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Fig. 1: ReVISit 2 supports each stage of the online user study life cycle. In addition to this linear path, the experiment life cycle is 
populated by internal loops between stages. For instance, issues revealed in the piloting of an experiment can lead back to the design 
phase to address those issues, and the process of disseminating an experiment can beget ideas for new experiments or replications. 

Abstract—Online user studies of visualizations, visual encodings, and interaction techniques are ubiquitous in visualization research. 
Yet, designing, conducting, and analyzing studies effectively is still a major burden. Although various packages support such user 
studies, most solutions address only facets of the experiment life cycle, make reproducibility difficult, or do not cater to nuanced study 
designs or interactions. We introduce reVISit 2, a software framework that supports visualization researchers at all stages of designing 
and conducting browser-based user studies. ReVISit supports researchers in the design, debug & pilot, data collection, analysis, and 
dissemination experiment phases by providing both technical affordances (such as replay of participant interactions) and sociotechnical 
aids (such as a mindfully maintained community of support). It is a proven system that can be (and has been) used in publication-quality 
studies—which we demonstrate through a series of experimental replications. We reflect on the design of the system via interviews 
and an analysis of its technical dimensions. Through this work, we seek to elevate the ease with which studies are conducted, improve 
the reproducibility of studies within our community, and support the construction of advanced interactive studies. 

Index Terms—User studies, crowdsourcing, visualization experiments. 

1 INTRODUCTION 

Experimental research is a mainstay method to infer causal relationships 
in visualization, HCI, and related areas [19]. Experiments in visualiza-
tion (often called user studies) range from perceptual studies [8, 65], 
to studies of visualization techniques [20, 35], studies of interaction 
techniques [5, 38], and studies of full visualization systems [44, 52]. 
Experimental approaches are also used outside of quantitative, con-
trolled research, such as in eliciting expert feedback on systems [53] or 
designs [26, 37, 42], or understanding insight formation [11, 40]. 

While these studies historically have been conducted in the lab [8, 
15, 72], they are now predominantly run online through crowd work 
platforms [27, 52, 63], which support rapid participant recruiting and 
study execution. Most desktop-focused visualization tools are designed 
to be accessed through the browser, suggesting that web applications are 
an effective means to deliver study stimuli. These trends suggest that 
experimental research in the future will be predominantly conducted 
through browsers and asynchronously (as opposed to in a lab). 

Despite the ubiquity of this form of inquiry, conducting these stud-
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ies remains difficult for a variety of reasons. For instance, designing 
effective stimuli presents nuanced challenges (such as effective instru-
mentation of interactions) that are time-consuming to implement for 
experienced developers, let alone early-career researchers. Similarly, 
the design of experiments offers a maze of complex decisions (such as 
choice of factors, randomization, sampling strategies, and partitioning 
of conditions) that, when navigated poorly, can invalidate entire experi-
ments. Compounding these design challenges is that making everything 
work as intended and ensuring that data is collected correctly can be 
tedious and error-prone. 

To help with these challenges, researchers in visualization, HCI, psy-
chology, and other fields draw on software frameworks to support their 
experiments. Whereas commercial tools, such as Qualtrics [29], excel 
at survey design, experimental design, and deployment, their closed-
source and commercial nature hamper reproducibility, and they do not 
meet the more specialized needs of visualization experiments—such as 
sophisticated tracking of complex interactions. A variety of academic-
led systems have been developed to help run studies; however, our dis-
cussions with stakeholders from the visualization community revealed 
that most are used only by individual research groups, use outdated 
technology, are difficult to maintain, and result in brittle deployments. 
Other academic systems are specific to certain visualization techniques 
(e.g., graphs [54]), or cover only a small slice of the experimental life 
cycle (such as factorial experiment design [50]). 

To address these issues, we introduce reVISit 2, a software frame-
work designed to support visualization researchers (and others) across 
the full life cycle of an experiment, including its design, debugging, 
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and deployment. ReVISit is a proven system capable of supporting 
complex study designs at a publication-quality level. It has been used 
in various studies [10, 11, 42, 46]. ReVISit 2 (referred to as simply 
reVISit throughout unless otherwise specified) builds on the founda-
tion of reVISit 1 [14], but expands on our previous work in critical 
sociotechnical and technical dimensions. For the former we have made 
a concerted effort to reach out to groups who may benefit from this tool 
via tutorials at universities and conferences, intentionally expanding 
and extending our documentation, and simplifying the startup cost 
for experiments by making common experiment components (such as 
VLAT [41], Mini-VLAT [56], BeauVis [25], etc.) available as libraries. 

In addition to quality of life upgrades (such as improved UIs, form 
elements, data download, testing), on the technical side we make a vari-
ety of novel contributions to experimentation platforms. Central among 
these is an enriched domain-specific language (DSL) for specifying 
experiments, as shown in Fig. 2. This language includes complex to 
implement features, such as Latin square participant distribution and 
randomized attention checks. Complementing this expansion, we also 
provide high-level Python bindings, reVISitPY, which offers Altair [68] 
style declarative specification and enables even more complex study 
designs (e.g., factorial designs) with little code. A natural venue for 
use of this library is Jupyter notebooks, where we offer an experiment 
prototyping pipeline wherein developers cannot only design their exper-
iment, but see and debug the experiment within the notebook, and even 
access collected data. This pipeline enables researchers to design and 
test their study, as well as prototype analyses from within the notebook. 

In contrast to other platforms, reVISit provides sophisticated tools 
for debugging and piloting, such as a study browser, participant view 
simulator, and data previews, as well as tools to manage data collection 
in ongoing studies. We also make strides in simplifying the specifica-
tion of visualization stimuli by making Vega visualizations first-class 
citizens, allowing us to provide automated provenance tracking across 
user interactions with Vega visualizations, which supports both low-
level interaction analysis and fine-grained replay (Fig. 5). 

We evaluate this collection of contributions via two strategies. First, 
we demonstrate its expressiveness through a collection of three study 
replications, where each study demonstrates different capabilities of 
reVISit (such as dynamic sequencing, capturing speech, and analyzing 
provenance). Then we reflect on the design choices made in the system 
via three interviews with reVISit users and a close reading of the 
system lensed through Jakubovic et al.’s [30] Technical Dimensions 
of Programming Systems (TDPS). The combination of our technical 
design decisions and commitment to open source enables customized 
dissemination, which is useful during the review and reading process 
(reviewers and readers alike can explore studies easily and thereby 
build trust in results), as well as enables reproducibility, as data can 
be shared and studies can be forked easily. Through this work, we 
seek to elevate the ease with which studies are conducted, improve 
the reproducibility and openness of studies within our community, and 
support the construction of advanced interactive studies. 

2 RELATED WORK VIA STAGES OF A USER STUDY 

Creating and conducting user studies is a complex process with iterated 
phases that each present challenges, as well as opportunities, for tool 
support. To focus such challenges, we divide the user study process 
into five stages, shown in Fig. 1, which we refer to as the experiment 
life cycle. In practice, this process is not linear but contains loops; for 
example, it is expected that after a pilot the experiment will be refined 
at the design stage to address issues that the pilot surfaced. 

We detail each stage and situate ReVISit and prior work (particularly 
the tools in Table 1) within that stage. We note that many tools are no 
longer maintained, limiting their practical utility. For a simple survey-
based study, there are many easy to use open and commercial tools 
similar to Google Forms [21]. For custom experiments, jsPsych [13], 
reVISit, and Qualtrics [29] present the most viable offerings—each 
catering to various audiences via differing approaches, as we discuss. 

