example, where a pattern is used as a

secondary data layer to a color-based visualization. We found examples
such as this one, e. g., to show uncertainty for the color-encoded data,
or as in this case a meaningful subarea of the plot was marked.

Fig. 41 shows a pattern design for a diverging scale, but we would
argue that it could be improved for a better support of preattentive value
reading. We argue, e. g., that the neutral point should be white for both
the positive and the negative part of the scale, and then the negative
part could use an increasing line width or increasing line frequency
of diagonal lines (but with a negative slope orientation to suggest
negativity), and the positive part could either use crossing diagonal
lines or, potentially even better, crossing horizontal and vertical lines

to suggest the shape of a plus—again with an increasing line width
or increasing line frequency for more positive values. Both “sides” of
the scale should be designed in such a way that their perceived value
at any given absolute level is the same, regardless of whether it is the
positive or the negative side of the scale. Ultimately, further design and
empirical research would be needed to identify suitable scales (and not
only for diverging scales), to result in something along the lines of what
ColorBrewer [10] provides us with for color scales in visualization.

Fig. 42 comes from a tutorial (see below) on how to fill plots with
patterns in Matplotlib, and demonstrates cleverly designed patterns

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


that clearly indicate where two data marks overlap—in a similar way
as transparent colors would do for overlapping marks. Fig. 43 shows
again a historic example where two layers of patterns have been used
to encode data. The first layer completely fills the mark, but the second
layer relies on additional circular area marks being overlaid (or inset)
on each main mark (which, of course, requires the main marks to be
of sufficient size). Next, Fig. 44–46 show contemporary examples of
combining color maps with patterns to either make categories more
distinguishable (Fig. 44) or to visualize two layers of information at
the same time (Fig. 45, 46). Fig. 47 demonstrates Jo et al.’s [49] declar-
ative rendering model for multiclass density maps, some of whose
approaches rely on patterns to make the different data classes dinstin-
guisheable from each other. The larger example on the right side of the
figure demonstrates the ability of this approach to reproduce Bertin’s
technique of color-based categorical encoding for geographic data we
showed in Fig. 7(a) and discussed in Sec. 5.2.2. Finally, Fig. 48 show
contemporary examples of using stippling as a non-lattice arrangement.

F DISCUSSION OF CURRENT SOLUTIONS FOR IMPLEMENTING
PATTERNS IN VISUALIZATIONS

Current visualization tools and graphical drawing libraries offer
limited support for patterns. Most tools provide only a few options
to vary patterns, so users cannot fully use all pattern attributes.
Achieving complex patterns often requires programming skills,
making their implementation challenging, especially for designers
with limited technical backgrounds. For example, one of the most
popular visualization tools, Tableau, does not officially support
pattern fills at this point in time. There have been requests for this
feature in the forums since 10 years ago. For example, such as the
posts “Pattern fill” (community.tableau.com/s/question/
0D54T00000C5nGlSAJ/pattern-fill) and “Fill Patterns
(Dots and Stripes)” (community.tableau.com/s/question/
0D54T00000C5s3GSAR/fill-patterns-dots-and-stripes).
This functionality, however, has not yet been integrated. Users can
use workarounds. For example, A. McCann shared two tutorials in
2018: “Multiple pattern fill bar charts” (duelingdata.blogspot
.com/2018/06/multiple-pattern-fill-bar-charts.html)
and “Pattern fill bar chart in Tableau” (duelingdata.blogspot
.com/2018/06/pattern-fill-bar-chart-in-tableau.html).
These operations, however, are far more complicated than using other
visual variables such as color, size, or shape. Some graphical drawing
libraries offer pattern fills, but users can only select from default
patterns or create repetitive tilings of shapes on a grid. Examples
include Matplotlib [46] and Plotly [76] for Python, and ggpattern [34]
for R. Below we list additional tools or source code resources we found
during our explorations for creating patterns that offer more flexibility:

• SVG’s <pattern> Element: If we want to create patterns
in charts, one of the most flexible options is using the SVG
<pattern> element, which offers a high degree of customiza-
tion. It is described, however, as “arguably one of the more
confusing fill types to use in SVG” [68]. It is based on,
and thus confined to, the repetitive tiling of shapes in verti-
cal and horizontal directions. Therefore, even the creation
of a frequently used diagonal line pattern such as does
not follow the native logic of SVG <pattern> and can con-
fuse people. For example, a question on Stack Overflow
highlights this issue: “Simple fill pattern in SVG: diago-
nal hatching” (stackoverflow.com/questions/13069446/
simple-fill-pattern-in-svg-diagonal-hatching).

