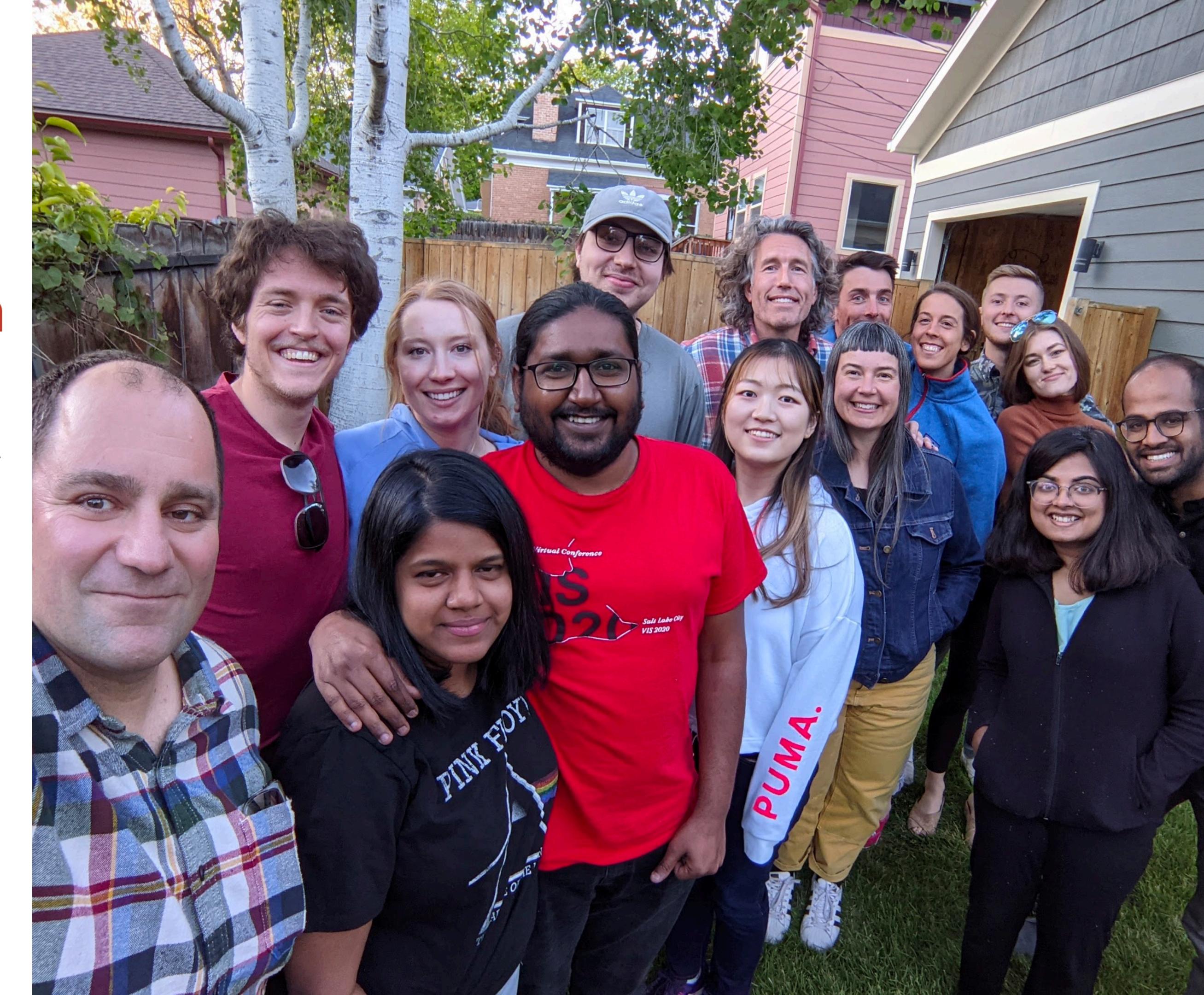
Alexander Lex

@alexander_lex http://alexander-lex.net

Empirical Evaluation of Complex Interactive Visualization Techniques

visualization design lab

