
ReVISit 2: A Full Experiment Life Cycle User Study Framework

Zach Cutler , Jack Wilburn , Hilson Shrestha , Yiren Ding , Brian Bollen ,
Khandaker Abrar Nadib , Tingying He , Andrew McNutt , Lane Harrison , and Alexander Lex

E
xp

e
ri

m
e

n
t

L
if

e
cy

cl
e

Experiment
Design

DSL

Vega Instrumentation

Python Bindings

Data Tracking

Data Export

Participant Replay

Analysis

Viewing Progress

Rejecting Participants

Data
Collection

Study Browser

Participant Simulator

Data Preview

Participant Replay

Debug &
Pilot

Deep-linked Results

Navigable Stimulus

Shareable Data

Forkable Studies

Dissemination

ReVISit

Learning Materials Documentation Reference StudiesExamples

Help Forum ReplicationsTutorialsCommunity Building

S
o

cio
te

ch
n

ica
l

Te
ch

n
ica

l

Libraries

Fig. 1: ReVISit 2 supports each stage of the online user study life cycle. In addition to this linear path, the experiment life cycle is
populated by internal loops between stages. For instance, issues revealed in the piloting of an experiment can lead back to the design
phase to address those issues, and the process of disseminating an experiment can beget ideas for new experiments or replications.

Abstract—Online user studies of visualizations, visual encodings, and interaction techniques are ubiquitous in visualization research.
Yet, designing, conducting, and analyzing studies effectively is still a major burden. Although various packages support such user
studies, most solutions address only facets of the experiment life cycle, make reproducibility difficult, or do not cater to nuanced study
designs or interactions. We introduce reVISit 2, a software framework that supports visualization researchers at all stages of designing
and conducting browser-based user studies. ReVISit supports researchers in the design, debug & pilot, data collection, analysis, and
dissemination experiment phases by providing both technical affordances (such as replay of participant interactions) and sociotechnical
aids (such as a mindfully maintained community of support). It is a proven system that can be (and has been) used in publication-quality
studies—which we demonstrate through a series of experimental replications. We reflect on the design of the system via interviews
and an analysis of its technical dimensions. Through this work, we seek to elevate the ease with which studies are conducted, improve
the reproducibility of studies within our community, and support the construction of advanced interactive studies.

Index Terms—User studies, crowdsourcing, visualization experiments.

1 INTRODUCTION

Experimental research is a mainstay method to infer causal relationships
in visualization, HCI, and related areas [19]. Experiments in visualiza-
tion (often called user studies) range from perceptual studies [8, 65],
to studies of visualization techniques [20, 35], studies of interaction
techniques [5, 38], and studies of full visualization systems [44, 52].
Experimental approaches are also used outside of quantitative, con-
trolled research, such as in eliciting expert feedback on systems [53] or
designs [26, 37, 42], or understanding insight formation [11, 40].

While these studies historically have been conducted in the lab [8,
15, 72], they are now predominantly run online through crowd work
platforms [27, 52, 63], which support rapid participant recruiting and
study execution. Most desktop-focused visualization tools are designed
to be accessed through the browser, suggesting that web applications are
an effective means to deliver study stimuli. These trends suggest that
experimental research in the future will be predominantly conducted
through browsers and asynchronously (as opposed to in a lab).

Despite the ubiquity of this form of inquiry, conducting these stud-

• Zach Cutler, Jack Wilburn, Brian Bollen, Khandaker Abrar Nadib, Tingying
He, Andrew McNutt, and Alexander Lex are with the University of Utah.

• Hilson Shrestha, Yiren Ding, and Lane Harrison are with WPI.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

ies remains difficult for a variety of reasons. For instance, designing
effective stimuli presents nuanced challenges (such as effective instru-
mentation of interactions) that are time-consuming to implement for
experienced developers, let alone early-career researchers. Similarly,
the design of experiments offers a maze of complex decisions (such as
choice of factors, randomization, sampling strategies, and partitioning
of conditions) that, when navigated poorly, can invalidate entire experi-
ments. Compounding these design challenges is that making everything
work as intended and ensuring that data is collected correctly can be
tedious and error-prone.

To help with these challenges, researchers in visualization, HCI, psy-
chology, and other fields draw on software frameworks to support their
experiments. Whereas commercial tools, such as Qualtrics [29], excel
at survey design, experimental design, and deployment, their closed-
source and commercial nature hamper reproducibility, and they do not
meet the more specialized needs of visualization experiments—such as
sophisticated tracking of complex interactions. A variety of academic-
led systems have been developed to help run studies; however, our dis-
cussions with stakeholders from the visualization community revealed
that most are used only by individual research groups, use outdated
technology, are difficult to maintain, and result in brittle deployments.
Other academic systems are specific to certain visualization techniques
(e.g., graphs [54]), or cover only a small slice of the experimental life
cycle (such as factorial experiment design [50]).

To address these issues, we introduce reVISit 2, a software frame-
work designed to support visualization researchers (and others) across
the full life cycle of an experiment, including its design, debugging,

https://orcid.org/0000-0002-2656-3413
https://orcid.org/0000-0002-7672-0798
https://orcid.org/0009-0006-6603-6606
https://orcid.org/0000-0001-8983-9117
https://orcid.org/0000-0002-9557-1783
https://orcid.org/0009-0006-7940-501X
https://orcid.org/0000-0002-9670-5587
https://orcid.org/0000-0001-8255-4258
https://orcid.org/0000-0003-3029-2799
https://orcid.org/0000-0001-6930-5468
mailto:reprints@ieee.org

and deployment. ReVISit is a proven system capable of supporting
complex study designs at a publication-quality level. It has been used
in various studies [10, 11, 42, 46]. ReVISit 2 (referred to as simply
reVISit throughout unless otherwise specified) builds on the founda-
tion of reVISit 1 [14], but expands on our previous work in critical
sociotechnical and technical dimensions. For the former we have made
a concerted effort to reach out to groups who may benefit from this tool
via tutorials at universities and conferences, intentionally expanding
and extending our documentation, and simplifying the startup cost
for experiments by making common experiment components (such as
VLAT [41], Mini-VLAT [56], BeauVis [25], etc.) available as libraries.

In addition to quality of life upgrades (such as improved UIs, form
elements, data download, testing), on the technical side we make a vari-
ety of novel contributions to experimentation platforms. Central among
these is an enriched domain-specific language (DSL) for specifying
experiments, as shown in Fig. 2. This language includes complex to
implement features, such as Latin square participant distribution and
randomized attention checks. Complementing this expansion, we also
provide high-level Python bindings, reVISitPY, which offers Altair [68]
style declarative specification and enables even more complex study
designs (e.g., factorial designs) with little code. A natural venue for
use of this library is Jupyter notebooks, where we offer an experiment
prototyping pipeline wherein developers cannot only design their exper-
iment, but see and debug the experiment within the notebook, and even
access collected data. This pipeline enables researchers to design and
test their study, as well as prototype analyses from within the notebook.

In contrast to other platforms, reVISit provides sophisticated tools
for debugging and piloting, such as a study browser, participant view
simulator, and data previews, as well as tools to manage data collection
in ongoing studies. We also make strides in simplifying the specifica-
tion of visualization stimuli by making Vega visualizations first-class
citizens, allowing us to provide automated provenance tracking across
user interactions with Vega visualizations, which supports both low-
level interaction analysis and fine-grained replay (Fig. 5).

We evaluate this collection of contributions via two strategies. First,
we demonstrate its expressiveness through a collection of three study
replications, where each study demonstrates different capabilities of
reVISit (such as dynamic sequencing, capturing speech, and analyzing
provenance). Then we reflect on the design choices made in the system
via three interviews with reVISit users and a close reading of the
system lensed through Jakubovic et al.’s [30] Technical Dimensions
of Programming Systems (TDPS). The combination of our technical
design decisions and commitment to open source enables customized
dissemination, which is useful during the review and reading process
(reviewers and readers alike can explore studies easily and thereby
build trust in results), as well as enables reproducibility, as data can
be shared and studies can be forked easily. Through this work, we
seek to elevate the ease with which studies are conducted, improve
the reproducibility and openness of studies within our community, and
support the construction of advanced interactive studies.

2 RELATED WORK VIA STAGES OF A USER STUDY

Creating and conducting user studies is a complex process with iterated
phases that each present challenges, as well as opportunities, for tool
support. To focus such challenges, we divide the user study process
into five stages, shown in Fig. 1, which we refer to as the experiment
life cycle. In practice, this process is not linear but contains loops; for
example, it is expected that after a pilot the experiment will be refined
at the design stage to address issues that the pilot surfaced.

We detail each stage and situate ReVISit and prior work (particularly
the tools in Table 1) within that stage. We note that many tools are no
longer maintained, limiting their practical utility. For a simple survey-
based study, there are many easy to use open and commercial tools
similar to Google Forms [21]. For custom experiments, jsPsych [13],
reVISit, and Qualtrics [29] present the most viable offerings—each
catering to various audiences via differing approaches, as we discuss.

2.1 Experiment Design

In the experiment design phase, study designers decide what partici-
pants see or do, and when / under which conditions they see it. We
separate this phase into two activities: stimulus and experiment design.
These designs are typically specified via a GUI, a library in a general-
purpose programming language, or a DSL. These choices impact us-
ability (e.g., GUI-based tools can be used by study designers with no
programming skills) and expressivity (libraries and DSLs are poten-
tially more expressive). Notably, only commercial tools (Qualtrics,
Google Forms, etc.) provide the means to specify studies via GUIs,
which may be due to the development effort associated with GUIs.

Stimulus Design. In most studies, a stimulus is presented to partici-
pants with the intent to elicit a response or behavior. In visualization
research, stimuli typically take the form of images, text, video, audio
(for sonification), objects (for physicalization), interactive applications,
or combinations thereof. Digital stimuli are often designed to be viewed
on a desktop screen, but other displays, such as AR/VR, large display
environments, or mobile phones, are also used. In practice, tools that
support non-desktop environments either are specifically focused on
doing so (as in Flex-ER’s AR/VR support) or are commercial tools (as
in Qualtric’s support for mobile).

Existing user study tools support a range of stimulus customization
and features (cf. Stimuli in Table 1). Several commercial tools are
designed to conduct surveys, such as SurveyMonkey [64], and Google
Forms [21]. Psytoolkit [62] is an open-source tool that also focuses
on surveys. Although it is typically possible to include images and
video as stimuli in a survey, they do not allow study designers to embed
custom stimuli (such as web applications), and instead focus on the
straightforward creation of form elements. Other tools focus on a spe-
cific type of stimulus, such as network visualizations (GraphUnit [54]),
images (ETK [67]), 3D surfaces (EvalViz [49]) or a specific modality,
such as AR/VR (Flex-ER [43]). These tools offer customization options
within their domain, but forgo arbitrary stimuli. However, their focus
enables rapid stimulus creation within the domain. Several tools enable
study designers to integrate custom stimuli, typically in the form of
bespoke UIs. Some tools enable combinations of custom stimuli with
more structured form elements (e.g., jspsych [13], Qualtrics [29] and
reVISit), and others require designers to write custom code for form
elements (e.g., experimentr [23], FROE [31], Touchstone1 [45]).