2.1 Experiment Design 

In the experiment design phase, study designers decide what partici-
pants see or do, and when / under which conditions they see it. We 
separate this phase into two activities: stimulus and experiment design. 
These designs are typically specified via a GUI, a library in a general-
purpose programming language, or a DSL. These choices impact us-
ability (e.g., GUI-based tools can be used by study designers with no 
programming skills) and expressivity (libraries and DSLs are poten-
tially more expressive). Notably, only commercial tools (Qualtrics, 
Google Forms, etc.) provide the means to specify studies via GUIs, 
which may be due to the development effort associated with GUIs. 

Stimulus Design. In most studies, a stimulus is presented to partici-
pants with the intent to elicit a response or behavior. In visualization 
research, stimuli typically take the form of images, text, video, audio 
(for sonification), objects (for physicalization), interactive applications, 
or combinations thereof. Digital stimuli are often designed to be viewed 
on a desktop screen, but other displays, such as AR/VR, large display 
environments, or mobile phones, are also used. In practice, tools that 
support non-desktop environments either are specifically focused on 
doing so (as in Flex-ER’s AR/VR support) or are commercial tools (as 
in Qualtric’s support for mobile). 

Existing user study tools support a range of stimulus customization 
and features (cf. Stimuli in Table 1). Several commercial tools are 
designed to conduct surveys, such as SurveyMonkey [64], and Google 
Forms [21]. Psytoolkit [62] is an open-source tool that also focuses 
on surveys. Although it is typically possible to include images and 
video as stimuli in a survey, they do not allow study designers to embed 
custom stimuli (such as web applications), and instead focus on the 
straightforward creation of form elements. Other tools focus on a spe-
cific type of stimulus, such as network visualizations (GraphUnit [54]), 
images (ETK [67]), 3D surfaces (EvalViz [49]) or a specific modality, 
such as AR/VR (Flex-ER [43]). These tools offer customization options 
within their domain, but forgo arbitrary stimuli. However, their focus 
enables rapid stimulus creation within the domain. Several tools enable 
study designers to integrate custom stimuli, typically in the form of 
bespoke UIs. Some tools enable combinations of custom stimuli with 
more structured form elements (e.g., jspsych [13], Qualtrics [29] and 
reVISit), and others require designers to write custom code for form 
elements (e.g., experimentr [23], FROE [31], Touchstone1 [45]). 

Related to stimulus choice is the decision of how to record responses 
and behaviors. Data is frequently collected via form elements (e.g., 
dropdowns, radio buttons, or text boxes), and is often encapsulated 
as common rating systems (e.g., Likert scales [34]). Recordings of 
user behavior during the study are also common (as interaction logs or 
screen recordings), as well as more explicit user measurements media 
(such as through video or eye tracking). Qualtrics, jsPsych, Evalbench, 
and reVISit automatically log browser events, such as mouse move-
ments or key presses. Survey-centered and domain-specific tools make 
use of knowledge of their domain to automatically record data, whereas 
custom stimuli (typically being unconstrained HTML) require manual 
instrumentation. ReVISit includes automatically instrumented elements 
(forms and Vega programs) and means for instrumenting custom stimuli 
to support post-study replay and analysis. Audio recording is rarely 
supported in the study platforms we surveyed; only jsPsych, Qualtrics, 
and reVISit have built-in audio recording capabilities, although record-
ing could be implemented as part of a custom stimulus in many of the 
tools. Only reVISit offers automatic transcription. 

Factors and Sequence Design. Many studies test different conditions 
(independent variables), which in study design are commonly referred 
to as factors. Typical factors in visualization studies are visual encod-
ings, datasets, or tasks [33]. For example, a study comparing node-link 
diagrams (NL) to adjacency matrices (AM) will vary the factors of 
visual encoding (NL, AM), datasets (e.g., large vs. small, sparse vs. 
dense), and tasks (path finding vs. cluster identification). Two common 
designs use factors within subjects (all participants see all values of a 
factor) and between subjects (participants see a subset of factor values). 
Studies frequently combine within subjects design for some factors and 
between subjects design for others, to create mixed design studies. 
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Google Forms [21] SURVEY N N Y N GUI Y Y Y N N N N Y N N Y 

psytoolkit [62] SURVEY N Y Y N GUI N Y N N N Y N N N Y Y 

ETK [67] DOMAIN N N Y N LIB N N N N N N N N N Y N Images 

EvalViz [49] DOMAIN N N N N LIB N Y Y N N N N N N Y N 3D Surface Visualizations 

Flex-ER [43] DOMAIN N N Y N DSL Y Y N Y N N N N N Y N AR/VR 

GraphUnit [54] DOMAIN N N N N GUI N Y N N N N N N N Y N Network Visualizations 

Evalbench [2] CUSTOM Y N Y N DSL N Y N N N N N N N Y N 

Experimentr [23] CUSTOM N Y Y N LIB N N N N N Y N N N Y N 

FROE [31] CUSTOM N N Y N LIB N N N N N N N N N Y N 

VisUnit [33] CUSTOM Y Y Y N LIB Y Y N N N N N N N Y Y 

Touchstone1 [45] CUSTOM N N Y N GUI N Y Y N N N N N N Y N 

PsychoPy [58] C & S N N Y N GUI+LIB Y Y N N N Y N N N Y Y 

jspsych [13] C & S Y Y Y Y LIB N Y N Y Y Y Y Y N Y Y 

Qualtrics [29] C & S Y Y Y N GUI Y Y Y Y Y Y Y Y N N Y 

Sweetpea [50] N N N Y N LIB N N N N N N N N N Y Y Experimental Design 

Touchstone2 [16] N N N Y N DSL+GUI N N N N N N N N N Y N Experimental Design 

ReVISit 1 [14] C & S Y N N N DSL Y Y N N N N N N N Y Y 

ReVISit 2 C & S Y Y Y Y DSL Y Y Y N Y N N N Y Y Y 

C & S – Custom and Survey, LIB – Library in General Purpose Language, DSL – Domain Specific Language, DSL+GUI – DSL and GUI

Table 1: There are a wide variety of tools for online visualization-based experiments. These range from repurposed survey tools (e.g., Google Forms, 
or similar tools not listed here such as SurveyMonkey [64] ) to domain-specific tools (e.g., GraphUnit [54] for graphs or Flex-ER [43] for VR). 

Once each factor is decided on, designers need to consider the order 
and conditions in which stimuli are presented—the sequence. The 
simplest design is a fixed sequence, wherein all participants see the same 
stimuli in the same order. Fixed sequencing may introduce confounders 
such as order effects (e.g., due to learning) [19]. To address this, it 
is common to (partially) randomize the order in which stimuli appear, 
or in the case of between-subjects studies, randomly show different 
participants different stimuli. However, purely random distribution of 
stimuli may lead to limited coverage when many factors are considered 
with few participants. To improve balance Latin square sequencing is 
often used, which ensures that stimuli will be seen equally frequently 
while controlling for order effects. 

Some studies implement more complex ordering that is not prede-
termined, and instead is dependent on the answers a participant gives 
during the study (e.g., to make the next question harder if the previ-
ous answer was correct). We call such sequences dynamic sequences. 
For example, staircase designs [24, 70] involve iterated presentation of 
stimuli to find, for example, a perceptual threshold of some kind. Such 
dynamic sequencing is rarely supported, and often is implemented ad 
hoc (such as by embedding these designs into the stimuli themselves). 