http://vdl.sci.utah.edu/



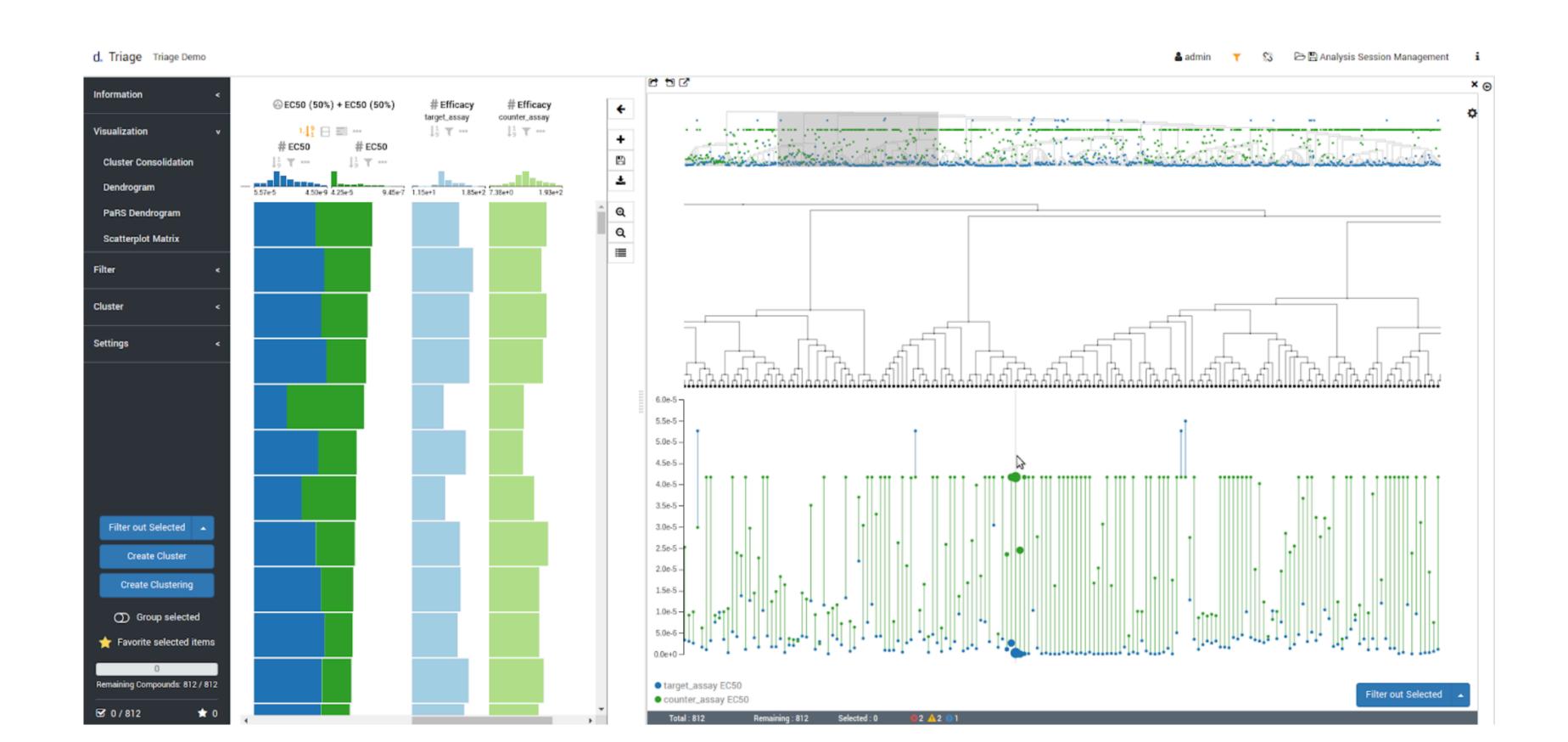
datavisyn

On sabbatical at datavisyn, in Linz

Data visualization solutions for

pharmaceutical industry

20 people and growing!