• Textures.js—SVG patterns for Data Visualization:
riccardoscalco.it/textures and github.com/
riccardoscalco/textures; this software package aims
to make SVG’s <pattern> easier to use, but it still requires
extensive manual coding and does not fully break the constraint
of repetitive tiling shapes. In addition, its options are limited.
For example, although it supports line patterns, the lines cannot
fully rotate 180 degrees and have only several predefined rotation
options, such as 3/8.

• Design Characterization for Black-and-White [sic!] Tex-
tures: our own tool for the generation of simple iconic and
abstract patterns from our previous work on patterns [44, 104];
github.com/tingying-he/design-characterization
-for-black-and-white-textures-in-visualization; it
offers greater freedom and ease of use compared to existing
libraries and tools. Since we developed this tool earlier than we
proposed our pattern design space in this paper, however, the tool
does not cover all possible pattern variations. In addition, the tool
is currently built around a web design interface, with which users
can only design patterns in the given charts on the web, rather
than integrate patterns into their own visualizations (Fig. 2(c)).

• Jo et al.’s [49] Declarative Rendering Model for Multiclass
Density Maps: jaeminjo.com/Multiclass-Density-Maps
and github.com/e-/Multiclass-Density-Maps; this tool
focuses on maps and some of its techniques rely on patterns
(Fig. 47)

• Line Textures by Richard Brath: source code for creating
line patterns using D3 and dasharray; observablehq.com/
@richardbrath/line-textures

• Remaking Figures from Bertin’s Semiology of Graphics by
Nicolas Kruchten: code in Python, using Plotly Express, to
recreate some of Bertin’s patterns; nicolas.kruchten.com/
semiology_of_graphics

• Generating different spatial patterns in R and their visualiza-
tion using ggplot2 by Muhammad Mohsin Raza: datawim.com/
post/generating-different-patterns-in-r

• How To Fill Plots With Patterns In Matplotlib by Elena
Kosourova: towardsdatascience.com/how-to-fill
-plots-with-patterns-in-matplotlib-58ad41ea8cf8
(Fig. 42)

G FOOTNOTES
1We agree that texture may primarily be used for materials, but argue that the

pattern concept extends beyond the repetitive use of shape variations (Sec. 3.3).
2It is used as the basis for theoretical constructs in architecture [1], mathe-

matics [37], and beyond.
3In our daily life, e. g., pattern can refer to many physical items and abstract

concepts that include repetition, such as a social/behavioral patterns, sound
patterns, language structures, or chronological orders.

4These examples are all from cartography textbooks with lists of visual
variables. By observing how they interpret “texture” in various ways we found
inconsistencies in the understanding of the term “texture” as a visual variable.

5In contrast to the official translation of the book, which uses the term
“texture,” we intentionally changed the translation here to use “granularity” and
also not “grain,” for reasons that we explain further below.

6In this translator’s note (Fig. 4), the translator also mentioned that “pattern”
is the English equivalent for the French word “texture.” In the book, however,
the term “pattern” is not actually translated from “texture” in French. The
translator translated the following French terms from Bertin’s book into English
as “pattern”: “semis,” “baguettage/ligne,” and “trame.” We discuss these terms
in detail in Appx. B.

7The parameters a and b describe the spacing between primitives within the
lattice. The simplest form of a 2D lattice is a square lattice where a = b and
θ =90°.

8For example, a point host symbol, finally, is not a theoretical point but is
represented by a small area (often a circle) with a size, which in turn has an area
that can be filled with a 2D or 1D lattice.

9Brath [8], in his blog, characterized patterns in the form of Fig. 12(d) by
their length, gaps, rhythm, and randomness. Using the terminology of our pattern
system, length and rhythm define the appearance of primitives; gaps define
the spatial relationships between the primitives—the lattice; and randomness
determines the positional regularity when placing the primitives onto the lattice.

10As we discuss later in Sec. 5.4, however, once primitives are placed on the
lattice, we can translate the entire pattern when we apply it to a host symbol.

11Theoretically, the range of possible spacings—or unit cell sizes—extends
from zero up to the size of the entire marking. Practically, it is crucial to use a
sufficient number of primitives within the visible area to ensure that the pattern
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and the extent of the symbol are discernible. If the primitives on the pattern are
too sparse, both the symbol and the pattern may become difficult to perceive.

12Theoretically, the lattice can be rotated by any angle between 0° and 360°.
Often, the center of rotation is the center of the symbol to which the pattern is
applied, although it can be set to other points if needed.

13Wilkinson [98] describes the orientation of a mark as “rotation” and the
orientation of primitives in a pattern (he called it “texture”) as “orientation.” He
illustrates the concept of “orientation” exclusively with examples of line patterns
(Fig. 12(b)) and does not address the orientation variable of the lattice, which
we add here. Moreover, we argue that the distinction between “rotation” and
“orientation” should not be based on whether they apply to marks or primitives,
as Wilkinson suggests. Instead, the key difference lies in their relationship as
method and result: an outcome of a given orientation of primitives is achieved
through the method of rotation. We thus recommend to use both terms in their
traditional meaning: rotation as the action and orientation as the status; both
terms applied to either lattice, primitives, or both together.