Some tools specialize in sequence design, while not providing sup-
port for other phases of the study life cycle. Touchstone2 [16] features 
a GUI for creating and sharing sequence designs. Complex sequence 
designs with multiple randomization strategies are creatable via GUI, 
and designs can be exported to configuration files that look similar to 
reVISit’s. Sweetpea [50] is a Python library for sequence design that 
takes in a series of factors and produces experimental sequences, simi-
lar to reVISitPy. Sweetpea includes a rich notion of constraints across 
factors that support more succinct expression of complex experimental 
designs than our current version of reVISitPy. VisUnit [33] supports 
explicitly creating sequences from specified design factors (stimulus, 
dataset, tasks). Sweetpea, Touchstone2, and VisUnit do not support 
dynamic sequences, as their sequences cannot be adjusted based on user 
responses. Like reVISit, jsPsych [13] supports dynamic sequencing via 
designer-defined functions that are called as trials get completed. 

2.2 Debug & Pilot 
Once an initial study has been created and a design is decided, there is 
a phase in which study designers ensure that their stimulus, sequence, 
and data collection all work as intended. Debugging is commonly done 
by designers taking their own study (often many times) to test that 

everything behaves as intended. Efficient debugging requires being 
able to easily browse a study, without needing to take it from beginning 
to end. GUI-based platforms typically provide the means to quickly 
navigate to a specific stimulus or condition, while library-based tools 
often do not provide such support and require developers either to know 
a URL or to take a study from beginning to end. 

Piloting is done with participants who were not involved in the study 
(either via colleagues in so-called “down-the-hall” testing or through 
recruitment of preliminary participants online), and is done to identify 
problems, validate data collection, and collect preliminary data. Such 
preliminary data is often used to conduct a power analysis to estimate 
the number of participants required to find statistical significance of hy-
potheses [9]. Most tools do not provide advanced piloting support (e.g., 
replays). ReVISit’s support for this phase offers an important facet 
of our technical contribution. Specifically, reVISit provides a study 
browser to navigate to different components with a participant view 
that shows a sequence that could be assigned, participant replays, and 
the ability for designers to take their own study to generate data. Some 
tools (e.g., jsPsych) can generate artificial data via simulation, which 
designers can use to identify experimental design problems and test 
analysis methods. ReVISit does not currently support simulation, how-
ever we believe that our DSL will make it straightforward to implement 
such a feature. 

2.3 Data Collection 

The data collection phase begins with recruiting participants whose 
data is planned to be used in the final analysis. Participants can come 
from various sources, such as crowdwork platforms (e.g., Amazon 
Mechanical Turk [28] or Prolific [55]), volunteer-based or gamified 
platforms (e.g., LabInTheWild [59]), and from networks such as mail-
ing lists or social media. Although recruiting is largely orthogonal to 
study design, platforms such as Qualtrics offers (paid) access to par-
ticipants, LabInTheWild provides basic study templates, and Prolific 
and Mechanical Turk have basic survey capabilities. During data 
collection experimenters must mind incoming data, which may involve 
rejecting fraudulent participants, identifying bugs, or examining initial 
data. Some tools have data previews (e.g., Qualtrics, Google Forms, 
and reVISit) that can be used for observability or simple analytics. 

Once collected, this data needs to be stored somewhere. Commercial 
tools typically provide data hosting as part of their service, sometimes 
for a fee. In contrast, non-commercial tools leave data hosting to the 



study designer. For instance, reVISit primarily uses Google Firebase (a 
real-time-focused document database) for storage but does not provide a 
hosted solution. Instead, study designers must set up their own Firebase 
accounts—while the specifics differ, this is broadly typical. 

2.4 Analysis 

There are many sophisticated methods and tools to support the analysis 
phase of a study. As for participant recruiting, analysis tools are largely 
orthogonal to study frameworks. Statistical analysis is well supported 
by a multitude of environments and tools. For qualitative analysis, 
commercial tools (e.g., MaxQDA [69]) are frequently used to help with 
the coding process. Various qualitative analysis tools have been created 
by the visualization community, such as VisTA [17] or CoUX [61]. 
Other tools specialize in event sequence analysis [51] (such as might 
be emitted by reVISit) or in analysis of eye tracking data [7]. While 
reVISit has some analysis capabilities, they are primarily designed 
to serve the debug/pilot and data collection stages—which is aligned 
with reVISit’s design philosophy of providing functionality that is not 
already covered by high-quality open tools. 

2.5 Dissemination 

Faithful dissemination of study procedures, data analysis, and results is 
crucial for making results scrutinizable, reproducible, and ultimately 
building trust in the outcomes. A common approach to disseminate the 
details of a study is to include screenshots of the procedure or exports 
of a survey in a read-only format (e.g., from Qualtrics). However, with 
web-based tools (see “Open Source” in Table 1), study designers can 
share both a link to the experiment as well as the code used to design 
it. Study data is commonly shared via hosting platforms such as OSF 
or GitHub. ReVISit has a unique ability to share the data with the 
study, so that each participant’s actions can be reviewed. For example, 
when including a screenshot of a response, authors can include a deep 
link to the stimulus page with a participant’s actions, as in Fig. 5. We 
emphasize that reVISit is unique in its level of commitment to and 
extensive support of reproducibility and transparency. 

2.6 Relationship to Previous reVISit Versions 

As the name would suggest, this work extends an earlier version of 
reVISit. A system that shares the name with reVISit focused on the 
analysis of user logs [51]. It did not provide study scaffolding, but 
instead explored topics such as event sequence analysis. It is the root of 
ideas for “study rehydration”, i.e., the replay of a participant’s analysis 
session provided in reViSit 2. The reVISit study framework we report 
on here was started in 2022, with funding from the National Science 
Foundation. A VIS 2023 short paper [14] describes the principles 
behind reVISit: a DSL for defining experiments, components that 
contain stimuli, data collection that includes provenance tracking, and a 
process to compile everything into deployable web-based experiments. 
The first version recommended for public use, reVISit 1.0, was released 
in June 2024, followed by a 2.0 release in January 2025. We continued 
to expand on reVISit with crowdsourced think-aloud studies in a CHI25 
paper [11]. The key difference to prior versions is that reVISit now is 
a stable, well-documented, ready-to-use experimental platform, with 
early signs of community adoption (Sec. 5.1). In addition, we make 
several technical contributions (Sec. 1). 

3 SYSTEM TOUR 

Next, we give a tour of ReVISit, highlighting notable features. In 
developing these features, we centered a design goal of making experi-
ment design and deployment as frictionless as possible (for our target 
audience of technical scientists who might not be software engineers), 
while maintaining scientific sovereignty and without redoing what oth-
ers already do well (e.g., participant recruitment, data analysis). 

For sovereignty, ReVISit is deployed as a static web page (ensuring 
that there is no server to maintain). Deploying a static web page avoids 
vendor lock-in (users can just change the website as they see fit) and 
supports long-term dissemination stability (studies are static and do not 
change as reVISit changes unless the designer intentionally does so). 

StudyConfig =      

sequence ::= Block 
components ::= {Name →< Component >} 

importedLibraries ::= LibraryName[] 
baseComponents ::= {Name →< Component >} 

studyMetadata ::= ... 

Block =          

order ::= fixed | random | latinSquare | dynamicθ 

components ::= (Name | Block )[] 

numSamples ::= N+

interruptions ::= (Deterministicθ | Randomθ )[] 

skip ::= SkipCondition[] 

Component = 
compType ::= Markdownθ | Reactθ | Imageθ | Websiteθ | Formθ | Vegaθ | ... 
responses ::= Response[] 

Response ::= Numerical | ShortText | LongText | Likert | Dropdown | Slider 
| Radio | Video | Checkbox | Reactive | Matrix | ... 