Related to stimulus choice is the decision of how to record responses
and behaviors. Data is frequently collected via form elements (e.g.,
dropdowns, radio buttons, or text boxes), and is often encapsulated
as common rating systems (e.g., Likert scales [34]). Recordings of
user behavior during the study are also common (as interaction logs or
screen recordings), as well as more explicit user measurements media
(such as through video or eye tracking). Qualtrics, jsPsych, Evalbench,
and reVISit automatically log browser events, such as mouse move-
ments or key presses. Survey-centered and domain-specific tools make
use of knowledge of their domain to automatically record data, whereas
custom stimuli (typically being unconstrained HTML) require manual
instrumentation. ReVISit includes automatically instrumented elements
(forms and Vega programs) and means for instrumenting custom stimuli
to support post-study replay and analysis. Audio recording is rarely
supported in the study platforms we surveyed; only jsPsych, Qualtrics,
and reVISit have built-in audio recording capabilities, although record-
ing could be implemented as part of a custom stimulus in many of the
tools. Only reVISit offers automatic transcription.

Factors and Sequence Design. Many studies test different conditions
(independent variables), which in study design are commonly referred
to as factors. Typical factors in visualization studies are visual encod-
ings, datasets, or tasks [33]. For example, a study comparing node-link
diagrams (NL) to adjacency matrices (AM) will vary the factors of
visual encoding (NL, AM), datasets (e.g., large vs. small, sparse vs.
dense), and tasks (path finding vs. cluster identification). Two common
designs use factors within subjects (all participants see all values of a
factor) and between subjects (participants see a subset of factor values).
Studies frequently combine within subjects design for some factors and
between subjects design for others, to create mixed design studies.

Name St
im

ul
i

In
te

ra
ct

io
n

L
og

gi
ng

L
ib

ra
ri

es

B
as

ic
ra

nd
om

iz
at

io
n

D
yn

am
ic

ra
nd

om
iz

at
io

n

H
ow

 to
 c

re
at

e

St
ud

y
na

vi
ga

tio
n

R
ec

or
ds

re
sp

on
se

 d
at

a

D
at

a
pr

ev
ie

w

V
id

eo
re

co
rd

in
g

A
ud

io
re

co
rd

in
g

Pr
ec

is
e

Ti
m

in
g

E
ye

 tr
ac

ki
ng

O
th

er
 d

ev
ic

es

Pa
rt

ic
ip

an
t

re
pl

ay

O
pe

n
So

ur
ce

A
ct

iv
e

Specialty

Google Forms [21] SURVEY N N Y N GUI Y Y Y N N N N Y N N Y

psytoolkit [62] SURVEY N Y Y N GUI N Y N N N Y N N N Y Y

ETK [67] DOMAIN N N Y N LIB N N N N N N N N N Y N Images

EvalViz [49] DOMAIN N N N N LIB N Y Y N N N N N N Y N 3D Surface Visualizations

Flex-ER [43] DOMAIN N N Y N DSL Y Y N Y N N N N N Y N AR/VR

GraphUnit [54] DOMAIN N N N N GUI N Y N N N N N N N Y N Network Visualizations

Evalbench [2] CUSTOM Y N Y N DSL N Y N N N N N N N Y N

Experimentr [23] CUSTOM N Y Y N LIB N N N N N Y N N N Y N

FROE [31] CUSTOM N N Y N LIB N N N N N N N N N Y N

VisUnit [33] CUSTOM Y Y Y N LIB Y Y N N N N N N N Y Y

Touchstone1 [45] CUSTOM N N Y N GUI N Y Y N N N N N N Y N

PsychoPy [58] C & S N N Y N GUI+LIB Y Y N N N Y N N N Y Y

jspsych [13] C & S Y Y Y Y LIB N Y N Y Y Y Y Y N Y Y

Qualtrics [29] C & S Y Y Y N GUI Y Y Y Y Y Y Y Y N N Y

Sweetpea [50] N N N Y N LIB N N N N N N N N N Y Y Experimental Design

Touchstone2 [16] N N N Y N DSL+GUI N N N N N N N N N Y N Experimental Design

ReVISit 1 [14] C & S Y N N N DSL Y Y N N N N N N N Y Y

ReVISit 2 C & S Y Y Y Y DSL Y Y Y N Y N N N Y Y Y

C & S – Custom and Survey, LIB – Library in General Purpose Language, DSL – Domain Specific Language, DSL+GUI – DSL and GUI

Table 1: There are a wide variety of tools for online visualization-based experiments. These range from repurposed survey tools (e.g., Google Forms,
or similar tools not listed here such as SurveyMonkey [64]) to domain-specific tools (e.g., GraphUnit [54] for graphs or Flex-ER [43] for VR).

Once each factor is decided on, designers need to consider the order
and conditions in which stimuli are presented—the sequence. The
simplest design is a fixed sequence, wherein all participants see the same
stimuli in the same order. Fixed sequencing may introduce confounders
such as order effects (e.g., due to learning) [19]. To address this, it
is common to (partially) randomize the order in which stimuli appear,
or in the case of between-subjects studies, randomly show different
participants different stimuli. However, purely random distribution of
stimuli may lead to limited coverage when many factors are considered
with few participants. To improve balance Latin square sequencing is
often used, which ensures that stimuli will be seen equally frequently
while controlling for order effects.

Some studies implement more complex ordering that is not prede-
termined, and instead is dependent on the answers a participant gives
during the study (e.g., to make the next question harder if the previ-
ous answer was correct). We call such sequences dynamic sequences.
For example, staircase designs [24, 70] involve iterated presentation of
stimuli to find, for example, a perceptual threshold of some kind. Such
dynamic sequencing is rarely supported, and often is implemented ad
hoc (such as by embedding these designs into the stimuli themselves).

Some tools specialize in sequence design, while not providing sup-
port for other phases of the study life cycle. Touchstone2 [16] features
a GUI for creating and sharing sequence designs. Complex sequence
designs with multiple randomization strategies are creatable via GUI,
and designs can be exported to configuration files that look similar to
reVISit’s. Sweetpea [50] is a Python library for sequence design that
takes in a series of factors and produces experimental sequences, simi-
lar to reVISitPy. Sweetpea includes a rich notion of constraints across
factors that support more succinct expression of complex experimental
designs than our current version of reVISitPy. VisUnit [33] supports
explicitly creating sequences from specified design factors (stimulus,
dataset, tasks). Sweetpea, Touchstone2, and VisUnit do not support
dynamic sequences, as their sequences cannot be adjusted based on user
responses. Like reVISit, jsPsych [13] supports dynamic sequencing via
designer-defined functions that are called as trials get completed.

2.2 Debug & Pilot
Once an initial study has been created and a design is decided, there is
a phase in which study designers ensure that their stimulus, sequence,
and data collection all work as intended. Debugging is commonly done
by designers taking their own study (often many times) to test that

everything behaves as intended. Efficient debugging requires being
able to easily browse a study, without needing to take it from beginning
to end. GUI-based platforms typically provide the means to quickly
navigate to a specific stimulus or condition, while library-based tools
often do not provide such support and require developers either to know
a URL or to take a study from beginning to end.

Piloting is done with participants who were not involved in the study
(either via colleagues in so-called “down-the-hall” testing or through
recruitment of preliminary participants online), and is done to identify
problems, validate data collection, and collect preliminary data. Such
preliminary data is often used to conduct a power analysis to estimate
the number of participants required to find statistical significance of hy-
potheses [9]. Most tools do not provide advanced piloting support (e.g.,
replays). ReVISit’s support for this phase offers an important facet
of our technical contribution. Specifically, reVISit provides a study
browser to navigate to different components with a participant view
that shows a sequence that could be assigned, participant replays, and
the ability for designers to take their own study to generate data. Some
tools (e.g., jsPsych) can generate artificial data via simulation, which
designers can use to identify experimental design problems and test
analysis methods. ReVISit does not currently support simulation, how-
ever we believe that our DSL will make it straightforward to implement
such a feature.

2.3 Data Collection

The data collection phase begins with recruiting participants whose
data is planned to be used in the final analysis. Participants can come
from various sources, such as crowdwork platforms (e.g., Amazon
Mechanical Turk [28] or Prolific [55]), volunteer-based or gamified
platforms (e.g., LabInTheWild [59]), and from networks such as mail-
ing lists or social media. Although recruiting is largely orthogonal to
study design, platforms such as Qualtrics offers (paid) access to par-
ticipants, LabInTheWild provides basic study templates, and Prolific
and Mechanical Turk have basic survey capabilities. During data
collection experimenters must mind incoming data, which may involve
rejecting fraudulent participants, identifying bugs, or examining initial
data. Some tools have data previews (e.g., Qualtrics, Google Forms,
and reVISit) that can be used for observability or simple analytics.

Once collected, this data needs to be stored somewhere. Commercial
tools typically provide data hosting as part of their service, sometimes
for a fee. In contrast, non-commercial tools leave data hosting to the

study designer. For instance, reVISit primarily uses Google Firebase (a
real-time-focused document database) for storage but does not provide a
hosted solution. Instead, study designers must set up their own Firebase
accounts—while the specifics differ, this is broadly typical.

2.4 Analysis

There are many sophisticated methods and tools to support the analysis
phase of a study. As for participant recruiting, analysis tools are largely
orthogonal to study frameworks. Statistical analysis is well supported
by a multitude of environments and tools. For qualitative analysis,
commercial tools (e.g., MaxQDA [69]) are frequently used to help with
the coding process. Various qualitative analysis tools have been created
by the visualization community, such as VisTA [17] or CoUX [61].
Other tools specialize in event sequence analysis [51] (such as might
be emitted by reVISit) or in analysis of eye tracking data [7]. While
reVISit has some analysis capabilities, they are primarily designed
to serve the debug/pilot and data collection stages—which is aligned
with reVISit’s design philosophy of providing functionality that is not
already covered by high-quality open tools.

2.5 Dissemination

Faithful dissemination of study procedures, data analysis, and results is
crucial for making results scrutinizable, reproducible, and ultimately
building trust in the outcomes. A common approach to disseminate the
details of a study is to include screenshots of the procedure or exports
of a survey in a read-only format (e.g., from Qualtrics). However, with
web-based tools (see “Open Source” in Table 1), study designers can
share both a link to the experiment as well as the code used to design
it. Study data is commonly shared via hosting platforms such as OSF
or GitHub. ReVISit has a unique ability to share the data with the
study, so that each participant’s actions can be reviewed. For example,
when including a screenshot of a response, authors can include a deep
link to the stimulus page with a participant’s actions, as in Fig. 5. We
emphasize that reVISit is unique in its level of commitment to and
extensive support of reproducibility and transparency.

