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The purpose of computing is insight, not numbers.
- Richard Wesley Hamming

visualization pictures

- Card,   Mackinlay,   Shneiderman
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[D’Hont et al., Nature, 2012]4



Good Data Visualization
… makes data accessible

… combines strengths of 
humans and computers

… enables insight

… communicates



Purpose of Visualization

CommunicationOpen Exploration

[Obama Administration]



Research Approach

Problem Driven
Solving a domain problem of 
collaborator

Complex, targeted systems

Help answer important questions

What characterizes a cancer subtype?

Which drug works for these patients?

Visualization Application

Technique Driven
Solving a general visual analysis 
problem

Broad application

General questions

How to visualize many sets?

How to make rankings interactive?

Visualization Method



Set VisualizationMulti-Attribute 
Rankings

Multivariate Networks
Pathway Analysis

Techniques Domain Solution

Lay Users Expert Analysts

Content





Rankings[InfoVis ‘13]

Best Paper Award



Rankings are 
popular
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Goal

Intuitive
Interactive

Multi-Attribute
Ranking Visualization

To Create
Refine
Explore
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Support Multiple Attributes
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Harvard,	  USA

Oxford,	  UK
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Rank

2.

5.
4.
3.

1.

ScoreA B C

Score	  =	  f(A,	  B,	  C)



Combiner functions: f(A,B,C)

(Weighted) sum
Score = wa A + wb B + wc C

Maximum
Score = max(A, B, C)

Product
Nesting
…

àSerial

àParallel

àComplex
Combiners



Serial Combiner
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wa A	  	  	  	  	  	  	  	  +	  	  	  	  	  	  	  	  wb B	   +	  	  	  	  	  	  	  wc C

(as Stacked Bar)



Serial Combiner
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Serial Combiner
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Flexible Mapping of
Attributes to Scores
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Compare Rankings



Bump Charts
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Bump Charts
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Video showing:
• Creating snapshot for comparison
• Play with weights
• Show delta
• Select by clicking on slopegraph



http://lineup.caleydo.org
http://caleydo.github.io/lineup.js/
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UpSet
Visualizing Intersecting Sets

[InfoVis’14]
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School
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School Power Plant



Evil

35

School Power Plant



Evil
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School Power Plant



Evil
Blue Hair?
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School Power Plant



Evil

Duff Beer?

Blue Hair?
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School Power Plant



39[D’Hont et al., Nature, 2012]
[Wiles et al., BMC Systems Biology]

[Neale et al., BMC Genome Biology, 2014]

[Gibbs et al., Nature, 2004]
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Set Vis Goals

1. Efficient visual encoding
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3. Visualize attributes 

2. Creating complex 
slices of a dataset

vs.



Visualizing Intersections Visualizing Properties

Attribute Details

Element List & Queries

[Movie Lens Dataset]



Visualizing 
Intersections
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A B C Universal Set
A

B C
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A B C
A

B C

Universal Set
Must

Must Not
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A B C Cardinality
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Plotting Attributes

48



A B C

Additional Plots

Deviation Attributes

How surprising is the size of an intersection?
What’s the distribution of an 
attribute in an intersection?
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Action-
Comedy

Drama-
Comedy
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Sorting
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A B C

Which is the biggest intersection?
Sort By: Cardinality
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A B C

Which is the most ‘surprising’ intersection?
Sort By: Deviation
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A B C

What are the properties of the 
intersections involving ‘A’?
Sort By: Set
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Aggregation

56



A B C Are many items shared between 
two sets?
Aggregate By: Degree
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A B C

Degree 0

Degree 1

Degree 2

Degree 3

Are many items shared between 
two sets?
Aggregate By: Degree

58

Sum of children



A B C
How are the elements of ‘B’ distributed?
Aggregate By: Set

Degree 0

Degree 1

Degree 2

Degree 3
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A B C

None

A

B

C

Must

May

Must Not
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How are the elements of ‘B’ distributed?
Aggregate By: Set



C

A B C

None

A

B
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How are the elements of ‘B’ distributed?
Aggregate By: Set
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Queries

63



64

A B C

Must

May

Must Not



65



Elements & 
Attributes

66



How do documentaries compare to adventure movies? 67



68How do documentaries compare to adventure movies?