SkipCondition ::= BlockConditionθ | RepeatedBlockConditionθ | ... 

Name = Symbol, LibraryName = Symbol, NewElements in for ReVISit 2 
θ denotes arguments, <X> is partial (or complete) definition à la TypeScript 

Fig. 2: The reVISit grammar with configuration details elided. 

For non-repetition, we emphasize that ReVISit is not a database, a 
recruitment platform, a GUI experiment builder, or a single site analysis 
platform. Identifying that these are strengths of others, we design our 
system so that it takes advantage of those extant capacities, following 
recent guidance to “lean on existing technological and social infrastruc-
tures” [3]. For instance, Prolific works well for study recruitment, and 
so we instead support the use of any recruitment platform; statistical 
analysis tools in, e.g., R, are superior to anything we could provide, so 
we focus on compatible exports. 

Complementing these intents is a commitment to sociotechnical 
support, which we do via a mindfully maintained collection of arti-
facts (including ↗ tutorials, documentation, and examples) as well as 
community efforts (such as a help forum and in-person tutorials). 

3.1 The DSL 

The first step in setting up a reVISit experiment, after forking the 
base repo, is to start designing the experiment specification using our 
domain-specific language (DSL) (we give the grammar for this lan-
guage in Fig. 2). The root includes a list of named components that can 
be used in any sequence block, as well as a collection of component 
templates (baseComponents) used to partially define other compo-
nents via inheritance. This language involves composing a collection of 
experimental “blocks” (in sequence). Each block can contain stimuli 
(components) or nested blocks, as well as basic logic for controlling 
the order of components, and more fine-grained control, such as for in-
serting interruptions (such as for attention checks) and whether certain 
blocks should be skipped (such as due to wrong answers). 

The reVISit DSL is a JSON-based DSL [48], in which experiments 
are specified through standalone JSON files. These files are type 
checked through both a JSON Schema validation of the syntax as 
well as a secondary linter which identifies basic specification errors 
such as the presence of un-used components in the StudyConfig. 

Yet, specification through JSON is sometimes noted as being unde-
sirable or messy syntax for DSLs [48]. Moreover, reVISit programs can 
be enormous—with some reaching tens of thousands LOC due to repe-
tition of structures to combine multiple factors. To address these issues, 
we developed a Python wrapper for the reVISit DSL called ↗ reVIS-
itPy. These Altair [68] style bindings allow study designers to make 
use of the full expressivity of general-purpose languages—allowing for 
variables, complicated looping logic, and so on. In the interest of keep-
ing the library’s syntax familiar to visualization developers (who would 
likely also be study designers), we intentionally mimicked Altair’s use 
of structured-like method chaining. 

https://revisit.dev/docs/introduction/
https://pypi.org/project/revisitpy/
https://pypi.org/project/revisitpy/


Echoing how tools like Altair are often used in the context of Jupyter 
notebooks, reVISitPy is designed to work well within notebooks. To 
this end, reVISitPy supports in-notebook previews of the experiment 
and the collected data. Test data can be retrieved from the preview, so 
that data wrangling and analysis can also be prototyped in the same 
notebook—see the appendix or this ↗ example. This supports rapid 
workflows wherein the experiment designer composes a reVISitPy pro-
gram, views the effects of their design, and makes iterative adjustments. 

Some extremely custom designs or those implementing high-level 
constraints (à la Sweetpea [50]) are more straightforward to express via 
direct specification of the JSON DSL. However, the Python bindings 
aim to simplify the process of making small prototypes and simplify 
experimental design more generally by keeping it centered in a sin-
gle computational notebook. For example, during a team retreat, we 
prototyped our JND replication (Sec. 4.1), from dataset generation, to 
stimulus generation (via Altair), to experiment specification, testing and 
piloting, and preliminary analysis, all from within a single notebook. 

3.2 Stimuli 

To a study participant, the most evident part of an experiment is the stim-
uli that they interact with. ReVISit experiments can include a variety 
of types of stimuli, including form elements (numerical inputs, slid-
ers, etc.), markdown files (such as for participant instructions, consent 
forms, and so on), images, and videos. Naturally, any list of prebuilt 
components will be incomplete, and so we support custom components 
by allowing users to supply generic web-components as well as React 
components which can be smoothly integrated into reVISit’s full data 
and provenance tracking capabilities by use of the trrack library [12]. 

However, merely exposing an endlessly customizable component 
takes the focus off of visualization. In experiments—and visualization 
practice more generally—a common way to create visualizations is 
through the use of DSLs, such as Vega [60]. These DSLs simplify the 
specification of often repetitive structures (such as data management 
or scaling code). Echoing this approach, we include Vega programs 
as first-class stimuli, allowing them to be specified directly in the 
reVISit DSL or imported from a separate static file. We automatically 
instrument these programs with provenance tracking, such that the state 
of the Vega signals is recorded as users interact with the programs. Fine-
grained state tracking supports similarly fine-grained participant replay 
(as we discuss below), such as being able to view specific hover states 
and mouse moves. Further, consistent with other custom components, 
we offer a custom Vega signal callback that can be called to set the 
answer inside of reVISit’s reactive responses while using Vega, which 
allows a user to interact with the visualization and click on elements to 
set the answer that will be recorded by reVISit. 

Many experiments use standardized surveys or other common stimuli 
as part of their design—e.g., VLAT. To support this usage, reVISit 
provides a collection of libraries that support various common tasks 
(as in Fig. 3), including demographics questionnaires, color vision 
deficiency tests, or visual literacy tests [41, 56]. 

3.3 Sequence 

The next aspect apparent to a participant is the order in which com-
ponents appear. Each block in our DSL has a defined order in which 
its child components are shown. ReVISit includes affordances for 
specifying the order and relationship between components that support 
rich customization and experimental designs (e.g., between-subjects, 
within-subjects, and mixed designs). 
Fixed order shows components in the order in which they are listed, 

whereas random shows them in a random order (per participant). Yet, 
in studies with limited participants and many conditions, random order-
ing does not guarantee sufficient coverage of the study cases. Latin 
square orderings are commonly used to provide such guarantees [19], 
being particularly useful as a way to mitigate order effects. 

While these strategies cover many different designs, they do not 
capture all possible sequences. Some studies rely on the answers to 
previous questions to determine the next stimulus that will be shown to 
a participant. These cannot be specified in our DSL and require custom 

We include a set of 
libraries that capture 
both common study 

components (a 
demographics 

questionnaire in this 
case) as well reVISit 

specification items, like 
an audioTest that acts 

as a mic check for think 
aloud studies 

Due to different 
condition combos 

only 8/12 components 
are shown for this 

participant 

The sequence as 
a specific 

participant 
would see it 

View that shows 
all components 

This experiment has two 
conditions, control and 
search. The inner loop of the 
latinSquare has two copies 
of search to weight the ratio 
of participants as 2:1. 

Fig. 3: The study summary for our search study replication. Each partici-
pant flows through the experiment, first seeing consent, then introduction, 
and then is sorted into one of three conditions (the fixed subsections of 
the Latin square). This summary can be seen ↗ here. 

logic to implement. To enable more nuanced types of designs we sup-
port dynamic ordering, in which a study designer provides a bespoke JS 
function that is called repeatedly as the participant progresses through 
a block to determine their next task. For example, consider a study 
design where participants see different stimuli based on the accuracy of 
their earlier answers—such as how US-based Graduate Record Exami-
nations (GRE) adaptively alters the difficulty of topic sections based 
on the success rate of previous sections (see Sec. 4.1 for an example). 
Dynamic ordering could be accomplished within a stimulus; however, 
using dynamic functions enables various useful reVISit features (e.g., 
logging, participant replays, or stimuli navigation). 