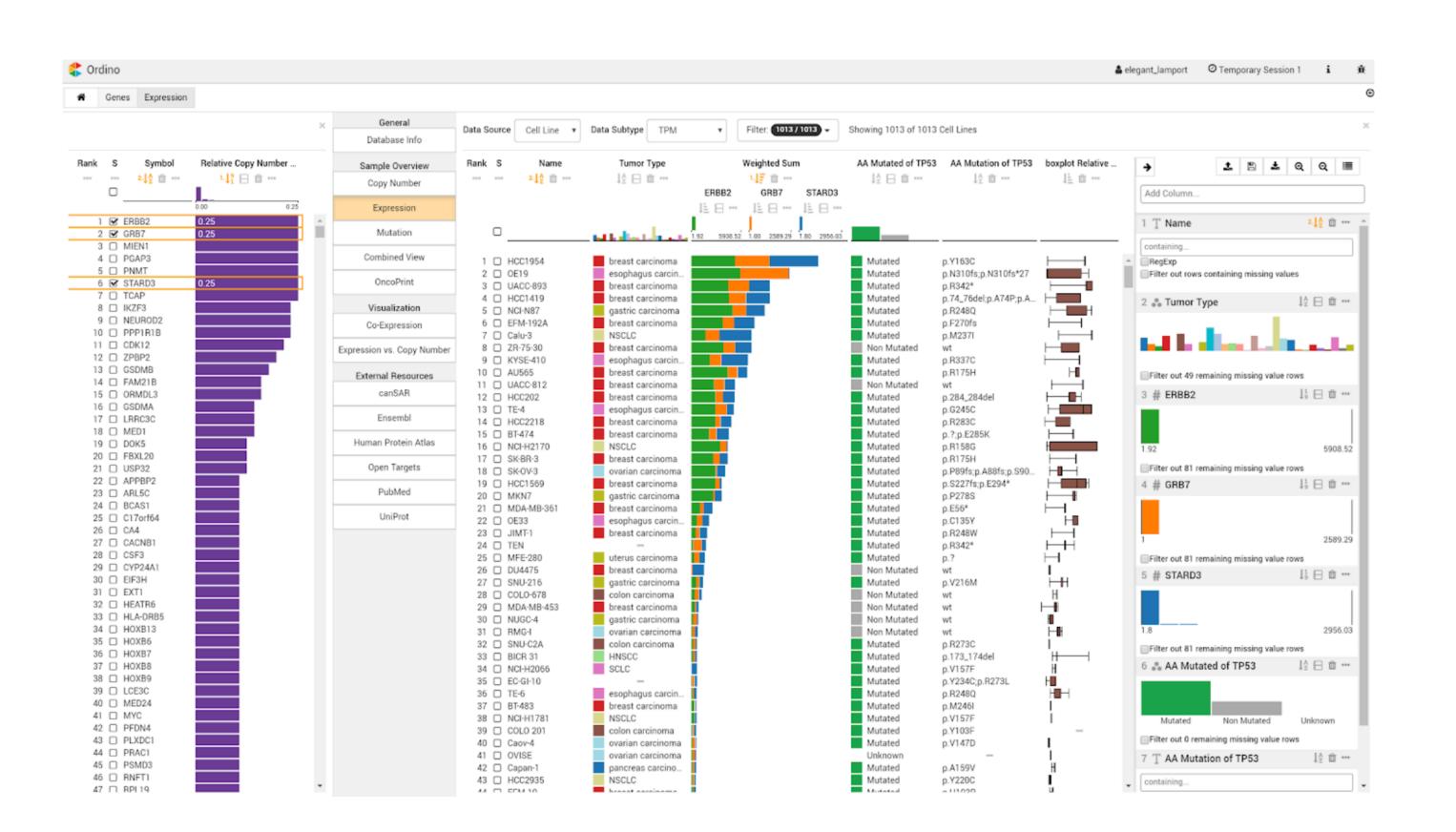
Marc Streit, CEO

Dominic Giradi, CPO

Alexander Lex

Nils Gehlenborg

Samuel Gratzl



visualization The purpose of computing is insight, not numbers. pictures Card, Ma

