Visualizing Biomolecular Data with the Caleydo Framework

Alexander Lex

Graz University of Technology, Austria

My Background: Austria

Our Institute

Institute for Computer Graphics and Vision Staff of about 80 people 4 Professors, 16 Post-Docs, 50 PhD students

Computer Vision Group:

Prof. Horst Bischof

Computer Graphics Group:

Prof. Dieter Schmalstieg

Research Areas

Augmented Reality

Multi-Display Environments

Volume Rendering / Medical Visualization

Information Visualization and Visual Analytics

That's what I'm talking about today!

InfoVis Research Topics

- 1. Visualization for biomolecular data
- 2. Connecting heterogeneous data sets

Find new visualization techniques and develop software that helps to understand the growing amounts of data in the life sciences

THE CALEUDO PROJECT

What is Caleydo?

Visualization software developed with two goals:

- Platform for creating novel visualization techniques
- Tool that should actually help biologists

Features

Various visualization techniques for tabular data and pathways

Runs on Windows and Linux (Mac yet to come)

Analytical features:

R and WEKA interfaces

Native clustering

Fold Change, T-Tests, Variance Filters

Numerous Techniques

10

Linked Browser

Connected to major medical web databases

PubMed, Entrez, KEGG, BioCarta, GeneCards...

VISUALIZATION FOR BIOMOLECULAR DATA

Research Topic 1

Heat Maps

Common representation

Color coded magnitude of value

Filtering and clustering used

Problem:

do not scale well

Solution:

hierarchical approach

[Lex, PacificVis 2010]

HIERARCHICAL HEAT MAP

Works well, but...

Tables often have homogeneous subgroups of dimensions

e.g., replicates, time-series, genotypes

Common task for multidimensional data:

Compare those groups

Traditional approach:

Filter, cluster all, visualize with Heat Maps!

Clustering Inhomogeneous Data

The Problem:

Clustering all dimensions at once obscures relations in homogeneous groups

The Solution:

Divide & Conquer!

[Lex, InfoVis 2010]

MATCHMAKER

Clustering Inhomogeneous Data

Let's treat the groups separately!

Related Problem: Comparing Clustering Algorithms

Each run is one homogeneous group

Choice of algorithm, parameters and distance measures are important

No good quality metrics for clustering algorithms

Visual assessment is best solution

The Process

1,1	1,2	1,3	1,4	1,5	1,6	1,7
2,1	2,2	2,3	2,4	2,5	2,6	2,7
3,1	3,2	3,3	3,4	3,5	3,6	3,7
4,1	4,2	4,3	4,4	4,5	4,6	4,7
5,1	5,2	5,3	5,4	5,5	5,6	5,7
6,1	6,2	6,3	6,4	6,5	6,6	6,7

The Process

1,1	1,2
2,1	2,2
3,1	3,2
4,1	4,2
5,1	5,2
6,1	6,2

1,3	1,4	1,5
2,3	2,4	2,5
3,3	3,4	3,5
4,3	4,4	4,5
5,3	5,4	5,5
6,3	6,4	6,5

1,6	1,7
2,6	2,7
3,6	3,7
4,6	4,7
5,6	5,7
6,6	6,7

The Process

Alexander Lex

23

Immediate Result

Using Splines

Using Pipes

Alexander Lex

28

Example: Cluster Algorithm Comparison

The next step: Abstraction

(Clustered) Datasets have homogeneous and inhomogeneous regions

No sense in wasting space for homogeneous parts

Use best visualization technique for each part and task!

[Lex, InfoVis 2011]

VISBRICKS

What is a Brick?

Shows part of data set

Multiform property:

different levels of abstraction

different visualization techniques

Two types of bricks:

Dimension bricks

Cluster bricks

Arrangement, Dimensions Bricks

Added Cluster Bricks

Examples for Bricks

Dimension Bricks
Cluster Bricks

Exploring Details

[Lex, PacificVis 2010]

PATHWAY EXPLORATION CALEYDO BUCKET

Pathway Visualization Goals

- 1. Map gene expression of multiple samples
- 2. Show the relations between pathways

How to manage all these?

CONNECTING HETEROGENEOUS DATA SETS

Research Topic 2

Heterogeneous Data Analysis

Massive amounts of data

Different abstraction levels

Different sources

Different formats

[Streit, CoVis 2009]

How to integrate data in a seamless analysis session?

[Streit, TVCG 2011]

GUIDANCE ACROSS MULTIPLE DATA SOURCES

Super Application?

Expects a Super Application that can visualize everything

Not Feasible! Solution: use existing applications

Downsides:

not integrated

no highlighting, linking, etc.

Can we solve this?

[Waldner, GI 2010] – best paper award

VISUAL LINKING ACROSS APPLICATIONS

Visual Links Across Applications

Alexander Lex

[Steinberger, InfoVis 2011]

CONTEXT-AWARE VISUAL LINKS

Simple Highlighting

Traditional Visual Links

Alexander Lex

Context-Aware Visual Links

Alexander Lex

Kegg Pathway

Kegg Pathway

Multiple Biocarta Pathways

Caleydo

How it works

Alexander Lex

PLANNED WORK HERE AT CBMI

Project Title Ideas:

OI – Omics Integrator

Frazzlomics

Wyee

Vision: Integrated Visualization of Multiple Datasets from Firehose

- Analyze consistency of grouping
 across datasets
 between different results (e.g. 3 or 4 clusters?)
- 2. Analyze relations between grouping and structural variation data
- 3. Explore relations between pathways and groups

Showing Relationships

Integrating Pathways

Thank You! Contributors:

Marc Streit

Prof. Dieter Schmalstieg

Hans-Jörg Schulz

Manuela Waldner

Markus Steinberger

Heidrun Schuhmann

Christian Partl

Thomas Geymayer

Bernhard Schlegl

Werner Puff

Michael Lafer

Jürgen Pillhofer

Prof. Kurt Zatloukal

Karl Kashofer

Helmut Doleisch

Heimo Müller

Stefan Sauer

Willhelm Steiner