2.6 Relationship to Previous reVISit Versions

As the name would suggest, this work extends an earlier version of
reVISit. A system that shares the name with reVISit focused on the
analysis of user logs [51]. It did not provide study scaffolding, but
instead explored topics such as event sequence analysis. It is the root of
ideas for “study rehydration”, i.e., the replay of a participant’s analysis
session provided in reViSit 2. The reVISit study framework we report
on here was started in 2022, with funding from the National Science
Foundation. A VIS 2023 short paper [14] describes the principles
behind reVISit: a DSL for defining experiments, components that
contain stimuli, data collection that includes provenance tracking, and a
process to compile everything into deployable web-based experiments.
The first version recommended for public use, reVISit 1.0, was released
in June 2024, followed by a 2.0 release in January 2025. We continued
to expand on reVISit with crowdsourced think-aloud studies in a CHI25
paper [11]. The key difference to prior versions is that reVISit now is
a stable, well-documented, ready-to-use experimental platform, with
early signs of community adoption (Sec. 5.1). In addition, we make
several technical contributions (Sec. 1).

3 SYSTEM TOUR

Next, we give a tour of ReVISit, highlighting notable features. In
developing these features, we centered a design goal of making experi-
ment design and deployment as frictionless as possible (for our target
audience of technical scientists who might not be software engineers),
while maintaining scientific sovereignty and without redoing what oth-
ers already do well (e.g., participant recruitment, data analysis).

For sovereignty, ReVISit is deployed as a static web page (ensuring
that there is no server to maintain). Deploying a static web page avoids
vendor lock-in (users can just change the website as they see fit) and
supports long-term dissemination stability (studies are static and do not
change as reVISit changes unless the designer intentionally does so).

StudyConfig =     

sequence ::= Block
components ::= {Name →< Component >}

importedLibraries ::= LibraryName[]
baseComponents ::= {Name →< Component >}

studyMetadata ::= ...

Block =         

order ::= fixed | random | latinSquare | dynamicθ

components ::= (Name | Block)[]

numSamples ::= N+

interruptions ::= (Deterministicθ | Randomθ)[]

skip ::= SkipCondition[]

Component = 
compType ::= Markdownθ | Reactθ | Imageθ | Websiteθ | Formθ | Vegaθ | ...
responses ::= Response[]

Response ::= Numerical | ShortText | LongText | Likert | Dropdown | Slider
| Radio | Video | Checkbox | Reactive | Matrix | ...

SkipCondition ::= BlockConditionθ | RepeatedBlockConditionθ | ...

Name = Symbol, LibraryName = Symbol, NewElements in for ReVISit 2
θ denotes arguments, <X> is partial (or complete) definition à la TypeScript

Fig. 2: The reVISit grammar with configuration details elided.

For non-repetition, we emphasize that ReVISit is not a database, a
recruitment platform, a GUI experiment builder, or a single site analysis
platform. Identifying that these are strengths of others, we design our
system so that it takes advantage of those extant capacities, following
recent guidance to “lean on existing technological and social infrastruc-
tures” [3]. For instance, Prolific works well for study recruitment, and
so we instead support the use of any recruitment platform; statistical
analysis tools in, e.g., R, are superior to anything we could provide, so
we focus on compatible exports.

Complementing these intents is a commitment to sociotechnical
support, which we do via a mindfully maintained collection of arti-
facts (including ↗ tutorials, documentation, and examples) as well as
community efforts (such as a help forum and in-person tutorials).

3.1 The DSL

The first step in setting up a reVISit experiment, after forking the
base repo, is to start designing the experiment specification using our
domain-specific language (DSL) (we give the grammar for this lan-
guage in Fig. 2). The root includes a list of named components that can
be used in any sequence block, as well as a collection of component
templates (baseComponents) used to partially define other compo-
nents via inheritance. This language involves composing a collection of
experimental “blocks” (in sequence). Each block can contain stimuli
(components) or nested blocks, as well as basic logic for controlling
the order of components, and more fine-grained control, such as for in-
serting interruptions (such as for attention checks) and whether certain
blocks should be skipped (such as due to wrong answers).

The reVISit DSL is a JSON-based DSL [48], in which experiments
are specified through standalone JSON files. These files are type
checked through both a JSON Schema validation of the syntax as
well as a secondary linter which identifies basic specification errors
such as the presence of un-used components in the StudyConfig.

Yet, specification through JSON is sometimes noted as being unde-
sirable or messy syntax for DSLs [48]. Moreover, reVISit programs can
be enormous—with some reaching tens of thousands LOC due to repe-
tition of structures to combine multiple factors. To address these issues,
we developed a Python wrapper for the reVISit DSL called ↗ reVIS-
itPy. These Altair [68] style bindings allow study designers to make
use of the full expressivity of general-purpose languages—allowing for
variables, complicated looping logic, and so on. In the interest of keep-
ing the library’s syntax familiar to visualization developers (who would
likely also be study designers), we intentionally mimicked Altair’s use
of structured-like method chaining.

https://revisit.dev/docs/introduction/
https://pypi.org/project/revisitpy/
https://pypi.org/project/revisitpy/

Echoing how tools like Altair are often used in the context of Jupyter
notebooks, reVISitPy is designed to work well within notebooks. To
this end, reVISitPy supports in-notebook previews of the experiment
and the collected data. Test data can be retrieved from the preview, so
that data wrangling and analysis can also be prototyped in the same
notebook—see the appendix or this ↗ example. This supports rapid
workflows wherein the experiment designer composes a reVISitPy pro-
gram, views the effects of their design, and makes iterative adjustments.

Some extremely custom designs or those implementing high-level
constraints (à la Sweetpea [50]) are more straightforward to express via
direct specification of the JSON DSL. However, the Python bindings
aim to simplify the process of making small prototypes and simplify
experimental design more generally by keeping it centered in a sin-
gle computational notebook. For example, during a team retreat, we
prototyped our JND replication (Sec. 4.1), from dataset generation, to
stimulus generation (via Altair), to experiment specification, testing and
piloting, and preliminary analysis, all from within a single notebook.

3.2 Stimuli

To a study participant, the most evident part of an experiment is the stim-
uli that they interact with. ReVISit experiments can include a variety
of types of stimuli, including form elements (numerical inputs, slid-
ers, etc.), markdown files (such as for participant instructions, consent
forms, and so on), images, and videos. Naturally, any list of prebuilt
components will be incomplete, and so we support custom components
by allowing users to supply generic web-components as well as React
components which can be smoothly integrated into reVISit’s full data
and provenance tracking capabilities by use of the trrack library [12].

However, merely exposing an endlessly customizable component
takes the focus off of visualization. In experiments—and visualization
practice more generally—a common way to create visualizations is
through the use of DSLs, such as Vega [60]. These DSLs simplify the
specification of often repetitive structures (such as data management
or scaling code). Echoing this approach, we include Vega programs
as first-class stimuli, allowing them to be specified directly in the
reVISit DSL or imported from a separate static file. We automatically
instrument these programs with provenance tracking, such that the state
of the Vega signals is recorded as users interact with the programs. Fine-
grained state tracking supports similarly fine-grained participant replay
(as we discuss below), such as being able to view specific hover states
and mouse moves. Further, consistent with other custom components,
we offer a custom Vega signal callback that can be called to set the
answer inside of reVISit’s reactive responses while using Vega, which
allows a user to interact with the visualization and click on elements to
set the answer that will be recorded by reVISit.

Many experiments use standardized surveys or other common stimuli
as part of their design—e.g., VLAT. To support this usage, reVISit
provides a collection of libraries that support various common tasks
(as in Fig. 3), including demographics questionnaires, color vision
deficiency tests, or visual literacy tests [41, 56].

3.3 Sequence

The next aspect apparent to a participant is the order in which com-
ponents appear. Each block in our DSL has a defined order in which
its child components are shown. ReVISit includes affordances for
specifying the order and relationship between components that support
rich customization and experimental designs (e.g., between-subjects,
within-subjects, and mixed designs).
Fixed order shows components in the order in which they are listed,

whereas random shows them in a random order (per participant). Yet,
in studies with limited participants and many conditions, random order-
ing does not guarantee sufficient coverage of the study cases. Latin
square orderings are commonly used to provide such guarantees [19],
being particularly useful as a way to mitigate order effects.

While these strategies cover many different designs, they do not
capture all possible sequences. Some studies rely on the answers to
previous questions to determine the next stimulus that will be shown to
a participant. These cannot be specified in our DSL and require custom

We include a set of
libraries that capture
both common study

components (a
demographics

questionnaire in this
case) as well reVISit

specification items, like
an audioTest that acts

as a mic check for think
aloud studies

Due to different
condition combos

only 8/12 components
are shown for this

participant

The sequence as
a specific

participant
would see it

View that shows
all components

This experiment has two
conditions, control and
search. The inner loop of the
latinSquare has two copies
of search to weight the ratio
of participants as 2:1.

Fig. 3: The study summary for our search study replication. Each partici-
pant flows through the experiment, first seeing consent, then introduction,
and then is sorted into one of three conditions (the fixed subsections of
the Latin square). This summary can be seen ↗ here.

logic to implement. To enable more nuanced types of designs we sup-
port dynamic ordering, in which a study designer provides a bespoke JS
function that is called repeatedly as the participant progresses through
a block to determine their next task. For example, consider a study
design where participants see different stimuli based on the accuracy of
their earlier answers—such as how US-based Graduate Record Exami-
nations (GRE) adaptively alters the difficulty of topic sections based
on the success rate of previous sections (see Sec. 4.1 for an example).
Dynamic ordering could be accomplished within a stimulus; however,
using dynamic functions enables various useful reVISit features (e.g.,
logging, participant replays, or stimuli navigation).

In addition to linear progression through an experiment, some stud-
ies may require periodically inserted components separate from the
experiment logic (such as attention checks) or non-linear jumps (such
as ejecting a participant if they fail a training). Each of these tasks are
supported by blocks through their interruption and skip logic, respec-
tively. Although these functionalities could be orchestrated through a
collection of dynamic checks and custom components, we elevate these
to language-level features to highlight their importance in study design.

We argue that reVISit can model more diverse study designs than
alternatives, such as Qualtrics [29] or VisUnit [33]. For example,
VisUnit lists staircases as a design form that it cannot model. ReVISit
can model such designs, as in our staircase-based replication in Sec. 4.1,
which is enabled by our robust native and dynamic sequencing.

3.4 Study Browser

Understanding the architecture of a study, such as which blocks are
contained within which other blocks or which stimuli will be seen by
what fraction of the population, as well as navigating to specific stimuli,
are difficult challenges in the debug & pilot phase of an experiment.
ReVISit addresses these through a study browser, shown in Fig. 3,
which organizes experiments into a single summative view describing
the mechanical architecture of the study. The table of contents-like
structure is situated on the right hand side of the application while in
“admin” mode, juxtaposed to the rest of the experiment (as in Fig. 5-
A). Clicking on a stimulus instantly navigates to that stage of the
experiment. For instance, clicking on “255ChartSearch” in Fig. 3
brings up the specific search stimuli of interest (cf. Fig. 7), thereby
speeding up debugging.

https://revisit.dev/docs/revisitpy/examples/example_jnd_study/
https://revisit.dev/replication-studies/255chart-study

The study browser has two views: a “Participant View” (active in
Fig. 3), which shows the sequence just as a particular participant would
see it, including the order and the selected subset of trials. Clicking on
“Next Participant” rebuilds the sequence for another participant, thereby
enabling experiment designers to check that all sequencing is specified
correctly. The “All Trials View” makes all components immediately
accessible, independent of whether they appear in the sequence of a
particular participants, enabling designers to quickly navigate to each
component. Finally, the study browser surfaces response data (e.g.,
right or wrong) when replaying a participant run.