14Patterns arranged in a 1D lattice can also be manipulated both by rotation
of the lattice and by rotation of the primitives. In the case of line primitives,
however, the rotation of the primitives w.r.t. the base line may also lead to a
perceived change in the spacing between them.

15Morrison [71] first introduced this concept of positional regularity into
visual variables. He referred to it as “arrangement” and added it as an additional
visual variable to Bertin’s list.

16Unit-based visualization with subgroups within each category can also be
considered as using patterns with internal variation—where the variable shape
is used to represent the categories. Fig. 25 in Appx. E shows an example of such
a unit-based visualization. Here, if we view each diamond region as a pattern, it
exhibits internal variation derived from a new facet, “type of soldiers.” Within
each pattern, the number of groups of primitives encodes number of categories
and the ratio between groups represents the percentage of each category.

17Haroz et al.’s work [40] would suggest likely perceptual interactions be-
tween efforts to encode with distribution and ratio concurrently.

18The (ir)regularity can also be intended to not be used as a visual variable but
simply as an aesthetic criterion, such as in non-photorealistic rendering (NPR).
Here, the goal is the generation of (human-drawing-like) non-repetitive patterns
(e. g., [4,47,65,81,99]), which have non-regularity both in their primitive shapes
and in their placement.

19Such transformations can theoretically be achieved by modifying the lattice
primitives directly as we described in Sec. 5.1. In practice, however, it is often
more intuitive to apply an additional transformation to the entire pattern after
its design, because this allows the designer to adjust the parameters with all
decisions having been made already.

20Drawing on Gestalt principles, even as primitives merge and lose their
individuality, our brain is often still capable of perceiving the shape of primitives
to some extent through mental completion. Regardless of the specific primitive
shape, however, as their size continues to increase the pattern ultimately becomes
completely saturated and turns into a solid fill. The range of size variation
that can be effectively used in visualization thus spans from just noticeable
differences to a given threshold, at which the pattern is no longer identifiable.
In some specific cases, such as perfectly aligned squares or dashed lines in
a line pattern, primitives that touch each other immediately form a seamless
tessellation and directly convert the pattern into a solid fill.

21For lines placed on 1D lattices, a change of orientation at the lattice level
and at the primitive level lead to visually very similar results, with the latter also
affecting the perceived density of the resulting pattern.

22Repeated patterns can cause a sense of instability—the Moiré effect [5, 6]
(e. g., Fig. 24 in Appx. D)—or even have neurological effects for some people
[97]. There are also many Op artworks based on patterns (e. g., Movement in
Squares by Bridget Riley) as well as non-photorealistic (NPR) recreations of
them (e. g., [32,33,48]), which vary the size and spacing of pattern primitives to
create a perception of regions (as we intend with patterns) or movement (which
would be detrimental in our case).

23Indirect control via machine leaning may work, akin to Datasaurus [17, 66].
24Visualization design may be constrained by convention, which is itself

driven by technical capability, which changes. Our efforts here are to open up a
broad theoretical design space that is not constrained by convention and is as
such somewhat unoccupied and unknown. And thus somewhat exciting.

25It is important to note, however, that, while our systematic description of the
pattern design space allows us to describe this recursive application of pattern,
its utility may be limited as, e. g., levels of visual complexity will likely be high
and interpretation may well be extremely challenging.

Fig. 27: Historic example of multiple 1D lattice-based patterns used for
qualitatively marking regions; by Willard C. Brinton [12, page 297]; p the
image is in the public domain.

Fig. 28: Historic example of 2D lattice-based pattern for encoding data
values (notice that the reproduction of the pattern is partially flawed, likely
due to problems with the used plate); by Willard C. Brinton [12, page
327]; p the image is in the public domain.
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Fig. 29: Origin Destination Maps (OD Maps) [101] of London Commuting: an example of a nested pattern in which both the top-level pattern and the
embedded patterns are data-driven. Image © by Robert Radburn, used with permission.

(a) (b)

Fig. 30: (a) An example of a type of nested pattern: adding data-driven
patterns on top of a lattice-based pattern.(b) A potential application of
the nested pattern shown in (a) within a bar chart. This design shows a
possibility opened by our pattern system; future work can explore which
types of data are best suited for this encoding format.

(a) (b) (c)

Fig. 31: Patterns with primitives based on geographically data-driven
spatial arrangements: (a) accurate geographic data; (b) inaccurate geo-
graphic data, with dot overlap avoided; (c) gridded geographic data.

https://mappinglondon.co.uk/2016/od-map-of-london-commuting/


Fig. 32: Historic example pattern with lattice size (density) sequence by
Willard C. Brinton [11, page 221]; p the image is in the public domain.