In addition to linear progression through an experiment, some stud-
ies may require periodically inserted components separate from the 
experiment logic (such as attention checks) or non-linear jumps (such 
as ejecting a participant if they fail a training). Each of these tasks are 
supported by blocks through their interruption and skip logic, respec-
tively. Although these functionalities could be orchestrated through a 
collection of dynamic checks and custom components, we elevate these 
to language-level features to highlight their importance in study design. 

We argue that reVISit can model more diverse study designs than 
alternatives, such as Qualtrics [29] or VisUnit [33]. For example, 
VisUnit lists staircases as a design form that it cannot model. ReVISit 
can model such designs, as in our staircase-based replication in Sec. 4.1, 
which is enabled by our robust native and dynamic sequencing. 

3.4 Study Browser 

Understanding the architecture of a study, such as which blocks are 
contained within which other blocks or which stimuli will be seen by 
what fraction of the population, as well as navigating to specific stimuli, 
are difficult challenges in the debug & pilot phase of an experiment. 
ReVISit addresses these through a study browser, shown in Fig. 3, 
which organizes experiments into a single summative view describing 
the mechanical architecture of the study. The table of contents-like 
structure is situated on the right hand side of the application while in 
“admin” mode, juxtaposed to the rest of the experiment (as in Fig. 5-
A). Clicking on a stimulus instantly navigates to that stage of the 
experiment. For instance, clicking on “255ChartSearch” in Fig. 3 
brings up the specific search stimuli of interest (cf. Fig. 7), thereby 
speeding up debugging. 

https://revisit.dev/docs/revisitpy/examples/example_jnd_study/
https://revisit.dev/replication-studies/255chart-study


The study browser has two views: a “Participant View” (active in 
Fig. 3), which shows the sequence just as a particular participant would 
see it, including the order and the selected subset of trials. Clicking on 
“Next Participant” rebuilds the sequence for another participant, thereby 
enabling experiment designers to check that all sequencing is specified 
correctly. The “All Trials View” makes all components immediately 
accessible, independent of whether they appear in the sequence of a 
particular participants, enabling designers to quickly navigate to each 
component. Finally, the study browser surfaces response data (e.g., 
right or wrong) when replaying a participant run. 

3.5 Data 

After the study is in place and launched, data collection commences. 
ReVISit supports several storage engines, including browser-storage, 
Google Firebase, and Supabase; custom storage engines can be imple-
mented by interested users. We plan to expand our existing storage 
engines to support other common data hosting services in the future. 
In addition, ReVISit includes a variety of different affordances to tend 
to this data across the experiment life cycle. Although we refrain from 
re-implementing mature analysis tools, some analysis steps are better 
situated within the system rather than as an external analysis loop. After 
the experiment, data can be exported (e.g., as JSON or CSV) and used 
in custom analysis workflows. 

The first analysis feature is participant replay, which allows study 
designers to watch individual participant trials. ReVISit’s rich notion 
of provenance allows for straightforward rehydration of study stimuli 
(such as the Vega stimuli described above), such that individual actions 
like keystrokes in a form can be observed, as can be seen in Fig. 5-
A. The timeline and rich event logs at the bottom enable analysts to 
investigate each step a participant took, supporting analysis of the data— 
for instance in our search replication (Sec. 4.3) —as well as debugging 
of pilot studies. These interactions are reified as our timeline view 
(Fig. 5B), which shows a timeline of all of the tasks a participant took 
across an experiment, and also shows responses on tooltip. While we 
record mouse movement, variation in monitor sizes and aspect ratios 
make visualization of mouse movements difficult. 

A related useful form of data for the prototyping phase is the audio 
solicited through think-aloud studies. Think-aloud can be used for 
usability evaluation and insight elicitation [11], such as in our search 
replication (Sec. 4.3). A novel usage would be to allow pilots to 
verbally describe their thought processes as they are doing it—rather 
than requiring them to recollect after the study or take notes. 

Lastly, we provide a collection of simple analytic views that allow for 
quick sanity checking about statistics in the experiment. These include a 
minimalist tabular view for spot checking the data and simple analytics 
views that summarize participant performance by trial. The intent of 
these views is analogous to how Google Forms offers a collection of 
basic summative charts about the collected data as a way to check the 
distribution of things rapidly. 

3.6 Post Study 

After a reVISit study is complete, the work it needs to do is not entirely 
finished. Concerns related to ensuring the long-term accessibility, 
transparency, and replicability of the experiment are central to reVISit’s 
design and so we offer a collection of features to support these tasks. 

The first focus is on the explainability of the experiment, which re-
VISit supports by helping reviewers and other interested parties under-
stand the study and its results. We optionally allow non-verified visitors 
to navigate the experiment without having to fully take the study (as a 
curious reviewer might wish to do)—such as at revisit.dev/replication-
studies/HeatmapJND-study. We also provide an option to deactivate 
data collection so as to avoid collecting data from reviewers or other 
unwanted sources. Study admins can also give access to the same data 
downloads, as well as timeline and replay visualizations, that study 
creators had. Similarly, reVISit enables authors to deep-link into in-
dividual participants’ trials, as we do for all reVISit figures (such as 
Fig. 5), enabling readers to scrutinize the context. 

The second focus is long-term reproducibility. As noted above, the 
intended workflow for reVISit is for study creators to fork the GitHub 
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repository, thereby creating a snapshot of the current version of the 
reVISit code, which will remain stable despite updates to the main 
repository. Additionally, having all of the code required to run the 
study in the same repository, including stimulus, the reVISit tool, and 
the configuration for experiment design, is designed to make future 
replications or modifications to the study simple. Although there are 
vulnerabilities to this architecture—such as library dependencies catas-
trophes [1] or changes in browser functionality—this approach offers 
substantially more straightforward access to experiment stimuli and 
architecture than comparable closed-source alternatives. We intend to 
continue to enrich the suite of features offered in this area, such as au-
tomatically creating archival screenshots and videos of the experiment 
that will be fully resilient to changes in browser technologies. 

4 FIELD TEST: REPLICATIONS 

To demonstrate the utility of reVISit on real-world experiments, we 
replicated three extant studies [18, 24, 26]. We selected these studies 
to demonstrate different aspects of reVISit—for instance, the first 
study demonstrates our dynamic sequence capability. In addition, we 
add new variations to each replication—such as by testing additional 
conditions or leveraging additional data collection modalities—so as 
to not merely replicate but to expand the previous studies. In total, we 
recruited 460 participants for the studies, of which 440 were recruited 
via crowdsourcing, and 20 were visualization design experts recruited 
via social media. All studies were pre-registered on OSF, and are 
available at revisit.dev/replication-studies. In this section, we sketch the 
studies and key results, while focusing on lessons learned as each study 
was executed in reVISit. More details are available in the Appendix. 