[Card, Mackinlay, Shneiderman]
[Richard Wesley Hamming]

Banana M. acuminata

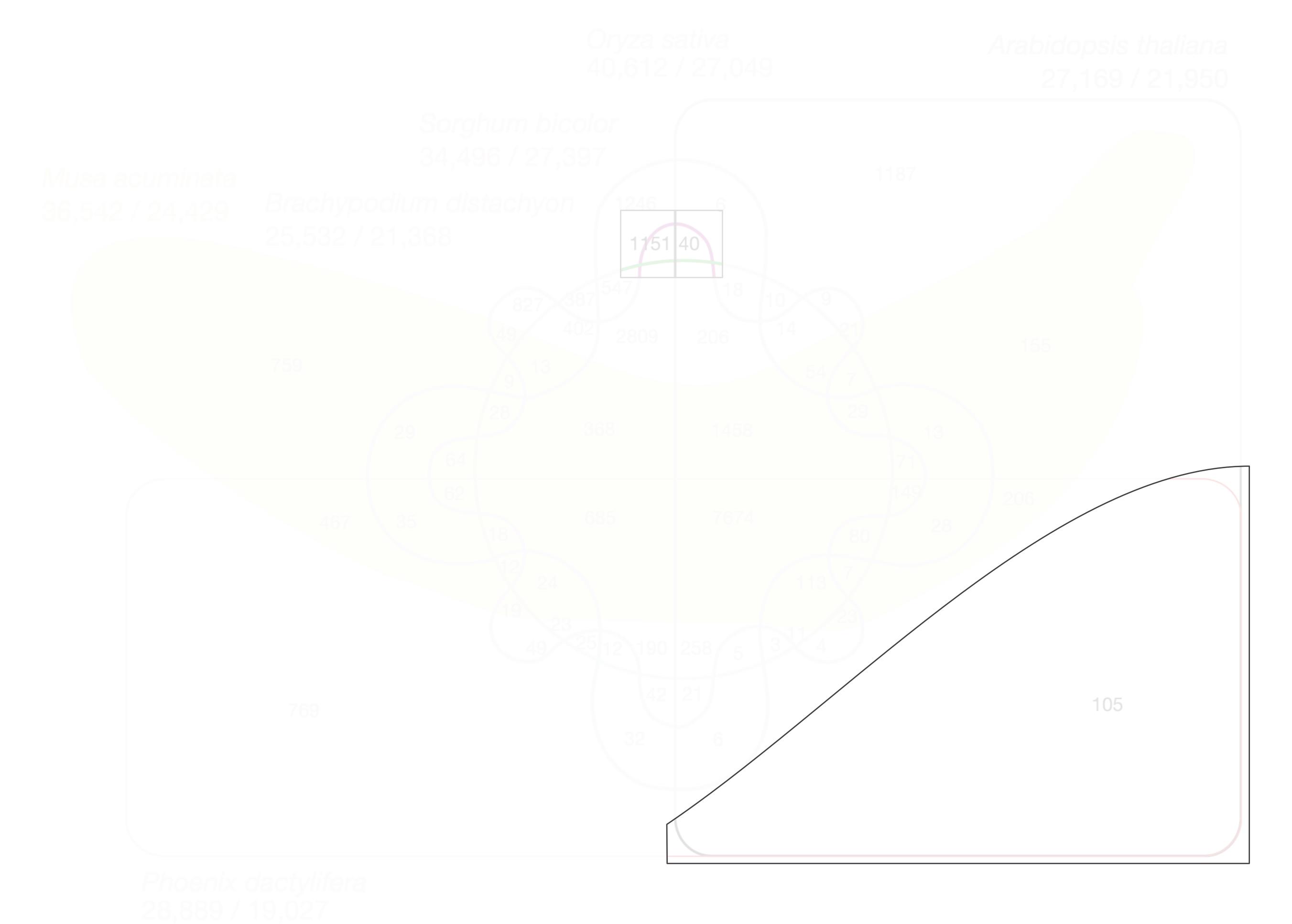