3.5 Data

After the study is in place and launched, data collection commences.
ReVISit supports several storage engines, including browser-storage,
Google Firebase, and Supabase; custom storage engines can be imple-
mented by interested users. We plan to expand our existing storage
engines to support other common data hosting services in the future.
In addition, ReVISit includes a variety of different affordances to tend
to this data across the experiment life cycle. Although we refrain from
re-implementing mature analysis tools, some analysis steps are better
situated within the system rather than as an external analysis loop. After
the experiment, data can be exported (e.g., as JSON or CSV) and used
in custom analysis workflows.

The first analysis feature is participant replay, which allows study
designers to watch individual participant trials. ReVISit’s rich notion
of provenance allows for straightforward rehydration of study stimuli
(such as the Vega stimuli described above), such that individual actions
like keystrokes in a form can be observed, as can be seen in Fig. 5-
A. The timeline and rich event logs at the bottom enable analysts to
investigate each step a participant took, supporting analysis of the data—
for instance in our search replication (Sec. 4.3) —as well as debugging
of pilot studies. These interactions are reified as our timeline view
(Fig. 5B), which shows a timeline of all of the tasks a participant took
across an experiment, and also shows responses on tooltip. While we
record mouse movement, variation in monitor sizes and aspect ratios
make visualization of mouse movements difficult.

A related useful form of data for the prototyping phase is the audio
solicited through think-aloud studies. Think-aloud can be used for
usability evaluation and insight elicitation [11], such as in our search
replication (Sec. 4.3). A novel usage would be to allow pilots to
verbally describe their thought processes as they are doing it—rather
than requiring them to recollect after the study or take notes.

Lastly, we provide a collection of simple analytic views that allow for
quick sanity checking about statistics in the experiment. These include a
minimalist tabular view for spot checking the data and simple analytics
views that summarize participant performance by trial. The intent of
these views is analogous to how Google Forms offers a collection of
basic summative charts about the collected data as a way to check the
distribution of things rapidly.

3.6 Post Study

After a reVISit study is complete, the work it needs to do is not entirely
finished. Concerns related to ensuring the long-term accessibility,
transparency, and replicability of the experiment are central to reVISit’s
design and so we offer a collection of features to support these tasks.

The first focus is on the explainability of the experiment, which re-
VISit supports by helping reviewers and other interested parties under-
stand the study and its results. We optionally allow non-verified visitors
to navigate the experiment without having to fully take the study (as a
curious reviewer might wish to do)—such as at revisit.dev/replication-
studies/HeatmapJND-study. We also provide an option to deactivate
data collection so as to avoid collecting data from reviewers or other
unwanted sources. Study admins can also give access to the same data
downloads, as well as timeline and replay visualizations, that study
creators had. Similarly, reVISit enables authors to deep-link into in-
dividual participants’ trials, as we do for all reVISit figures (such as
Fig. 5), enabling readers to scrutinize the context.

The second focus is long-term reproducibility. As noted above, the
intended workflow for reVISit is for study creators to fork the GitHub

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.0

0.2

0.4

0.6

JN
D Positive

average for

scatterplot

above

average for

scatterplot

below

Red dots show that
differences between the

pair were approached
from above (comparing

0.33 to 0.3 first, and when
correctly answered,

continuing with 0.32 and
0.31). show

approaches from below
Blue dots

-0.9 -0.6 -0.3

Negative

below

above

0.3 0.6 0.9
Base Correlation (r)

Mean
95% CIs

Fig. 4: Distribution of JNDs across eight conditions—four types of visual-
izations and positive and negative correlations for each. Scatterplots are
best at showing differences in correlation. Hexbin plots show individual
differences (see outliers), but are best at showing differences for low r
values. Lower JNDs indicate easier detection of correlation differences.
JNDs are generally lower for high correlation values.

repository, thereby creating a snapshot of the current version of the
reVISit code, which will remain stable despite updates to the main
repository. Additionally, having all of the code required to run the
study in the same repository, including stimulus, the reVISit tool, and
the configuration for experiment design, is designed to make future
replications or modifications to the study simple. Although there are
vulnerabilities to this architecture—such as library dependencies catas-
trophes [1] or changes in browser functionality—this approach offers
substantially more straightforward access to experiment stimuli and
architecture than comparable closed-source alternatives. We intend to
continue to enrich the suite of features offered in this area, such as au-
tomatically creating archival screenshots and videos of the experiment
that will be fully resilient to changes in browser technologies.

4 FIELD TEST: REPLICATIONS

To demonstrate the utility of reVISit on real-world experiments, we
replicated three extant studies [18, 24, 26]. We selected these studies
to demonstrate different aspects of reVISit—for instance, the first
study demonstrates our dynamic sequence capability. In addition, we
add new variations to each replication—such as by testing additional
conditions or leveraging additional data collection modalities—so as
to not merely replicate but to expand the previous studies. In total, we
recruited 460 participants for the studies, of which 440 were recruited
via crowdsourcing, and 20 were visualization design experts recruited
via social media. All studies were pre-registered on OSF, and are
available at revisit.dev/replication-studies. In this section, we sketch the
studies and key results, while focusing on lessons learned as each study
was executed in reVISit. More details are available in the Appendix.

4.1 Replication of Ranking Visualizations of Correlation

We replicated Harrison et al.’s [24] study on just noticeable differences
(JND) of correlation values in varied visualization techniques. Harrison
et al. found that different chart forms vary in how precisely participants
can distinguish two similarly correlated plots of two-dimensional data
(scatterplots work best), and that the JND is smaller when the correla-
tion values r are higher. We run the study with two already examined
techniques (scatterplots and parallel coordinate plots) as well as two
new ones (hexbin plots and sorted heatmaps). We test each condition
with different correlation values, (see Fig. 4). As in the original study,
we use 100 points in each condition, except for hexbins, which are
typically used for larger datasets, where we use 1000.

https://revisit.dev/replication-studies/HeatmapJND-study
https://revisit.dev/replication-studies/HeatmapJND-study
https://revisit.dev/replication-studies/

A

B

Fig. 5: A participant’s result from our texture study shown in analysis
mode. (A) Participant replay shows events and navigation options at
the bottom. (B) The participant timeline gives summary information and
serves as an entry point. [↗ View Result]

We selected this experiment because (a) it uses a challenging experi-
mental staircase design that is not typically supported by experimental
frameworks, and (b) we were interested in expanding the set of tested vi-
sualization techniques. We used reVISit’s dynamic sequencing function
to implement a staircase design, adjusting follow-up pairs of correla-
tions based on previous responses. We also terminated trials early
based on statistical tests of performance. We added an attention check
involving an obvious pair of correlation values (r = 0.01,1) placed so
that we could detect thoughtless clicks. We recruited 30 participants
using Prolific for each condition, totaling 240 participants.

Results. Our experiment replicates Harrison et al.’s findings for scat-
terplots and PCP plots (see Fig. 4). Our results show even narrower
confidence intervals, which may be attributable to the improved atten-
tion check or to the other advantages of our experiment, such as more
robust data quality control and a more modern interface. We find that
hexbin plots are suitable to visualize correlations for large datasets, and
seem to even outperform scatterplots for low correlation values. How-
ever, several poorly performing participants produced outliers, which
indicates that hexbins might not be universally understood. Heatmaps
perform the worst of all stimuli, although not disproportionately, sug-
gesting they may be useful for space-restricted mediums.

Lessons Learned. For our study design, we opted to run the conditions
as separate studies on Prolific, rather than assigning conditions via
reVISit within a single study. An alternative Latin square design within
one study can become unbalanced based on returned studies on Prolific,
which we plan to address in the future with a plug-in for Prolific,
so that a Latin square entry would be made available again when a
participant returns a study. Separating the conditions into different
studies granted us more control over participant numbers per condition,
but came with tradeoffs as we had to duplicate study configurations
across the conditions. Although we could have leveraged reVISitPy
to generate multiple study configurations and reduce overhead, more
built-in support for between-study design may be useful.

We implemented the staircase procedure using the dynamic function-
ality in reVISit, rather than embedding logic directly in the stimulus, as
the original study did [23]. ReVISit’s dynamic functions allowed us to
develop, debug, and pilot studies consistently across all conditions and
maintain a clean and centralized implementation of the staircase logic.

4.2 Replication of Pattern Design Study

Next, we replicated He et al.’s study [26] on designing black-and-white
patterns for visualization. They asked visualization experts to create
and then rate designs for different patterns (geometric and iconic) and
chart types (bar, pie, or map). The authors then coded participants’
responses and categorized the goals into those related to readability and
aesthetics, and summarized corresponding design strategies.

We chose to replicate this study to show that reVISit (a) supports a
mixed study design (between-subject design on chart type and within-

B
e

a
u

V
is

 S
c

o
re

Event Count
500 0 1500 1000 2500 3000 2000

7

6

5

4

3

2

Iconic Patterns

Geometric Patterns

Fig. 6: Relationship between interaction events and BeauVis [25] scores
in our pattern study. Each pair of points shows a single participant.

subject design on pattern order) and (b) that existing tools can be
integrated into the reVISit framework. In contrast to the previous
study, we fully instrumented the stimulus so we could analyze design
strategies and reason about the number of interactions associated with
good or bad designs. We judged each design internally (via the BeauVis
scale [25]), in place of a follow-up crowdsourced study as the original
did. We recruited 20 participants (design experts) from social media.

Results. Our results replicated He et al.’s in finding similar design
goals and design strategies. Participants’ design goals focused on
distinguishability (15×), visual clarity (5×), semantic association (5
×), visual pleasure (7×), and visual balance (3×)—see Fig. 6 for a
distribution of scores. Two new strategies emerged: one participant
attempted to create new shapes by playing with the basic geometric
shapes to create new shapes, and another designer experimented with
dot density to create different shades of gray, à la halftoning.

Through the reVISit replay interface, we discovered common strate-
gies that designers use. A typical workflow involved an initial explo-
ration of different default patterns, followed by iterative refinement
of individual patterns, and finally testing and refining the design with
different datasets (e.g., ↗ as this participant did). For iconic patterns, a
commonly observed behavior was testing different icon styles (like ↗
this participant did). We noticed these design strategies only by using
participant replay, highlighting the replay’s value in uncovering subtle
yet impactful design behaviors.