4.1 Replication of Ranking Visualizations of Correlation 

We replicated Harrison et al.’s [24] study on just noticeable differences 
(JND) of correlation values in varied visualization techniques. Harrison 
et al. found that different chart forms vary in how precisely participants 
can distinguish two similarly correlated plots of two-dimensional data 
(scatterplots work best), and that the JND is smaller when the correla-
tion values r are higher. We run the study with two already examined 
techniques (scatterplots and parallel coordinate plots) as well as two 
new ones (hexbin plots and sorted heatmaps). We test each condition 
with different correlation values, (see Fig. 4). As in the original study, 
we use 100 points in each condition, except for hexbins, which are 
typically used for larger datasets, where we use 1000. 

https://revisit.dev/replication-studies/HeatmapJND-study
https://revisit.dev/replication-studies/HeatmapJND-study
https://revisit.dev/replication-studies/
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Fig. 5: A participant’s result from our texture study shown in analysis 
mode. (A) Participant replay shows events and navigation options at 
the bottom. (B) The participant timeline gives summary information and 
serves as an entry point. [↗ View Result] 

We selected this experiment because (a) it uses a challenging experi-
mental staircase design that is not typically supported by experimental 
frameworks, and (b) we were interested in expanding the set of tested vi-
sualization techniques. We used reVISit’s dynamic sequencing function 
to implement a staircase design, adjusting follow-up pairs of correla-
tions based on previous responses. We also terminated trials early 
based on statistical tests of performance. We added an attention check 
involving an obvious pair of correlation values (r = 0.01,1) placed so 
that we could detect thoughtless clicks. We recruited 30 participants 
using Prolific for each condition, totaling 240 participants. 

Results. Our experiment replicates Harrison et al.’s findings for scat-
terplots and PCP plots (see Fig. 4). Our results show even narrower 
confidence intervals, which may be attributable to the improved atten-
tion check or to the other advantages of our experiment, such as more 
robust data quality control and a more modern interface. We find that 
hexbin plots are suitable to visualize correlations for large datasets, and 
seem to even outperform scatterplots for low correlation values. How-
ever, several poorly performing participants produced outliers, which 
indicates that hexbins might not be universally understood. Heatmaps 
perform the worst of all stimuli, although not disproportionately, sug-
gesting they may be useful for space-restricted mediums. 

Lessons Learned. For our study design, we opted to run the conditions 
as separate studies on Prolific, rather than assigning conditions via 
reVISit within a single study. An alternative Latin square design within 
one study can become unbalanced based on returned studies on Prolific, 
which we plan to address in the future with a plug-in for Prolific, 
so that a Latin square entry would be made available again when a 
participant returns a study. Separating the conditions into different 
studies granted us more control over participant numbers per condition, 
but came with tradeoffs as we had to duplicate study configurations 
across the conditions. Although we could have leveraged reVISitPy 
to generate multiple study configurations and reduce overhead, more 
built-in support for between-study design may be useful. 

We implemented the staircase procedure using the dynamic function-
ality in reVISit, rather than embedding logic directly in the stimulus, as 
the original study did [23]. ReVISit’s dynamic functions allowed us to 
develop, debug, and pilot studies consistently across all conditions and 
maintain a clean and centralized implementation of the staircase logic. 

4.2 Replication of Pattern Design Study 

Next, we replicated He et al.’s study [26] on designing black-and-white 
patterns for visualization. They asked visualization experts to create 
and then rate designs for different patterns (geometric and iconic) and 
chart types (bar, pie, or map). The authors then coded participants’ 
responses and categorized the goals into those related to readability and 
aesthetics, and summarized corresponding design strategies. 

We chose to replicate this study to show that reVISit (a) supports a 
mixed study design (between-subject design on chart type and within-
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Fig. 6: Relationship between interaction events and BeauVis [25] scores 
in our pattern study. Each pair of points shows a single participant. 

subject design on pattern order) and (b) that existing tools can be 
integrated into the reVISit framework. In contrast to the previous 
study, we fully instrumented the stimulus so we could analyze design 
strategies and reason about the number of interactions associated with 
good or bad designs. We judged each design internally (via the BeauVis 
scale [25]), in place of a follow-up crowdsourced study as the original 
did. We recruited 20 participants (design experts) from social media. 

Results. Our results replicated He et al.’s in finding similar design 
goals and design strategies. Participants’ design goals focused on 
distinguishability (15×), visual clarity (5×), semantic association (5 
×), visual pleasure (7×), and visual balance (3×)—see Fig. 6 for a 
distribution of scores. Two new strategies emerged: one participant 
attempted to create new shapes by playing with the basic geometric 
shapes to create new shapes, and another designer experimented with 
dot density to create different shades of gray, à la halftoning. 

Through the reVISit replay interface, we discovered common strate-
gies that designers use. A typical workflow involved an initial explo-
ration of different default patterns, followed by iterative refinement 
of individual patterns, and finally testing and refining the design with 
different datasets (e.g., ↗ as this participant did). For iconic patterns, a 
commonly observed behavior was testing different icon styles (like ↗ 
this participant did). We noticed these design strategies only by using 
participant replay, highlighting the replay’s value in uncovering subtle 
yet impactful design behaviors. 

Lessons Learned. In our study configuration, we used a Latin square 
to order components. However, we later realized that this approach is 
not well-suited for studies recruiting participants via social media, as 
we did. A reVISit Latin square is calculated based on the participants 
who start the study, rather than those who finish it—each initiated study 
takes an entry from the Latin square. However, many social media 
users click on the study link but do not complete it, leading to an 
imbalance between conditions. Although study designers can manually 
reject incomplete entries to rebalance, we plan on adding a timeout 
mechanism that automatically rejects incomplete entries and returns 
their entries to the Latin square. We recommend that studies with small 
sample sizes or recruiting via social media use random orderings. 

Instrumenting an existing interactive visualization tool with Tr-
rack [12] to enable full rehydration required considerable effort. To 
support replay, we needed to capture every user interaction and recon-
struct the visual state of the application from the captured provenance 
data, which required building a stable history management system. 
Most existing visualization libraries, however, do not support such 
functionality [73]. To lower the burden when using a legacy system, a 
combination of screen capture and logging could reduce the technical 
burden while achieving most of the functionality of full rehydration. 

4.3 Replication of Search in Visualization Study 

Finally, we replicated Feng et al.’s study [18] on search functionality 
in interactive visualizations. The study involved three visualization 
types, each tested under two conditions: (a) with search functionality 
and (b) without it. Participants were asked to analyze the visualization 
and document their findings. The study tracked their interactions, 
including total time spent on each visual element, whether they used the 
search function (if available), and whether their interactions involved 
searched items. The study found that the presence of text-based search 
influenced participants’ information-seeking behavior. Specifically, 

https://revisit.dev/replication-studies/pattern-design-study/V3ZPZStsZmxBWDNta2p4MyttU1dJZz09?participantId=dce48040-7493-4d9f-a681-2a5726962ef2
https://revisit.dev/replication-studies/pattern-design-study/V3ZPZStsZmxBWDNta2p4MyttU1dJZz09?participantId=8fb95e0a-c455-42e5-8048-b28dc7b56230
https://revisit.dev/replication-studies/pattern-design-study/V3ZPZStsZmxBWDNta2p4MyttU1dJZz09?participantId=dce48040-7493-4d9f-a681-2a5726962ef2
https://revisit.dev/replication-studies/pattern-design-study/V3ZPZStsZmxBWDNta2p4MyttU1dJZz09?participantId=dce48040-7493-4d9f-a681-2a5726962ef2
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Fig. 7: Replication results from the search study align with prior findings 
(not shown), suggesting that while participants tend to interact with similar 
numbers of items, when participants engage with items highlighted during 
search, they tend to interact with them for longer. 

search functionality encouraged users to actively seek individual data 
points and spend more time examining details within the data. 

