Alexander Lex

Layout Adaption Strategies for Visualizing Multivariate Networks

visualization design lab

visualization design lab

http://vdl.sci.utah.edu/

We develop data visualization solutions for applications in pharmaceutical and biomedical R\&D.

PRODUCTS

TARGET DISCOVERY PLATFORM
Our Target Discovery Platfrom is a web-based visual data analysis solution designed to score, rank, filter and visualize datasets that provides all the
data and visualizations needed to identify analysis targets.

What is a Multivariate Network?

Challenge: Consider topology and attributes simultaneously

Challenge: Graph Size

How can we deal with graphs too large to sensibly render at once?
Scalability problem exacerbated by attributes

Global and Local Network Analysis Tasks

Based on [Lee et al, 2006]

Task	Examples	Overview / Local	Type
Adjacency	Find the nodes adjacent to a node. Which node has a maximum number of adjacent nodes.	Local	Toplogy
Accessibility	Find the nodes accessible from a node, find nodes accessible from a node with distance X.	Local	Toplogy
Common Connection	Given nodes, find a set of nodes that are connected to all of them.	Local	Toplogy
Connectivity (Local)	Find the shortest path between two nodes.	Local	Toplogy
Connectivity (Global)	Identify Clusters, connected components. Find bridges, articulation points.	Overview	Toplogy
Node Attributes	Find a node with a specific attribute; Inspect attributes of a specific node	Local	Attribute
Link Attributes	Given a node find the nodes connected only by certain types of links; which node is connected by a link having the largest/smallest value.	Local	Attribute
Follow Path		Local	Browsing
Revisit	Return to a previously visited node	Local	Browsing
Overview	Estimate the size of the network	Overview	Topology
Topology-Attribute Interaction	How does an attribute influence the topology of the network	Local	Topology/ Attribute
Query	Retreive all nodes of a property. Retrieve a specific node. Retreive all neighbors.	Either	Topology/ Attribute

Many Graph Tasks Done Require Overviews

Search, Show Context, Expand on Demand

Show all attributes / many attributes

Multivariate Network Visualization Strategies

Matrices

On-Node Encoding

Small Multiples Multiple
Coordinated Views

Layout Adaption

Matrices

Easy to encode edge attributes in cells

Easy to encode node attributes adjacent to matrix
Common pros and cons of matrices

On-Node Encoding

Canonical way to visualize single attribute. Widely supported.
Ideal for topology-attribute interaction

Tricky for multiple attributes

On-Node Encoding for Aggregates

Small Multiples

On-node encoding with small multiples

Graphs tend to be small, combine with focus graph

[Lex et al., StratomeX, 2012]

[Barsky et al., Cerebral, 2008]

Multiple Coordinated Views

Can optimize for topology and attributes at the same time Lacking when evaluating interplay

Layout Adaption

Adapt node position in a node-link diagram so that it is well suited for attribute visualization

Layout driven by attributes

Layout driven
by Topology

Fixed Layout

Node position defined by attribute values.

Focus on relationship of limited number of attributes
 Topology hard to read

Linearization Strategy: Layout that enables juxtaposikion with aktribuke visualizalions

Complete Linearization: Pathline

[Meyer et al, Pathline, 2010]

Layout driven by attributes

Good solution for smaller graphs

Hard to keep track of

 topology for complex graphs
Selective Linearization: enRoute

enRoute

Selective Linearization: Pathfinder

Layout driven by attributes

Layout driven by Topology

Selective Linearization: Pathfinder

Selective Linearization: Pathfinder

Show paths as ranked list
Path Score

| Start | I | End |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Advanced Query | Length
 Paths |

\％\quad ？ a 10 －

Linearizing a Tree: Lineage

[Nobre et al, Lineage, 2018]
Layout driven by attributes

Layout driven by Topology

Genealogy with ~400 members rendered with Progeny

1. De-cycle and linearize graph

$$
{ }^{120} \frac{7 \%}{\square}
$$

$$
\begin{aligned}
& \underline{7 \%} \\
& -\otimes \\
& 0 . .
\end{aligned}
$$

$$
\begin{array}{llll}
3 \% & 7 \% & 0.0 \% & 17
\end{array}
$$

\qquad

\#66561 $\begin{array}{r}\text { \#66561 } \\ \# 61046 \\ \hline\end{array}$ \#54490

2. Plot attributes in table

De-Cycling

De-Cycling

Linearization

Linearization

Can't show many people

Lots of missing data

Aggregation

Aggregation

One row for every person of interest

Others have to share a row

More Aggressive: Hiding

Only data for \#6 shown

Could we use something like Lineage for general Multivariate Networks?

Use a Spanning Tree to Visualize a Graph

[Lee et al., TreePlus, 2006]

[Munzner, H3Viewer, 1998]

Linearizing a Spanning Tree: Juniper

[Nobre et al, Juniper, Preprint 2018]

Layout driven by attributes

Layout driven by Topology

Edges

Spanning Tree

Conclusions

Linearization \& Juxtaposition are good options for visualizing Multivariate Graphs
Many tasks are local, leverage the "Search, Show Context, Expand on Demand" principle for multivariate networks

Show all attributes / many attributes

Challenges

Interactivity is key, but that results in challenges:

Coverage

Evaluation

Alexander Lex

Thanks to: Carolina Nobre, Hilary Coon, Marc Streit, Nils Gehlenborg,

 and many others.Funded by the Utah Genome Project, NIH, NSF and DoD
ansin

visualization design lab