Lessons Learned. In our study configuration, we used a Latin square
to order components. However, we later realized that this approach is
not well-suited for studies recruiting participants via social media, as
we did. A reVISit Latin square is calculated based on the participants
who start the study, rather than those who finish it—each initiated study
takes an entry from the Latin square. However, many social media
users click on the study link but do not complete it, leading to an
imbalance between conditions. Although study designers can manually
reject incomplete entries to rebalance, we plan on adding a timeout
mechanism that automatically rejects incomplete entries and returns
their entries to the Latin square. We recommend that studies with small
sample sizes or recruiting via social media use random orderings.

Instrumenting an existing interactive visualization tool with Tr-
rack [12] to enable full rehydration required considerable effort. To
support replay, we needed to capture every user interaction and recon-
struct the visual state of the application from the captured provenance
data, which required building a stable history management system.
Most existing visualization libraries, however, do not support such
functionality [73]. To lower the burden when using a legacy system, a
combination of screen capture and logging could reduce the technical
burden while achieving most of the functionality of full rehydration.

4.3 Replication of Search in Visualization Study

Finally, we replicated Feng et al.’s study [18] on search functionality
in interactive visualizations. The study involved three visualization
types, each tested under two conditions: (a) with search functionality
and (b) without it. Participants were asked to analyze the visualization
and document their findings. The study tracked their interactions,
including total time spent on each visual element, whether they used the
search function (if available), and whether their interactions involved
searched items. The study found that the presence of text-based search
influenced participants’ information-seeking behavior. Specifically,

https://revisit.dev/replication-studies/pattern-design-study/V3ZPZStsZmxBWDNta2p4MyttU1dJZz09?participantId=dce48040-7493-4d9f-a681-2a5726962ef2
https://revisit.dev/replication-studies/pattern-design-study/V3ZPZStsZmxBWDNta2p4MyttU1dJZz09?participantId=8fb95e0a-c455-42e5-8048-b28dc7b56230
https://revisit.dev/replication-studies/pattern-design-study/V3ZPZStsZmxBWDNta2p4MyttU1dJZz09?participantId=dce48040-7493-4d9f-a681-2a5726962ef2
https://revisit.dev/replication-studies/pattern-design-study/V3ZPZStsZmxBWDNta2p4MyttU1dJZz09?participantId=dce48040-7493-4d9f-a681-2a5726962ef2

15.81~[11.97,19.87]

15.78~[11.87,19.85]

22.36~[14.77,31.23]

No search

Search not used

Search used
Items Explored

23.91~[18.62,30.53]

25.63~[18.52,33.42]

27.09~[21.88,33.02]

0 10 20 30

Avg. Time (s)/Item

Search Item

Non-Search Item

7.00~[4.89,9.54]

7.67~[4.32,12.36]

2.55~[2.21,2.91]

2.92~[2.19,3.99]

0 4 8 12

25
5

C
h

a
rt

s
B

u
b

b
le

 C
h

a
rt

Fig. 7: Replication results from the search study align with prior findings
(not shown), suggesting that while participants tend to interact with similar
numbers of items, when participants engage with items highlighted during
search, they tend to interact with them for longer.

search functionality encouraged users to actively seek individual data
points and spend more time examining details within the data.

We chose to replicate this study because (a) it utilizes interaction
logging and (b) it elicited information about participants’ process during
the task, but was constrained to text-based input after the exploration
task. We alternatively elicit think-aloud data from participants during
the task in our replication. We follow the original study design by
replicating two of the three visualizations with minor modifications—a
bubble chart, and NYT’s “255 charts” [32]. The original study was
implemented using vanilla JS and D3. We copied over the original
code for 255 charts into reVISit using a website component, whereas
we re-implemented the Bubble Chart in React. We recruited 99 and 93
participants for the Bubble and 255 charts conditions respectively after
applying the original study’s minimum interaction exclusion conditions.

Results. Our experiment replicates Feng et al.’s [18] findings, in
that participants in both conditions explored similar numbers of items
(Fig. 7). However, the main effect of items highlighted in search being
engaged with for longer also holds across both conditions. For example,
in the Bubble visualization, items highlighted by search were statis-
tically significantly viewed longer (M(ean) = 7.00s) than those not
highlighted (M = 2.92s) via mouse click. Similarly, in the 255 charts
visualization, search-highlighted items were also statistically signifi-
cantly viewed longer (M = 7.67s) than non-search items (M = 2.55s)
among search users.

Lessons Learned. ReVISit’s provenance tracking allowed us to mea-
sure where/how-long participants were interacting, but also allowed
us to recreate their exploration session for deeper qualitative insights.
Combined with the audio-enabled think-aloud protocol, this led to
several new insights. For example, we can observe how participants
“orient” themselves in the visualization: ↗ “So, this one is relatively
small, the circle. And it looks like it’s an orange circle, which would
appear that it’s on the higher end of earnings for people that attend
this school”. It also confirmed a hypothesis from the original paper:
that people would often use search to examine data that was personally
relevant to them (↗ in this case, particular industries).

5 REFLECTION

Next we reflect on the design of our system. To do so we interviewed
users of reVISit and did a heuristic analysis of the system.

Interviews. We conducted a semi-structured interview study with re-
searchers who have used reVISit in a completed study. Although
reVISit has been used many times [10, 11, 42, 46], there is often an
overlap between the maintainer of the system and the researchers run-
ning the study, in part because of our persistent community-centered
outreach strategy. All participants were current PhD students who have
run multiple user studies as part of their PhD, have run at least one
study with reVISit, and are not part of the reVISit development team.
We refer to participants as PX and “quote them”.

Technical Dimensions (TDPS). We conducted a close reading of re-
VISit via Jakubovic et al.’s “Technical Dimensions of Programming

Systems (TDPS)” [30]. TDPS is a collection of dimensions (à la Cog-
nitive Dimensions of Notation [22]) by which to understand systems
across 7 clusters of dimensions. The first author characterized how
reVISit addresses each dimension, which was subsequently reviewed
by two other authors. We use McNutt et al.’s [47] cluster descriptions.
We elide Conceptual (as it is broadly covered in our discussion of the
DSL) and Complexity (which largely overlaps with notation).

5.1 Findings

Interaction. Which loops in the system are overlapping and how far
apart are the corresponding gulfs of evaluation? A common problem
in developing user study prototypes is wide feedback loops during the
development and testing of a study. Our study browser, as well as
our development environment, is primarily aimed at tightening these
feedback loops. After forking our repo, designers are met with a full
development environment (via their choice of IDE, such as VSCode).
P2 this found helpful: “it was also super helpful that no setup is re-
quired, [...] auto refreshes on saves and stuff: The ideal development
situation that’s already there”. A common slow loop in other systems
is to have to walk through the study in its entirety to debug parts of
the sequence, whereas our study browser supports quick sequence
navigation and therein rapid stimuli iteration.

ReVISitPy has its own unique feedback loops. When used to gener-
ate configurations, there may be a wide feedback loop between generat-
ing a configuration in a notebook, copying the generated configuration
into a project, and running the project to view changes. To tighten
this feedback loop, reVISitPy can preview the study within a notebook,
ensuring the configuration is appropriate before leaving the notebook.
However, additional exploration of desired affordances during the pro-
totyping phase is useful future work.

An often overlooked interaction with study frameworks is with their
documentation, examples, and tutorials. As part of our focus on commu-
nity, we strive to have accessible documentation, along with examples
covering a range of functionality (inspired by the sprawling D3 example
gallery ecosystem [71]), and descriptive tutorials for more complex
concepts. For instance, P2 found our data storage setup tutorial helpful,
saying that they “100% had to use the guide to be able to remember
what to do”; however, “I thought the guide was really good”. Similarly,
P3 recalled that “I mainly learned by using the documents on the web-
site and API documents.” No documentation is perfect, but we continue
to adapt it to the needs of our user community.

A key design decision was to task study designers with using a DSL
to specify experiments, in contrast to a GUI (as Qualtrics does), which
likely would have radically tightened the design loop. Although there
is substantially higher technical complexity in using a DSL, it makes
many more designs possible than what we might have designed for in
building a GUI. Echoing Alan Kay: “Simple things should be simple,
complex things should be possible” [4]. While future work might
explore a GUI, we suggest that centering the possible (and valuing the
technical proficiencies of our design-for audience) is essential.

Notation. What notations are present and how do they interrelate? Re-
VISit’s primary notation is the JSON DSL (which every study interacts
with), complemented by several optional ones. Our DSL is designed to
be simple and highly composable, with the only syntactic abstraction
being baseComponents, as indicated in Fig. 2.

Such simplicity can be misaligned with the expected simplicity of
some experiment designs. As discussed in Sec. 3.1, config files can be
very large due to repetition of structures and components for a variety
of factors. P2, who needed to make a 12k LOC file, questioned “I
don’t know if what I’m doing is just a really rare experimental de-
sign. It doesn’t sound it from saying it in English, but then I think it
kind of ends up being fairly orthogonal to the way the sequence is
set up”. ReVISitPy attempts to address this problem by offering a
greater degree of abstraction than is present in the DSL. The choice
of transferring complexity away from the primary notation (the DSL)
and into a secondary notation (reVISitPy/Python) was intended to keep
the DSL simple, as most studies would not need the complex features

https://revisit.dev/replication-studies/bubblechart-study/LzE2MTl4ZVRMTk5nSFlNYmd1ZDhjZz09?participantId=d90ad824-3bc1-4b7d-8740-38827c7f86ab
https://revisit.dev/replication-studies/bubblechart-study/LzE2MTl4ZVRMTk5nSFlNYmd1ZDhjZz09?participantId=d90ad824-3bc1-4b7d-8740-38827c7f86ab
https://revisit.dev/replication-studies/bubblechart-study/LzE2MTl4ZVRMTk5nSFlNYmd1ZDhjZz09?participantId=d90ad824-3bc1-4b7d-8740-38827c7f86ab
https://revisit.dev/replication-studies/bubblechart-study/LzE2MTl4ZVRMTk5nSFlNYmd1ZDhjZz09?participantId=d90ad824-3bc1-4b7d-8740-38827c7f86ab
https://revisit.dev/replication-studies/255chart-study/LzE2MTl4ZVRMTk5nSFlNYmd1ZDhjZz09?participantId=3a12c79b-75ce-4c1a-82ed-8b95f8523ae7

that reVISitPy enables, while also empowering users who do need such
functionalities. We forwent implementation of common abstractions
(such as loops and variables) to avoid maintaining a full programming
language. Instead, we ensure that our DSL is highly composable,
allowing for complex designs via reVISitPy or other custom solutions,
with the tradeoff of increased difficulty in generating the configuration.

Apart from the DSL, studies may utilize secondary notations for
construction of stimuli—such as markdown or React, as well as any
iframe embeddable content. Many stimuli interact with the DSL to
access parameters, answers, or provenance data. To create custom
stimuli, P1 used multiple notations, some of which they had no prior
experience with. They pointed out that this increased the learning curve:
“You’re also learning React and D3 and JavaScript and a little bit of
Firebase”. The many possible notations that are usable in conjunction
with reVISit widen the range of possible stimuli, but also result in a
steeper learning curve and inherited complexity of such notations.