We chose to replicate this study because (a) it utilizes interaction 
logging and (b) it elicited information about participants’ process during 
the task, but was constrained to text-based input after the exploration 
task. We alternatively elicit think-aloud data from participants during 
the task in our replication. We follow the original study design by 
replicating two of the three visualizations with minor modifications—a 
bubble chart, and NYT’s “255 charts” [32]. The original study was 
implemented using vanilla JS and D3. We copied over the original 
code for 255 charts into reVISit using a website component, whereas 
we re-implemented the Bubble Chart in React. We recruited 99 and 93 
participants for the Bubble and 255 charts conditions respectively after 
applying the original study’s minimum interaction exclusion conditions. 

Results. Our experiment replicates Feng et al.’s [18] findings, in 
that participants in both conditions explored similar numbers of items 
(Fig. 7). However, the main effect of items highlighted in search being 
engaged with for longer also holds across both conditions. For example, 
in the Bubble visualization, items highlighted by search were statis-
tically significantly viewed longer (M(ean) = 7.00s) than those not 
highlighted (M = 2.92s) via mouse click. Similarly, in the 255 charts 
visualization, search-highlighted items were also statistically signifi-
cantly viewed longer (M = 7.67s) than non-search items (M = 2.55s) 
among search users. 

Lessons Learned. ReVISit’s provenance tracking allowed us to mea-
sure where/how-long participants were interacting, but also allowed 
us to recreate their exploration session for deeper qualitative insights. 
Combined with the audio-enabled think-aloud protocol, this led to 
several new insights. For example, we can observe how participants 
“orient” themselves in the visualization: ↗ “So, this one is relatively 
small, the circle. And it looks like it’s an orange circle, which would 
appear that it’s on the higher end of earnings for people that attend 
this school”. It also confirmed a hypothesis from the original paper: 
that people would often use search to examine data that was personally 
relevant to them (↗ in this case, particular industries). 

5 REFLECTION 

Next we reflect on the design of our system. To do so we interviewed 
users of reVISit and did a heuristic analysis of the system. 

Interviews. We conducted a semi-structured interview study with re-
searchers who have used reVISit in a completed study. Although 
reVISit has been used many times [10, 11, 42, 46], there is often an 
overlap between the maintainer of the system and the researchers run-
ning the study, in part because of our persistent community-centered 
outreach strategy. All participants were current PhD students who have 
run multiple user studies as part of their PhD, have run at least one 
study with reVISit, and are not part of the reVISit development team. 
We refer to participants as PX and “quote them”. 

Technical Dimensions (TDPS). We conducted a close reading of re-
VISit via Jakubovic et al.’s “Technical Dimensions of Programming 

Systems (TDPS)” [30]. TDPS is a collection of dimensions (à la Cog-
nitive Dimensions of Notation [22]) by which to understand systems 
across 7 clusters of dimensions. The first author characterized how 
reVISit addresses each dimension, which was subsequently reviewed 
by two other authors. We use McNutt et al.’s [47] cluster descriptions. 
We elide Conceptual (as it is broadly covered in our discussion of the 
DSL) and Complexity (which largely overlaps with notation). 

5.1 Findings 

Interaction. Which loops in the system are overlapping and how far 
apart are the corresponding gulfs of evaluation? A common problem 
in developing user study prototypes is wide feedback loops during the 
development and testing of a study. Our study browser, as well as 
our development environment, is primarily aimed at tightening these 
feedback loops. After forking our repo, designers are met with a full 
development environment (via their choice of IDE, such as VSCode). 
P2 this found helpful: “it was also super helpful that no setup is re-
quired, [...] auto refreshes on saves and stuff: The ideal development 
situation that’s already there”. A common slow loop in other systems 
is to have to walk through the study in its entirety to debug parts of 
the sequence, whereas our study browser supports quick sequence 
navigation and therein rapid stimuli iteration. 

ReVISitPy has its own unique feedback loops. When used to gener-
ate configurations, there may be a wide feedback loop between generat-
ing a configuration in a notebook, copying the generated configuration 
into a project, and running the project to view changes. To tighten 
this feedback loop, reVISitPy can preview the study within a notebook, 
ensuring the configuration is appropriate before leaving the notebook. 
However, additional exploration of desired affordances during the pro-
totyping phase is useful future work. 

An often overlooked interaction with study frameworks is with their 
documentation, examples, and tutorials. As part of our focus on commu-
nity, we strive to have accessible documentation, along with examples 
covering a range of functionality (inspired by the sprawling D3 example 
gallery ecosystem [71]), and descriptive tutorials for more complex 
concepts. For instance, P2 found our data storage setup tutorial helpful, 
saying that they “100% had to use the guide to be able to remember 
what to do”; however, “I thought the guide was really good”. Similarly, 
P3 recalled that “I mainly learned by using the documents on the web-
site and API documents.” No documentation is perfect, but we continue 
to adapt it to the needs of our user community. 

A key design decision was to task study designers with using a DSL 
to specify experiments, in contrast to a GUI (as Qualtrics does), which 
likely would have radically tightened the design loop. Although there 
is substantially higher technical complexity in using a DSL, it makes 
many more designs possible than what we might have designed for in 
building a GUI. Echoing Alan Kay: “Simple things should be simple, 
complex things should be possible” [4]. While future work might 
explore a GUI, we suggest that centering the possible (and valuing the 
technical proficiencies of our design-for audience) is essential. 

Notation. What notations are present and how do they interrelate? Re-
VISit’s primary notation is the JSON DSL (which every study interacts 
with), complemented by several optional ones. Our DSL is designed to 
be simple and highly composable, with the only syntactic abstraction 
being baseComponents, as indicated in Fig. 2. 

Such simplicity can be misaligned with the expected simplicity of 
some experiment designs. As discussed in Sec. 3.1, config files can be 
very large due to repetition of structures and components for a variety 
of factors. P2, who needed to make a 12k LOC file, questioned “I 
don’t know if what I’m doing is just a really rare experimental de-
sign. It doesn’t sound it from saying it in English, but then I think it 
kind of ends up being fairly orthogonal to the way the sequence is 
set up”. ReVISitPy attempts to address this problem by offering a 
greater degree of abstraction than is present in the DSL. The choice 
of transferring complexity away from the primary notation (the DSL) 
and into a secondary notation (reVISitPy/Python) was intended to keep 
the DSL simple, as most studies would not need the complex features 

https://revisit.dev/replication-studies/bubblechart-study/LzE2MTl4ZVRMTk5nSFlNYmd1ZDhjZz09?participantId=d90ad824-3bc1-4b7d-8740-38827c7f86ab
https://revisit.dev/replication-studies/bubblechart-study/LzE2MTl4ZVRMTk5nSFlNYmd1ZDhjZz09?participantId=d90ad824-3bc1-4b7d-8740-38827c7f86ab
https://revisit.dev/replication-studies/bubblechart-study/LzE2MTl4ZVRMTk5nSFlNYmd1ZDhjZz09?participantId=d90ad824-3bc1-4b7d-8740-38827c7f86ab
https://revisit.dev/replication-studies/bubblechart-study/LzE2MTl4ZVRMTk5nSFlNYmd1ZDhjZz09?participantId=d90ad824-3bc1-4b7d-8740-38827c7f86ab
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that reVISitPy enables, while also empowering users who do need such 
functionalities. We forwent implementation of common abstractions 
(such as loops and variables) to avoid maintaining a full programming 
language. Instead, we ensure that our DSL is highly composable, 
allowing for complex designs via reVISitPy or other custom solutions, 
with the tradeoff of increased difficulty in generating the configuration. 

