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research requires 

understanding data

but there is so much of it…
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What is important?

Where are the connections? 
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Data Visualization

… makes the data accessible

… combines strengths of humans and computers

… enables insight

… communicates
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THREE TOPICS
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Cancer Subtype Analysis
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Pathways & Experimental Data
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Managing Pathways & 

Cross-Pathway Analysis
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Who am I?

PostDoc @ Harvard, 
Hanspeter Pfister’s Group

PhD from TU Graz, Austria

Co-leader of
Caleydo Project
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What is Caleydo?

Software analyzing molecular biology data

Software for doing research in visualization

developed in academic setting

platform for trying out radically new visualization 
ideas

Quest for compromise between academic 
prototyping and ready-to-use software 
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What is Caleydo?

Open source platform for developing 
visualization and data analysis techniques

easily extendible due to plug-in architecture

you can create your own views 

you can plug-in your own algorithms
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CANCER SUBTYPE 

VISUALIZATION

Caleydo StratomeX
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Cancer Subtypes

Cancer types are not homogeneous

They are divided into Subtypes

different histology

different molecular alterations

Subtypes have serious implications

different treatment for subtypes

prognosis varies between subtypes
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Cancer Subtype Analysis

Done using many different types of data,

for large numbers of patients.
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Goal: 

Support tumor subtype characterization

through 

Integrative visual analysis 

of cancer genomics data sets.
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Stratification

P
a

ti
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ts

Tabular Data

Candidate Subtypes

Genes, Proteins, etc.
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Stratification of a Single Dataset

Cluster A1

Cluster A2

Cluster A3
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Subtypes are identified 
by stratifying datasets, e.g.,

based on an expression pattern

a mutation status

a copy number alteration

a combination of these
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Stratification of Multiple Datasets
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Cluster A1

Cluster A2

Cluster A3

B1

B2

Tabular
e.g., mRNA

Categorical,
e.g., mutation status



Stratification of Multiple Datasets

Cluster A1

Cluster A2

Cluster A3

B1

B2

Tabular
e.g., mRNA

Categorical,
e.g., mutation status 23
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Clustering of 
mRNA Data

Stratification on 
Copy Number Status

Many shared Patients



Stratification of Multiple Datasets

Cluster A1
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B1

B2

Tabular
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Categorical,
e.g., mutation status 25



Stratification of Multiple Datasets

Cluster A1

Cluster A2

Cluster A3

B1

B2

Dependent Data,
e.g. clinical data

Dep. C1

Dep. C2

Tabular
e.g., mRNA

Categorical,
e.g., mutation status 26
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Survival data in 
Kaplan Meier plots
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Detail View



29Dependent Pathway
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31
Stratification based on 

clinical variable (gender)



How to Choose Stratifications?

~ 15 clusterings per matrix

~ 15,000 stratifications for copy number & 
mutations

~ 500 pathways

~ 20 clinical variables

Calculating scores for matches

Ranking the results
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Query column Result column

Ranked Stratifications

Considered
Datasets



Algorithms for finding..

… matching stratification

… matching subtype

… mutual exclusivity

… relevant pathway

… stratification with significant effect in survival

… high/low structural variation

34



35

Live-Demo!

http://stratomex.caleydo.org

http://enroute.caleydo.org/


PATHWAYS & 

EXPERIMENTAL DATA

Caleydo enRoute
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Experimental Data and Pathways

Cannot account for variation found in 
real-world data

Branches can be (in)activated due to 

mutation,

changed gene expression,

modulation due to drug treatment,

etc.
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Why use Visualization?

Efficient communication of 
information
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Experimental Data and Pathways

[Lindroos2002]

[KEGG]
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Five Requirements
Ideal visualization technique addresses all

Talking about 3 today 
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R I: Data Scale

Large number of experiments

Large datasets have more than 500 experiments

Multiple groups/conditions

41



R II: Data Heterogeneity

Different types of data, e.g.,

mRNA expression numerical

mutation status categorical

copy number variation ordered categorical

metabolite concentration numerical

Require different visualization techniques
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R V: Supporting Multiple Tasks

Two central tasks:

Explore topology of pathway

Explore the attributes of the nodes 
(experimental data)

Need to support both!
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Pathway View
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Pathway View

On-Node Mapping

Path highlighting with Bubble Sets [Collins2009]

IGF-1

low high
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enRoute View
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enRoute View
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Experimental Data Representation

Gene Expression Data (Numerical)

Copy Number Data (Ordered Categorical)

Mutation Data
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enRoute View – Putting All Together
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CCLE Cell lines & Cancer Drugs

50Analysis by Anne Mai Wasserman



MANAGING PATHWAYS & 

CROSS-PATHWAY ANALYSIS

Collaboration with AM Wassermann, M Borowsky, 
M Glick @NIBR
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Pathways

Partitioning in pathways is artificial

Purpose: reduce complexity 

“Relevant” subset of nodes and edge

Makes it hard to

understand cross-talk

identify role of nodes in other pathways
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[Klukas & Schreiber 2006]



Solution: Contextual Subsets
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Solution: Contextual Subsets
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Levels of Detail
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Experimental 
data highlights

Thumbnail 
showing paths



How to Select Pathways?

Search Pathway

Find pathways that contain focus node

Find pathway that is similar to another one
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Ranked 
pathway list

Datasets

Selected Path



Integrating enRoute
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Video!

http://enroute.caleydo.org

http://enroute.caleydo.org/


More Information

http://caleydo.org
Software, Help, Project Information, 
Publications, Videos
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http://caleydo.org/
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