Applications

69



Applications

Genetics

Economics

Pharmacology

Social Networks

70



Scalability

Comfortable: ~15 sets

Possible: ~40 sets

Scales with the number of 
non-empty intersections

Most datasets are sparse
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Deviation Measure

72

50%A

50%B
25%

Expected if A and B independent

Observed 1 40%

> then expected

Observed 2 10%

< then expected

A ∩B

[Alsallakh 2013]



http://vcg.github.io/upset
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Pathways
[Partl, BioVis ‘12]
Best Paper Award

[Lex, InfoVis ‘13]
[Partl, BMC Bioinf. ‘13]



Publications
Alexander Lex, Christian Partl, Denis Kalkofen, Marc Streit, Anne Mai Wasserman, Samuel Gratzl, 
Dieter Schmalstieg and Hanspeter Pfister
Entourage: Visualizing Relationships between Biological Pathways using 
Contextual Subsets 
IEEE TVCG (InfoVis '13), 2013
Christian Partl, Alexander Lex, Marc Streit, Denis Kalkofen, Karl Kashofer and Dieter Schmalstieg
enRoute: Dynamic Path Extraction from Biological Pathway Maps for Exploring 
Heterogeneous Experimental Datasets
BMC Bioinformatics, 2013
Christian Partl, Alexander Lex, Marc Streit, Denis Kalkofen, Karl Kashofer, Dieter Schmalstieg
enRoute: Dynamic Path Extraction from Biological Pathway Maps for In-Depth 
Experimental Data Analysis
BioVis, 2012
Best Paper Award



A Pathway



The bigger picture



Whole Network
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A Pathway



Two Problems - Two Solutions

1. Large Partitioned Network 

2. Many Node Attributes
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Large Partitioned Network

How to visualize pathway relationships?



Many Node Attributes

Pathway A

A
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B
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Node Sample 1 Sample 2 Sample 3 …
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0.12

0.33

…

0.95

0.42

0.65

…

0.83

0.16

0.38

…

…

…

…

A

B

C

…

Node Sample 1 Sample 2 Sample 3 …

low

normal

high

…

low

low

very low

…

very high

high

normal

…

…

…

…
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…

C

How to visualize experimental data on pathways?



Visualizing
Large Partitioned Networks



Approaches

Whole Network Connected Pathways

[Kono2009] [Klukas2006]



Step 1: Finding Related Pathways



Finding Related Pathways



PW B

Step 2: Managing Display Space
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Levels of Detail

LowHigh Medium



Layout



Step 3: Visualizing Relationships



Step 3: Visualizing Relationships



Step 3: Visualizing Relationships



Step 3: Visualizing Relationships



Step 3: Visualizing Relationships



Step 3: Visualizing Relationships



Video



Visualizing 
Many Node Attributes



Experi-
mental 

Data and 
Pathways

Cannot account for variation found in 
real-world data

Branches can be (in)activated due to 

mutation,

changed gene expression,

modulation due to drug treatment,

etc.
[Partl, BioVis ‘12]



Good Old Color Coding

A -3.4

B 2.8

C 3.1

D -3

E 0.5

F 0.3

C

B

D

F

A

E

4.2 5.1 4.2

1.8 1.3 1.1

-2.2 2.4 2.2

-2.8 1.6 1.0

0.3 -1.1 1.3

0.3 1.8 -0.3
[Lindroos2002]



Challenge: Data Scale & Heterogeneity

Large number of experiments

Large datasets have more than 500 experiments

Multiple groups/conditions

Different types of data



Challenge: Supporting Multiple Tasks

Two central tasks:

Explore topology of pathway

Explore the attributes of the nodes 
(experimental data)

Need to support both!

C

B

D

F

A

E



Inspiration

[Meyer 2010]



Pathway View
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enRoute



Video





Case Study: CCLE Data
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http://entourage.caleydo.org





Other Techniques

IEEE TVCG (InfoVis '14)
HONORABLE MENTION AWARD

ACM CHI’14
HONORABLE MENTION AWARD 

Creating Integrated 
Visualizations from Subsets Visualizing Hidden Content



Other Domain Problem Projects

Nature Methods, 2014
CG & A 2014
EuroVis 2012 
3rd Best Paper

Heterogeneous Datasets
Cancer Subtype Analysis

IEEE TVCG (VAST '14)

Faceted Browsing of Graphs
Drug Discovery

BMC Proceedings 2014

Protein Sequence 
Analysis



http://caleydo.org



RESEARCH CHALLENGESRESEARCH CHALLENGES



Interacting with Data

The Future of Data Analysis 
is (also) Interactive

Human
Insight
Actions
Context
Reasoning

Data
Informative, 
Incomplete,
Noisy, Conflicting

Computation
Algorithms
Statistics
Recommendations
Classifications
Aggregation

Interaction

Visualization

Communicates
Interfaces Selected & 

Derived Data



Can we make creating interactive vis 
systems easier?

Right now: prerogative of skilled software developers

Goal: democratize the creation of visualizations



How can we scale to increasingly big datasets?

No local copies of datasets

No in-memory processing

….

Approach:

Automatic slicing into subsets

Query or explore ranked subsets

Pull in relationships for subset



Solve Important Domain Problems

Some problems too specific for 
general methods

High impact when solving them

Inspiration for research
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