Errors. What are they and how are they handled? Errors within reVISit
are handled differently depending on the source of the error. Errors
within our primary notation, the DSL, make rendering and compiling
the study impossible, increasing the importance that study designers
can quickly identify and fix these errors. Warnings about DSL errors
can originate from two sources. The first is from automated validation
of our JSON schema. The second is application-specific errors which
the system throws, such as trying to use a baseComponent which does
not exist. In both cases, errors are immediately surfaced and shown
as errors within the system with an error message. However, some
errors may be difficult to identify via this message, especially errors
that originated from schema validation. P3 noted, “it would be better
if that was a little bit more straightforward about exactly what part is
broken”. However, P3 also pointed out the increased support that code
editors can give to identify such errors, saying, “I use VS Code for
opening the JSON. And if there are grammar mistakes, then VS Code
itself reveals which part is wrong. That was also helpful when the file
was broken.” ReVISit surfaces lint-like warnings for stylistic usage
problems—for example, components that are defined but not used yield
a warning. However, our linting is limited to programmatic problems in
the DSL, and does not consider the semantics of an experimental design
(e.g., confounders). Although reVISit puts a number of experimental
designs within reach, it does little to help ensure that the experimental
designs themselves are good outside of these practices. For instance, an
experiment may unintentionally introduce learning effects by always
presenting a fixed order of chart stimuli that escalate in complexity.
In future work, it would be useful to explore automated experiment
evaluation and the effects it would have on experimental design.

Errors that occur outside of the DSL can be more difficult to identify.
ReVISit surfaces errors thrown by React components to avoid complete
application crashes, but does not have such functionality for iframes.
Errors can be surfaced in the development environment itself, as with
an error P1 ran into: “when I tried to import this [math library] into
reVISit, it was telling me about some random number generating library
that is outdated that revisit does not accept.” Errors such as this one,
which often stem from library version conflicts, can be challenging to
fix even for users with a background in web development. We could
avoid such errors by dictating the development environment (e.g., by
allowing only some packages or using a GUI), however this is in tension
with our experimental sovereignty goal: some things may be harder,
but more things will be possible.

Customizability. How can programs be modified? Easy replication
and modification of studies is central to reVISit’s focus on improving
reproducibility in user studies. Our core GitHub repository comes with
a collection of example studies, such as a replication of Cleveland-
McGill [8], in a manner that supports opportunistic programming-style
reuse [6]. Both the experiment design (via the DSL) and the stimuli are
available and modifiable. The same is true for public reVISit studies,
such as those run by Lisnic et al [42], which can be reproduced or
modified easily. Studies maintain the version of reVISit when forked
(unless manually merged), ensuring that the study continues to operate

properly in spite of continued development on reVISit.
Additionally, as study designers fork the entire codebase, core func-

tionality of the tool is visible and changeable. P1 used the open nature
of the core code as a learning tool, observing “that’s the benefit of
having all the code base up there. If there’s something that I don’t un-
derstand, I can always just try to find its source”. P2 and P3 both took
this a step further, editing the core code to match certain desired behav-
ior for their studies, with P2 saying “if I need to change something in its
guts, I can do that, which is fun, as opposed to something more closed”.
Lisnic et al. [42], for example, modified the core code to host a “↗
demonstration page” for their project, including the study, its results,
and a sandboxed version of their stimulus. Viewing or modifying core
code was not originally intended behavior, and cannot be expected from
study designers without a strong technical background. However, for
those with the skills required, the core code can prove a valuable tool to
accompany documentation and allow for a high level of customization.

Adaptability. What socio-technical (e.g., learnability) dimensions are
considered? ReVISit is primarily directed at the visualization com-
munity, but has been designed with the intention of being usable for a
wide range of studies, including from fields with less uniform technical
backgrounds (e.g., psychology). However, from our interviews (and
experiences), reVISit is currently most useful for those with a program-
ming background (inheriting learning curves from React or TypeScript).
Taking advantage of many of the unique and valuable features within
reVISit, such as application provenance tracking or reVISitPy, requires
programming knowledge. Our choice to avoid GUI approaches (for
the time being) is partially to blame for this learning curve. P3 pointed
out that “there are some people that do not have the computational
knowledge of web designing. It’s really difficult for me to suggest [to
them that] they use revisit, because [..] you need to tune actual code,
compared to Qualtrics or those web based survey systems”.

One approach we have taken to mitigate the learning curve is via
community outreach, which has been a focus since the first stable re-
lease. We have held tutorials on reVISit at VIS’24, CHI’25, EuroVis’25,
Georgia Tech, University of Utah, UNC Chapel Hill, and are scheduled
to hold a tutorial at VIS’25. We also have an active Slack team with
public channels for users to get help and make suggestions.

6 CONCLUSION

ReVISit 2 seeks to simplify the process of designing, debugging, de-
ploying, and disseminating experiments in visualization research and
related fields. Through a four year cycle of community engaged work
we have developed a platform that we believe drastically simplifies the
experimental process, especially for the kind of sophisticated studies
that are increasingly commonplace in visualization and HCI. As part of
this work, we developed a range of novel contributions to experiment
infrastructure, including a sophisticated DSL and a Python-based exten-
sion that can accomplish more diverse study designs than comparable
frameworks, notebook-based prototypes, provenance tracking and asso-
ciated participant replay, and advanced stimuli, such as Vega and React
programs. To demonstrate these contributions (and the robustness of
reVISit), we conducted a trio of replication studies, which we used (in
tandem with a small interview study) to reflect on our design choices.

This work is not the end of reVISit’s story. There are various ad-
ditional improvements to the experiment life cycle to explore, new
communities to support, and limitations to address. For instance, Re-
VISit is primarily designed for visualization research, and is focused by
the particular research goals of the research team—although we made
efforts to be expansive in our designs and be informed by a variety of
stakeholders from around the visualization community. However, we do
not address concerns held in related domains, such as games [57] or so-
cial robots [66]. Similarly, reVISit is currently limited to desktop-based
web browsers, precluding studies in mediums like mobile, watchfaces,
or AR/VR. While many such studies can be replicated in web browsers,
native support would be preferable.

Through this work, and our continued work on reVISit, we hope to
raise study quality and reproducibility for the visualization community
and make it easier to investigate rich empirical phenomena.

https://vdl.sci.utah.edu/viz-guardrails-study/
https://vdl.sci.utah.edu/viz-guardrails-study/

ACKNOWLEDGMENTS

We would like to extend our thanks to the National Science Foundation
(2213756, 2213757, 2402719, 2313998), to Carolina Nobre, to our
users for their insightful questions and contributions, to our numerous
study/interview participants, and to our community advisory board,
which consists of Danielle Albers Szafir, Cindy Xiong Bearfield, Ana
Crisan, Alex Endert, Jean-Daniel Fekete, Petra Isenberg, Lace Padilla,
John Stasko, and Manuela Waldner.

SUPPLEMENTAL MATERIALS

The code for reVISit can be found at ↗ github.com/revisit-
studies/study. All documentation, examples, and tutorials can be
found at ↗ revisit.dev. A demo with example studies is at ↗ re-
visit.dev/study. The study replication code is at ↗ github.com/revisit-
studies/replication-studies, and the full replication studies and their
data are available at ↗ revisit.dev/replication-studies. We also provide
an appendix with additional analysis for all replications, and a separate
repository containing the data and the analysis code for the replica-
tions at ↗ github.com/revisit-studies/replication-studies-analysis. Pre
registrations for each study can be found at ↗ https://osf.io/e8anx/.

REFERENCES

[1] R. Abdalkareem, V. Oda, S. Mujahid, and E. Shihab. On the impact
of using trivial packages: An empirical case study on npm and PyPI.
Empirical Software Engineering, 25(2):1168–1204, Mar. 2020. doi: 10.
1007/s10664-019-09792-9 6

[2] W. Aigner, S. Hoffmann, and A. Rind. EvalBench: A Software Library
for Visualization Evaluation. Computer Graphics Forum, 32(3pt1):41–50,
2013. doi: 10.1111/cgf.12091 3

[3] D. Akbaba, D. Lange, M. Correll, A. Lex, and M. Meyer. Troubling
Collaboration: Matters of Care for Visualization Design. In ACM CHI
Conference on Human Factors in Computing Systems, 2023. doi: 10.
1145/3544548.3581168 4

[4] Alan Kay. Alan Kay’s adage “Simple things should be simple, complex
things should be possible”. 8

[5] J. Boy, L. Eveillard, F. Detienne, and J.-D. Fekete. Suggested Interactiv-
ity: Seeking Perceived Affordances for Information Visualization. IEEE
Transactions on Visualization and Computer Graphics, 22(1):639–648,
Jan. 2016. doi: 10.1109/TVCG.2015.2467201 1

[6] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer.
Two studies of opportunistic programming: Interleaving web foraging,
learning, and writing code. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 1589–1598. ACM, Boston MA
USA, Apr. 2009. doi: 10.1145/1518701.1518944 9

[7] K.-T. Chen, A. Prouzeau, J. Langmead, R. T. Whitelock-Jones,
L. Lawrence, T. Dwyer, C. Hurter, D. Weiskopf, and S. Goodwin. Gaze-
alytics: A Unified and Flexible Visual Toolkit for Exploratory and Com-
parative Gaze Analysis. In 2023 Symposium on Eye Tracking Research
and Applications, pp. 1–7, May 2023. doi: 10.1145/3588015.3589844 4

[8] W. S. Cleveland and R. McGill. Graphical Perception: Theory, Exper-
imentation, and Application to the Development of Graphical Methods.
Journal of the American Statistical Association, 79(387):531–554, 1984.
doi: 10.1080/01621459.1984.10478080 1, 9

[9] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Rout-
ledge, May 2013. 3

[10] Y. Cui, L. W. Ge, Y. Ding, L. Harrison, F. Yang, and M. Kay. Promises and
Pitfalls: Using Large Language Models to Generate Visualization Items.
IEEE Transactions on Visualization and Computer Graphics, 31(1):1094–
1104, Jan. 2025. doi: 10.1109/TVCG.2024.3456309 2, 8

[11] Z. Cutler, L. Harrison, C. Nobre, and A. Lex. Crowdsourced Think-Aloud
Studies. In ACM Conference on Human Factors in Computing Systems
(CHI), 2025. doi: 10.1145/3706598.3714305 1, 2, 4, 6, 8

[12] Z. T. Cutler, K. Gadhave, and A. Lex. Trrack: A Library for Provenance
Tracking in Web-Based Visualizations. In IEEE Visualization Conference
(VIS), pp. 116–120, 2020. doi: 10.1109/VIS47514.2020.00030 5, 7, 13

[13] J. R. de Leeuw, R. A. Gilbert, and B. Luchterhandt. jsPsych: Enabling
an Open-Source Collaborative Ecosystem of Behavioral Experiments.
Journal of Open Source Software, 8(85):5351, May 2023. doi: 10.21105/
joss.05351 2, 3