Fig. 33: Historic example pattern with lattice size (density) sequence by
Willard C. Brinton [12, page 422]; p the image is in the public domain.

Fig. 34: Historic example pattern with granularity sequence by Willard C.
Brinton [12, page 420]; p the image is in the public domain.

Fig. 35: Historic example of using lattice size (density) to illustrate the,
in fact, density of merchants of a given product in the US; “pin map” by
Willard C. Brinton [11, page 233]; notice that the use of the pattern can
transition from a density pattern encoding in regions with high merchant
density to a location-based encoding with discrete, actual locations in
regions with lower merchant density (but we are not actually sure whether
this was done in this illustration); p the image is in the public domain.

Fig. 36: Another historic example of using lattice size (density) to illustrate
a density of people in a city (Chicago in the US) by Willard C. Brinton [11,
page 246]; p the image is in the public domain.



Fig. 37: Another historic example of dot patterns based on lattice size (density); notice the remark that the size of each dot represents approximately
the area of the actual space to which it refers; image published in 1931 by the Canada Dominion Bureau of Statistics, Ottawa (Fig. 29 on page 28 of
their “Agriculture, Climate and Population of the Prairie Provinces of Canada” statistical atlas), p the image is in the public domain.

Fig. 38: Contemporary pixel-based visualization of traffic data, technically not a pattern (because the data marks are each individual minutes in the
day, to which a size and a color hue is mapped based on that minute’s actually captured data), this visualization still has characteristics of a pattern if
viewed, e. g., per hour. Image © Erik Boertjes, used with permission.

https://archive.org/details/1926981926m1931eng/page/28/mode/2up
https://archive.org/details/1926981926m1931eng/
https://social-glass.tudelft.nl/visualising-traffic-data/


Fig. 39: Historic example of grid-based (pollution) data for city blocks in
Indianapolis in 1912 being visualized by lattice size (density); by Willard
C. Brinton [11, page 245]; p the image is in the public domain.

Fig. 40: Contemporary example of a pattern being overlaid on a color-
based representation to encode a second quantity (in this example
the pattern only has two levels—with pattern and without it). Image
reproduced from [28, Fig. 5], used under the Creative Commons Attribu-
tion 4.0 International (cb CC BY-NC) license.

Fig. 41: Historic example of a pattern being used to encode a diverging
scale: line patterns for negative values and crossing lines resp. dot
patterns for positive values; image published in 1933 by the State of
Illinois, Department of Public Works and Buildings, Division of Highways
(Fig. 4 on page 24 of their “Economic Survey of Illinois”), p the image is
in the public domain.
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Fig. 42: Contemporary example of two merging area marks, with cleverly
designed patterns that highlight the overlap between both marks; image
created with Python and Matplotlib [46], following the tutorial by Elena
Kosourova, see Appx. F.
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Fig. 43: Historic example for a dual encoding with patterns, where one pattern fills the area mark, while another fills an inset circle (which, of course,
requires large-enough area marks to begin with); image “Mouvement de la mortalité de 1840-49 à 1857-66 comparé (parecusson de Rappel) à
la mortalité absolue en chaque départemens les écussons rappelant la mortalité absolue des deux sexes de 0 à 1 an : Carte VII. Par le docteur
Bertillon. 1872. – Carte VIII. Par le docteur Bertillon. 1872.” ; p the image is in the public domain.

Fig. 44: Contemporary example of combining color scales with patterns to improve the discriminability of a categorical encoding. Image reproduced
from [22, Fig. 6]; © IEEE, used with permission.

https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~338039~90106023
https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~338039~90106023
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Fig. 45: Contemporary examples of combining color scales with patterns (here point densities of a stippling pattern) to encode an additional spatially
changing attribute (here: robustness of the shown cluster). Images reproduced from [55, Fig. 11(a) and 16(a)]; © IEEE, used with permission.

Fig. 46: Contemporary example of combining color scales with patterns to visualize two levels of information in weather forecast time series. Image
reproduced from [54, Fig. 1]; © IEEE, used with permission.

Fig. 47: Contemporary examples of Jo et al.’s [49] declarative rendering model for multi-class density maps, some of which rely on patterns (see
Appx. F). The larger example on the right demonstrates the ability of the approach to reproduce Bertin’s example we showed in Fig. 7(a). Images
reproduced from [49, Fig. 1 and 6(c)]; © IEEE, used with permission.

(a) (b)

Fig. 48: Contemporary examples by Görtler et al. [38] of using stippling [30,65] to show data, both for (a) spatial and (b) nonspatial datasets—similar
to the historic examples in Fig. 35–37. Images reproduced from [38, Fig. 8 and 11]; © IEEE, used with permission.
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