Apart from the DSL, studies may utilize secondary notations for 
construction of stimuli—such as markdown or React, as well as any 
iframe embeddable content. Many stimuli interact with the DSL to 
access parameters, answers, or provenance data. To create custom 
stimuli, P1 used multiple notations, some of which they had no prior 
experience with. They pointed out that this increased the learning curve: 
“You’re also learning React and D3 and JavaScript and a little bit of 
Firebase”. The many possible notations that are usable in conjunction 
with reVISit widen the range of possible stimuli, but also result in a 
steeper learning curve and inherited complexity of such notations. 

Errors. What are they and how are they handled? Errors within reVISit 
are handled differently depending on the source of the error. Errors 
within our primary notation, the DSL, make rendering and compiling 
the study impossible, increasing the importance that study designers 
can quickly identify and fix these errors. Warnings about DSL errors 
can originate from two sources. The first is from automated validation 
of our JSON schema. The second is application-specific errors which 
the system throws, such as trying to use a baseComponent which does 
not exist. In both cases, errors are immediately surfaced and shown 
as errors within the system with an error message. However, some 
errors may be difficult to identify via this message, especially errors 
that originated from schema validation. P3 noted, “it would be better 
if that was a little bit more straightforward about exactly what part is 
broken”. However, P3 also pointed out the increased support that code 
editors can give to identify such errors, saying, “I use VS Code for 
opening the JSON. And if there are grammar mistakes, then VS Code 
itself reveals which part is wrong. That was also helpful when the file 
was broken.” ReVISit surfaces lint-like warnings for stylistic usage 
problems—for example, components that are defined but not used yield 
a warning. However, our linting is limited to programmatic problems in 
the DSL, and does not consider the semantics of an experimental design 
(e.g., confounders). Although reVISit puts a number of experimental 
designs within reach, it does little to help ensure that the experimental 
designs themselves are good outside of these practices. For instance, an 
experiment may unintentionally introduce learning effects by always 
presenting a fixed order of chart stimuli that escalate in complexity. 
In future work, it would be useful to explore automated experiment 
evaluation and the effects it would have on experimental design. 

Errors that occur outside of the DSL can be more difficult to identify. 
ReVISit surfaces errors thrown by React components to avoid complete 
application crashes, but does not have such functionality for iframes. 
Errors can be surfaced in the development environment itself, as with 
an error P1 ran into: “when I tried to import this [math library] into 
reVISit, it was telling me about some random number generating library 
that is outdated that revisit does not accept.” Errors such as this one, 
which often stem from library version conflicts, can be challenging to 
fix even for users with a background in web development. We could 
avoid such errors by dictating the development environment (e.g., by 
allowing only some packages or using a GUI), however this is in tension 
with our experimental sovereignty goal: some things may be harder, 
but more things will be possible. 

Customizability. How can programs be modified? Easy replication 
and modification of studies is central to reVISit’s focus on improving 
reproducibility in user studies. Our core GitHub repository comes with 
a collection of example studies, such as a replication of Cleveland-
McGill [8], in a manner that supports opportunistic programming-style 
reuse [6]. Both the experiment design (via the DSL) and the stimuli are 
available and modifiable. The same is true for public reVISit studies, 
such as those run by Lisnic et al [42], which can be reproduced or 
modified easily. Studies maintain the version of reVISit when forked 
(unless manually merged), ensuring that the study continues to operate 

properly in spite of continued development on reVISit. 
Additionally, as study designers fork the entire codebase, core func-

tionality of the tool is visible and changeable. P1 used the open nature 
of the core code as a learning tool, observing “that’s the benefit of 
having all the code base up there. If there’s something that I don’t un-
derstand, I can always just try to find its source”. P2 and P3 both took 
this a step further, editing the core code to match certain desired behav-
ior for their studies, with P2 saying “if I need to change something in its 
guts, I can do that, which is fun, as opposed to something more closed”. 
Lisnic et al. [42], for example, modified the core code to host a “↗ 
demonstration page” for their project, including the study, its results, 
and a sandboxed version of their stimulus. Viewing or modifying core 
code was not originally intended behavior, and cannot be expected from 
study designers without a strong technical background. However, for 
those with the skills required, the core code can prove a valuable tool to 
accompany documentation and allow for a high level of customization. 

Adaptability. What socio-technical (e.g., learnability) dimensions are 
considered? ReVISit is primarily directed at the visualization com-
munity, but has been designed with the intention of being usable for a 
wide range of studies, including from fields with less uniform technical 
backgrounds (e.g., psychology). However, from our interviews (and 
experiences), reVISit is currently most useful for those with a program-
ming background (inheriting learning curves from React or TypeScript). 
Taking advantage of many of the unique and valuable features within 
reVISit, such as application provenance tracking or reVISitPy, requires 
programming knowledge. Our choice to avoid GUI approaches (for 
the time being) is partially to blame for this learning curve. P3 pointed 
out that “there are some people that do not have the computational 
knowledge of web designing. It’s really difficult for me to suggest [to 
them that] they use revisit, because [..] you need to tune actual code, 
compared to Qualtrics or those web based survey systems”. 

One approach we have taken to mitigate the learning curve is via 
community outreach, which has been a focus since the first stable re-
lease. We have held tutorials on reVISit at VIS’24, CHI’25, EuroVis’25, 
Georgia Tech, University of Utah, UNC Chapel Hill, and are scheduled 
to hold a tutorial at VIS’25. We also have an active Slack team with 
public channels for users to get help and make suggestions. 

6 CONCLUSION 

ReVISit 2 seeks to simplify the process of designing, debugging, de-
ploying, and disseminating experiments in visualization research and 
related fields. Through a four year cycle of community engaged work 
we have developed a platform that we believe drastically simplifies the 
experimental process, especially for the kind of sophisticated studies 
that are increasingly commonplace in visualization and HCI. As part of 
this work, we developed a range of novel contributions to experiment 
infrastructure, including a sophisticated DSL and a Python-based exten-
sion that can accomplish more diverse study designs than comparable 
frameworks, notebook-based prototypes, provenance tracking and asso-
ciated participant replay, and advanced stimuli, such as Vega and React 
programs. To demonstrate these contributions (and the robustness of 
reVISit), we conducted a trio of replication studies, which we used (in 
tandem with a small interview study) to reflect on our design choices. 

This work is not the end of reVISit’s story. There are various ad-
ditional improvements to the experiment life cycle to explore, new 
communities to support, and limitations to address. For instance, Re-
VISit is primarily designed for visualization research, and is focused by 
the particular research goals of the research team—although we made 
efforts to be expansive in our designs and be informed by a variety of 
stakeholders from around the visualization community. However, we do 
not address concerns held in related domains, such as games [57] or so-
cial robots [66]. Similarly, reVISit is currently limited to desktop-based 
web browsers, precluding studies in mediums like mobile, watchfaces, 
or AR/VR. While many such studies can be replicated in web browsers, 
native support would be preferable. 

Through this work, and our continued work on reVISit, we hope to 
raise study quality and reproducibility for the visualization community 
and make it easier to investigate rich empirical phenomena. 

https://vdl.sci.utah.edu/viz-guardrails-study/
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The code for reVISit can be found at ↗ github.com/revisit-
studies/study. All documentation, examples, and tutorials can be 
found at ↗ revisit.dev. A demo with example studies is at ↗ re-
visit.dev/study. The study replication code is at ↗ github.com/revisit-
studies/replication-studies, and the full replication studies and their 
data are available at ↗ revisit.dev/replication-studies. We also provide 
an appendix with additional analysis for all replications, and a separate 
repository containing the data and the analysis code for the replica-
tions at ↗ github.com/revisit-studies/replication-studies-analysis. Pre 
registrations for each study can be found at ↗ https://osf.io/e8anx/. 
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