[14] Y. Ding, J. Wilburn, H. Shrestha, A. Ndlovu, K. Gadhave, C. Nobre,
A. Lex, and L. Harrison. reVISit: Supporting Scalable Evaluation of

Interactive Visualizations. In IEEE Visualization and Visual Analytics
(VIS), pp. 31–35. IEEE, 2023. doi: 10.1109/VIS54172.2023.00015 2, 3, 4

[15] W. Dou, C. Ziemkiewicz, L. Harrison, D. H. Jeong, R. Ryan, W. Ribarsky,
X. Wang, and R. Chang. Comparing different levels of interaction con-
straints for deriving visual problem isomorphs. In 2010 IEEE Symposium
on Visual Analytics Science and Technology, pp. 195–202, Oct. 2010. doi:
10.1109/VAST.2010.5653599 1

[16] A. Eiselmayer, C. Wacharamanotham, M. Beaudouin-Lafon, and W. E.
Mackay. Touchstone2: An Interactive Environment for Exploring Trade-
offs in HCI Experiment Design. In Proceedings of the 2019 CHI Confer-
ence on Human Factors in Computing Systems, pp. 1–11. ACM, Glasgow
Scotland Uk, May 2019. doi: 10.1145/3290605.3300447 3

[17] M. Fan, K. Wu, J. Zhao, Y. Li, W. Wei, and K. N. Truong. VisTA: Integrat-
ing Machine Intelligence with Visualization to Support the Investigation of
Think-Aloud Sessions. IEEE Transactions on Visualization and Computer
Graphics, 26(1):343–352, 2020. doi: 10.1109/TVCG.2019.2934797 4

[18] M. Feng, C. Deng, E. M. Peck, and L. Harrison. The Effects of Adding
Search Functionality to Interactive Visualizations on the Web. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI), pp. 1–13. ACM, 2018. doi: 10.1145/3173574.3173711 6, 7, 8, 13

[19] D. Gergle and D. S. Tan. Experimental Research in HCI. In J. S. Olson
and W. A. Kellogg, eds., Ways of Knowing in HCI, pp. 191–227. Springer,
New York, NY, 2014. doi: 10.1007/978-1-4939-0378-8_9 1, 3, 5

[20] M. Ghoniem, J.-D. Fekete, and P. Castagliola. On the Readability of
Graphs Using Node-Link and Matrix-Based Representations: A Con-
trolled Experiment and Statistical Analysis. Information Visualization,
4(2):114–135, 2005. doi: 10.1057/palgrave.ivs.9500092 1

[21] Google. Google Forms, Mar. 2025. 2, 3
[22] T. R. Green. Cognitive dimensions of notations. People and computers V,

pp. 443–460, 1989. doi: 10.1007/3-540-44617-6_31 8
[23] L. Harrison, C. Gramazio, F. Yáng, K. Aragam, E. Peck, and D. Schroeder.

Experimentr, Feb. 2019. 2, 3, 7
[24] L. Harrison, F. Yang, S. Franconeri, and R. Chang. Ranking Visualizations

of Correlation Using Weber’s Law. IEEE Transactions on Visualization
and Computer Graphics, 20(12):1943–1952, Dec. 2014. doi: 10.1109/
TVCG.2014.2346979 3, 6, 12

[25] T. He, P. Isenberg, R. Dachselt, and T. Isenberg. BeauVis: A Validated
Scale for Measuring the Aesthetic Pleasure of Visual Representations.
IEEE Transactions on Visualization and Computer Graphics, 29(1):363–
373, Jan. 2023. doi: 10.1109/TVCG.2022.3209390 2, 7, 13

[26] T. He, Y. Zhong, P. Isenberg, and T. Isenberg. Design Characterization
for Black-and-White Textures in Visualization. IEEE Transactions on
Visualization and Computer Graphics, 30(1):1019–1029, Jan. 2024. doi:
10.1109/TVCG.2023.3326941 1, 6, 7, 13

[27] J. Heer and M. Bostock. Crowdsourcing graphical perception: Using
mechanical turk to assess visualization design. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI), pp.
203–212. ACM, 2010. doi: 10.1145/1753326.1753357 1

[28] A. Inc. Amazon Mechanical Turk, 2025. 3
[29] Q. I. Inc. Qualtrics, 2025. 1, 2, 3, 5
[30] J. Jakubovic, J. Edwards, and T. Petricek. Technical Dimensions of Pro-

gramming Systems. The Art, Science, and Engineering of Programming,
7(3):13, 2023. doi: 10.22152/programming-journal.org/2023/7/13 2, 8

[31] Y. Jansen. FROE: Framework for Running Online Experiments, Mar. 2025.
2, 3, 13

[32] Jeremy Ashkenas and Alicia Parlapiano. How the Recession Reshaped
the Economy, in 255 Charts - The New York Times, June 2014. 8

[33] R. Jianu, D. Laksono, A. Slingsby, and M. Okoe. VisUnit: Literate
Visualisation Studies Assembled from Reusable Test-Suites. In ACM
CHI Conference on Human Factors in Computing Systems, 2025. doi: 10.
1145/3706598.3713104 2, 3, 5

[34] A. Joshi, S. Kale, S. Chandel, and D. Pal. Likert Scale: Explored and
Explained. British Journal of Applied Science & Technology, 7(4):396–
403, Jan. 2015. doi: 10.9734/BJAST/2015/14975 2

[35] A. Kale, F. Nguyen, M. Kay, and J. Hullman. Hypothetical outcome
plots help untrained observers judge trends in ambiguous data. IEEE
transactions on visualization and computer graphics, 25(1):892–902, 2018.
doi: 10.1109/TVCG.2018.2864909 1

[36] M. Kay and J. Heer. Beyond Weber’s Law: A Second Look at Ranking
Visualizations of Correlation. IEEE Transactions on Visualization and
Computer Graphics, 22(1):469–478, Jan. 2016. doi: 10.1109/TVCG.2015
.2467671 12

[37] S. Kieffer, T. Dwyer, K. Marriott, and M. Wybrow. HOLA: Human-like

https://github.com/revisit-studies/study
https://github.com/revisit-studies/study
https://revisit.dev/
https://revisit.dev/study/
https://revisit.dev/study/
https://github.com/revisit-studies/replication-studies
https://github.com/revisit-studies/replication-studies
https://revisit.dev/replication-studies/
https://github.com/revisit-studies/replication-studies-analysis
https://osf.io/e8anx/
https://doi.org/10.1007/s10664-019-09792-9
https://doi.org/10.1007/s10664-019-09792-9
https://doi.org/10.1111/cgf.12091
https://doi.org/10.1145/3544548.3581168
https://doi.org/10.1145/3544548.3581168
https://doi.org/10.1109/TVCG.2015.2467201
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1145/3588015.3589844
https://doi.org/10.1080/01621459.1984.10478080
https://doi.org/10.1109/TVCG.2024.3456309
https://doi.org/10.1145/3706598.3714305
https://doi.org/10.1109/VIS47514.2020.00030
https://doi.org/10.21105/joss.05351
https://doi.org/10.21105/joss.05351
https://doi.org/10.1109/VIS54172.2023.00015
https://doi.org/10.1109/VAST.2010.5653599
https://doi.org/10.1109/VAST.2010.5653599
https://doi.org/10.1145/3290605.3300447
https://doi.org/10.1109/TVCG.2019.2934797
https://doi.org/10.1145/3173574.3173711
https://doi.org/10.1007/978-1-4939-0378-8_9
https://doi.org/10.1057/palgrave.ivs.9500092
https://doi.org/10.1007/3-540-44617-6_31
https://doi.org/10.1109/TVCG.2014.2346979
https://doi.org/10.1109/TVCG.2014.2346979
https://doi.org/10.1109/TVCG.2022.3209390
https://doi.org/10.1109/TVCG.2023.3326941
https://doi.org/10.1109/TVCG.2023.3326941
https://doi.org/10.1145/1753326.1753357
https://doi.org/10.22152/programming-journal.org/2023/7/13
https://doi.org/10.1145/3706598.3713104
https://doi.org/10.1145/3706598.3713104
https://doi.org/10.9734/BJAST/2015/14975
https://doi.org/10.1109/TVCG.2018.2864909
https://doi.org/10.1109/TVCG.2015.2467671
https://doi.org/10.1109/TVCG.2015.2467671

Orthogonal Network Layout. IEEE Transactions on Visualization and
Computer Graphics, 22(1):349–358, Jan. 2016. doi: 10.1109/TVCG.2015
.2467451 1

[38] Y. Kim, M. Correll, and J. Heer. Designing Animated Transitions to
Convey Aggregate Operations. Computer Graphics Forum, 38(3):541–
551, June 2019. doi: 10.1111/cgf.13709 1

[39] M. S. Lam, J. Teoh, J. A. Landay, J. Heer, and M. S. Bernstein. Concept
Induction: Analyzing Unstructured Text with High-Level Concepts Using
LLooM. In Proceedings of the CHI Conference on Human Factors in
Computing Systems, CHI ’24, pp. 1–28. Association for Computing Ma-
chinery, New York, NY, USA, May 2024. doi: 10.1145/3613904.3642830
14

[40] S. Lee, S.-H. Kim, Y.-H. Hung, H. Lam, Y.-A. Kang, and J. S. Yi. How do
People Make Sense of Unfamiliar Visualizations?: A Grounded Model of
Novice’s Information Visualization Sensemaking. IEEE Transactions on
Visualization and Computer Graphics, 22(1):499–508, Jan. 2016. doi: 10.
1109/TVCG.2015.2467195 1

[41] S. Lee, S.-H. Kim, and B. C. Kwon. VLAT: Development of a Visual-
ization Literacy Assessment Test. IEEE Transactions on Visualization
and Computer Graphics, 23(1):551–560, 2017. doi: 10.1109/TVCG.2016.
2598920 2, 5

[42] M. Lisnic, Z. Cutler, M. Kogan, and A. Lex. Visualization guardrails: De-
signing interventions against cherry-picking in interactive data explorers.
In SIGCHI Conference on Human Factors in Computing Systems (CHI),
2025. doi: 10.1145/3706598.3713385 1, 2, 8, 9

[43] M. J. Lobo, C. Hurter, and P. Irani. Flex-ER: A Platform to Evaluate Inter-
action Techniques for Immersive Visualizations. Proc. ACM Hum.-Comput.
Interact., 4(ISS):195:1–195:20, Nov. 2020. doi: 10.1145/3427323 2, 3

[44] S. L’Yi, A. van den Brandt, E. Adams, H. N. Nguyen, and N. Gehlenborg.
Learnable and Expressive Visualization Authoring through Blended Inter-
faces. IEEE Transactions on Visualization and Computer Graphics, 2024.
doi: 10.1109/TVCG.2024.3456598 1

[45] W. E. Mackay, C. Appert, M. Beaudouin-Lafon, O. Chapuis, Y. Du, J.-D.
Fekete, and Y. Guiard. Touchstone: Exploratory design of experiments. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’07, pp. 1425–1434. Association for Computing Machinery,
New York, NY, USA, Apr. 2007. doi: 10.1145/1240624.1240840 2, 3

[46] A. McNutt, M. K. McCracken, I. J. Eliza, D. Hajas, J. Wagoner, N. Lanza,
J. Wilburn, S. Creem-Regehr, and A. Lex. Accessible Text Descriptions
for UpSet Plots. Computer Graphics Forum, 44(3):e70102, 2025. doi: 10.
1111/cgf.70102 2, 8

[47] A. McNutt, M. C. Stone, and J. Heer. Mixing Linters with GUIs: A Color
Palette Design Probe. IEEE Transactions on Visualization and Computer
Graphics, 31(1):327–337, 2025. doi: 10.1109/TVCG.2024.3456317 8

[48] A. M. McNutt. No Grammar to Rule Them All: A Survey of JSON-style
DSLs for Visualization. IEEE Transactions on Visualization and Computer
Graphics, 29(1):160–170, 2023. doi: 10.1109/TVCG.2022.3209460 4

[49] M. Meuschke, N. N. Smit, N. Lichtenberg, B. Preim, and K. Lawonn.
EvalViz – Surface visualization evaluation wizard for depth and shape
perception tasks. Computers & Graphics, 82:250–263, Aug. 2019. doi:
10.1016/j.cag.2019.05.022 2, 3

[50] S. Musslick, A. Cherkaev, B. Draut, A. S. Butt, P. Darragh, V. Srikumar,
M. Flatt, and J. D. Cohen. SweetPea: A standard language for factorial
experimental design. Behavior Research Methods, 54(2):805–829, Apr.
2022. doi: 10.3758/s13428-021-01598-2 1, 3, 5

[51] C. Nobre, D. Wootton, Z. Cutler, L. Harrison, H. Pfister, and A. Lex.
reVISit: Looking Under the Hood of Interactive Visualization Studies. In
SIGCHI Conference on Human Factors in Computing Systems, pp. 1–13.
ACM, Yokohama Japan, May 2021. doi: 10.1145/3411764.3445382 4

[52] C. Nobre, D. Wootton, L. Harrison, and A. Lex. Evaluating Multivariate
Network Visualization Techniques Using a Validated Design and Crowd-
sourcing Approach. In SIGCHI Conference on Human Factors in Com-
puting Systems, pp. 1–12. ACM, 2020. doi: 10.1145/3313831.3376381
1

[53] S. Nowak and L. Bartram. Designing for Ambiguity in Visual Analytics:
Lessons from Risk Assessment and Prediction. IEEE Transactions on
Visualization and Computer Graphics, 30(1):924–933, Jan. 2024. doi: 10.
1109/TVCG.2023.3326571 1

[54] M. Okoe and R. Jianu. GraphUnit: Evaluating Interactive Graph Visualiza-
tions Using Crowdsourcing. Computer Graphics Forum, 34(3):451–460,
2015. doi: 10.1111/cgf.12657 1, 2, 3

[55] S. Palan and C. Schitter. Prolific.ac A subject pool for online experiments.
Journal of Behavioral and Experimental Finance, 17:22–27, Mar. 2018.

doi: 10.1016/j.jbef.2017.12.004 3
[56] S. Pandey and A. Ottley. Mini-VLAT: A Short and Effective Measure of

Visualization Literacy. Computer Graphics Forum, 42(3):1–11, 2023. doi:
10.1111/cgf.14809 2, 5

[57] N. Partlan, E. Carstensdottir, S. Snodgrass, E. Kleinman, G. Smith,
C. Harteveld, and M. S. El-Nasr. Exploratory automated analysis of
structural features of interactive narrative. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment,
vol. 14, pp. 88–94, 2018. doi: 10.1609/aiide.v14i1.13019 9

[58] J. Peirce, J. R. Gray, S. Simpson, M. MacAskill, R. Höchenberger, H. Sogo,
E. Kastman, and J. K. Lindeløv. PsychoPy2: Experiments in behavior
made easy. Behavior Research Methods, 51(1):195–203, Feb. 2019. doi:
10.3758/s13428-018-01193-y 3

[59] K. Reinecke and K. Z. Gajos. LabintheWild: Conducting Large-Scale
Online Experiments With Uncompensated Samples. In Proceedings of
the 18th ACM Conference on Computer Supported Cooperative Work &
Social Computing, CSCW, pp. 1364–1378. Association for Computing
Machinery, New York, 2015. doi: 10.1145/2675133.2675246 3

[60] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite:
A Grammar of Interactive Graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341–350, Jan. 2017. doi: 10.1109/TVCG.
2016.2599030 5

[61] E. J. Soure, E. Kuang, M. Fan, and J. Zhao. CoUX: Collaborative Visual
Analysis of Think-Aloud Usability Test Videos for Digital Interfaces. IEEE
Transactions on Visualization and Computer Graphics, 28(1):643–653,
Jan. 2022. doi: 10.1109/TVCG.2021.3114822 4

[62] G. Stoet. PsyToolkit: A Novel Web-Based Method for Running Online
Questionnaires and Reaction-Time Experiments. Teaching of Psychology,
44(1):24–31, Jan. 2017. doi: 10.1177/0098628316677643 2, 3

[63] P. T. Sukumar and R. Metoyer. Towards Designing Unbiased Replication
Studies in Information Visualization. In 2018 IEEE Evaluation and Beyond
- Methodological Approaches for Visualization (BELIV), pp. 93–101, 2018.
doi: 10.1109/BELIV.2018.8634261 1

[64] SurveyMonkey. SurveyMonkey, Mar. 2025. 2, 3
[65] D. A. Szafir. Modeling Color Difference for Visualization Design. IEEE

Transactions on Visualization and Computer Graphics, 24(1):392–401,
Jan. 2018. doi: 10.1109/TVCG.2017.2744359 1

[66] N. Tsoi, M. Hussein, O. Fugikawa, J. D. Zhao, and M. Vázquez. An
approach to deploy interactive robotic simulators on the web for hri experi-
ments: Results in social robot navigation. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 7528–7535.
IEEE, 2021. doi: 10.1109/IROS51168.2021.9636319 9

[67] T. L. Turton, A. S. Berres, D. H. Rogers, and J. Ahrens. ETK: An eval-
uation toolkit for visualization user studies. In Proceedings of the Euro-
graphics/IEEE VGTC Conference on Visualization: Short Papers, EuroVis
’17, pp. 43–47. Eurographics Association, Goslar, DEU, June 2017. doi:
10.2312/eurovisshort.20171131 2, 3

[68] J. VanderPlas, B. E. Granger, J. Heer, D. Moritz, K. Wongsuphasawat,
A. Satyanarayan, E. Lees, I. Timofeev, B. Welsh, and S. Sievert. Altair:
Interactive Statistical Visualizations for Python. Journal of Open Source
Software, 3(32):1057, Dec. 2018. doi: 10.21105/joss.01057 2, 4

[69] VERBI Software. MAXQDA Analytics Pro, 2018. 4
[70] F. Yang, L. T. Harrison, R. A. Rensink, S. L. Franconeri, and R. Chang.

Correlation Judgment and Visualization Features: A Comparative Study.
IEEE Transactions on Visualization and Computer Graphics, 25(3):1474–
1488, Mar. 2019. doi: 10.1109/TVCG.2018.2810918 3

[71] J. Yang, A. M. McNutt, and L. Battle. Considering Visualization Example
Galleries. In 2024 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pp. 329–343, Sept. 2024. doi: 10.1109/
VL/HCC60511.2024.00043 8

[72] J. Zacks and B. Tversky. Bars and lines: A study of graphic commu-
nication. Memory & Cognition, 27(6):1073–1079, Nov. 1999. doi: 10.
3758/BF03201236 1

[73] Y. Zhao, Y. Wang, X. Luo, Y. Wang, and J.-D. Fekete. Libra: An Inter-
action Model for Data Visualization. In SIGCHI Conference on Human
Factors in Computing Systems, 2025. doi: 10.1145/3706598.3713769 7

https://doi.org/10.1109/TVCG.2015.2467451
https://doi.org/10.1109/TVCG.2015.2467451
https://doi.org/10.1111/cgf.13709
https://doi.org/10.1145/3613904.3642830
https://doi.org/10.1109/TVCG.2015.2467195
https://doi.org/10.1109/TVCG.2015.2467195
https://doi.org/10.1109/TVCG.2016.2598920
https://doi.org/10.1109/TVCG.2016.2598920
https://doi.org/10.1145/3706598.3713385
https://doi.org/10.1145/3427323
https://doi.org/10.1109/TVCG.2024.3456598
https://doi.org/10.1145/1240624.1240840
https://doi.org/10.1111/cgf.70102
https://doi.org/10.1111/cgf.70102
https://doi.org/10.1109/TVCG.2024.3456317
https://doi.org/10.1109/TVCG.2022.3209460
https://doi.org/10.1016/j.cag.2019.05.022
https://doi.org/10.1016/j.cag.2019.05.022
https://doi.org/10.3758/s13428-021-01598-2
https://doi.org/10.1145/3411764.3445382
https://doi.org/10.1145/3313831.3376381
https://doi.org/10.1109/TVCG.2023.3326571
https://doi.org/10.1109/TVCG.2023.3326571
https://doi.org/10.1111/cgf.12657
https://doi.org/10.1016/j.jbef.2017.12.004
https://doi.org/10.1111/cgf.14809
https://doi.org/10.1111/cgf.14809
https://doi.org/10.1609/aiide.v14i1.13019
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.1145/2675133.2675246
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2021.3114822
https://doi.org/10.1177/0098628316677643
https://doi.org/10.1109/BELIV.2018.8634261
https://doi.org/10.1109/TVCG.2017.2744359
https://doi.org/10.1109/IROS51168.2021.9636319
https://doi.org/10.2312/eurovisshort.20171131
https://doi.org/10.2312/eurovisshort.20171131
https://doi.org/10.21105/joss.01057
https://doi.org/10.1109/TVCG.2018.2810918
https://doi.org/10.1109/VL/HCC60511.2024.00043
https://doi.org/10.1109/VL/HCC60511.2024.00043
https://doi.org/10.3758/BF03201236
https://doi.org/10.3758/BF03201236
https://doi.org/10.1145/3706598.3713769
https://Prolific.ac

	Introduction
	Related Work via Stages of a User Study
	Experiment Design
	Debug & Pilot
	Data Collection
	Analysis
	Dissemination
	Relationship to Previous reVISit Versions

	System Tour
	The DSL
	Stimuli
	Sequence
	Study Browser
	Data
	Post Study

	Field Test: Replications
	Replication of Ranking Visualizations of Correlation
	Replication of Pattern Design Study
	Replication of Search in Visualization Study

	Reflection
	Findings

	Conclusion
	Details for Replication of Ranking Visualizations of Correlation
	Results
	Discussion

	Details for Replication of Pattern Design Study
	Results

	Details for Replication of Search in Visualization Study
	Results

	Additional Figures showing reVISit and reVISitPy