Date P. dactylifera

Cress Arabidopsis thaliana

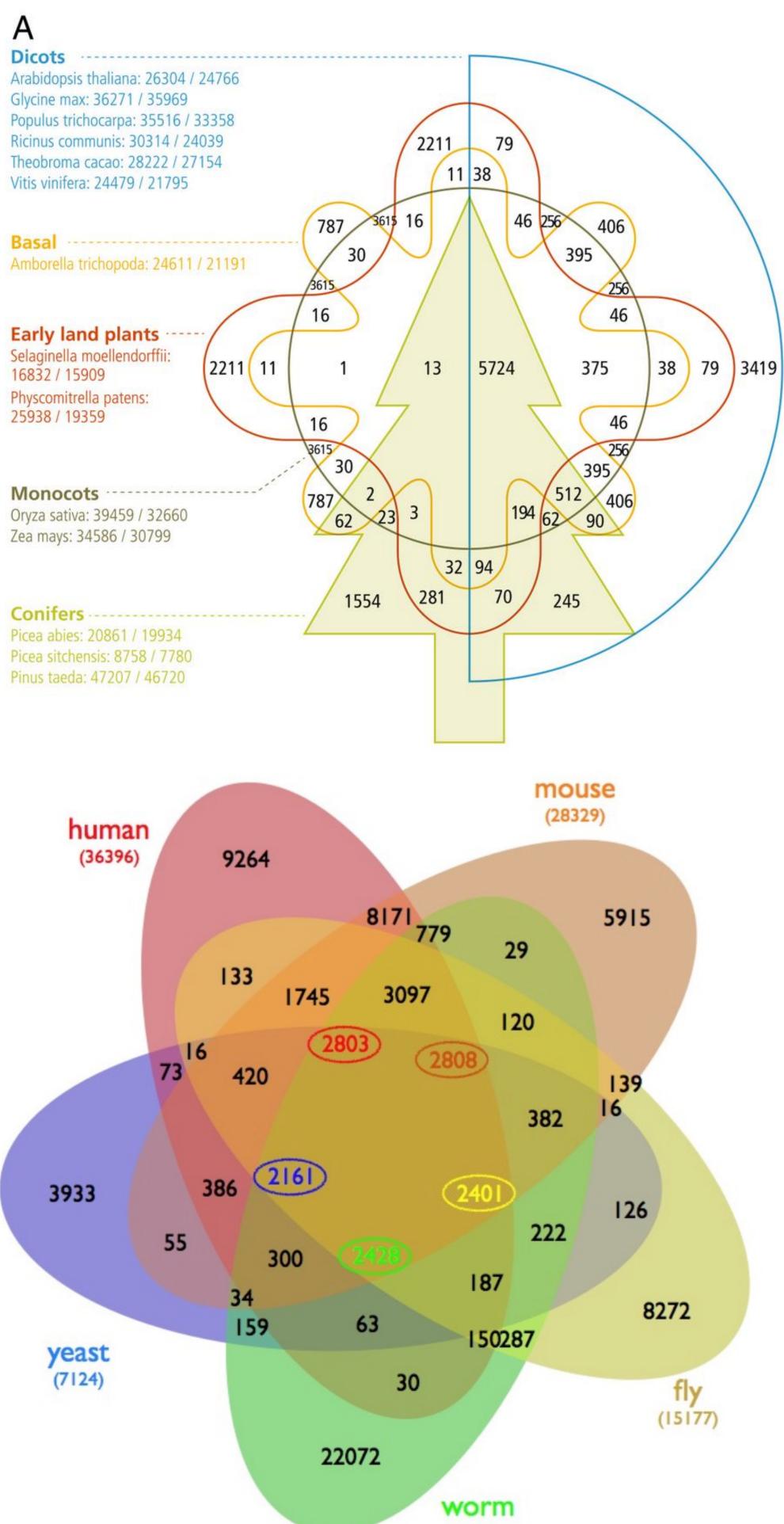
Rice Oryza sativa

Sorghum Sorghum bicolor

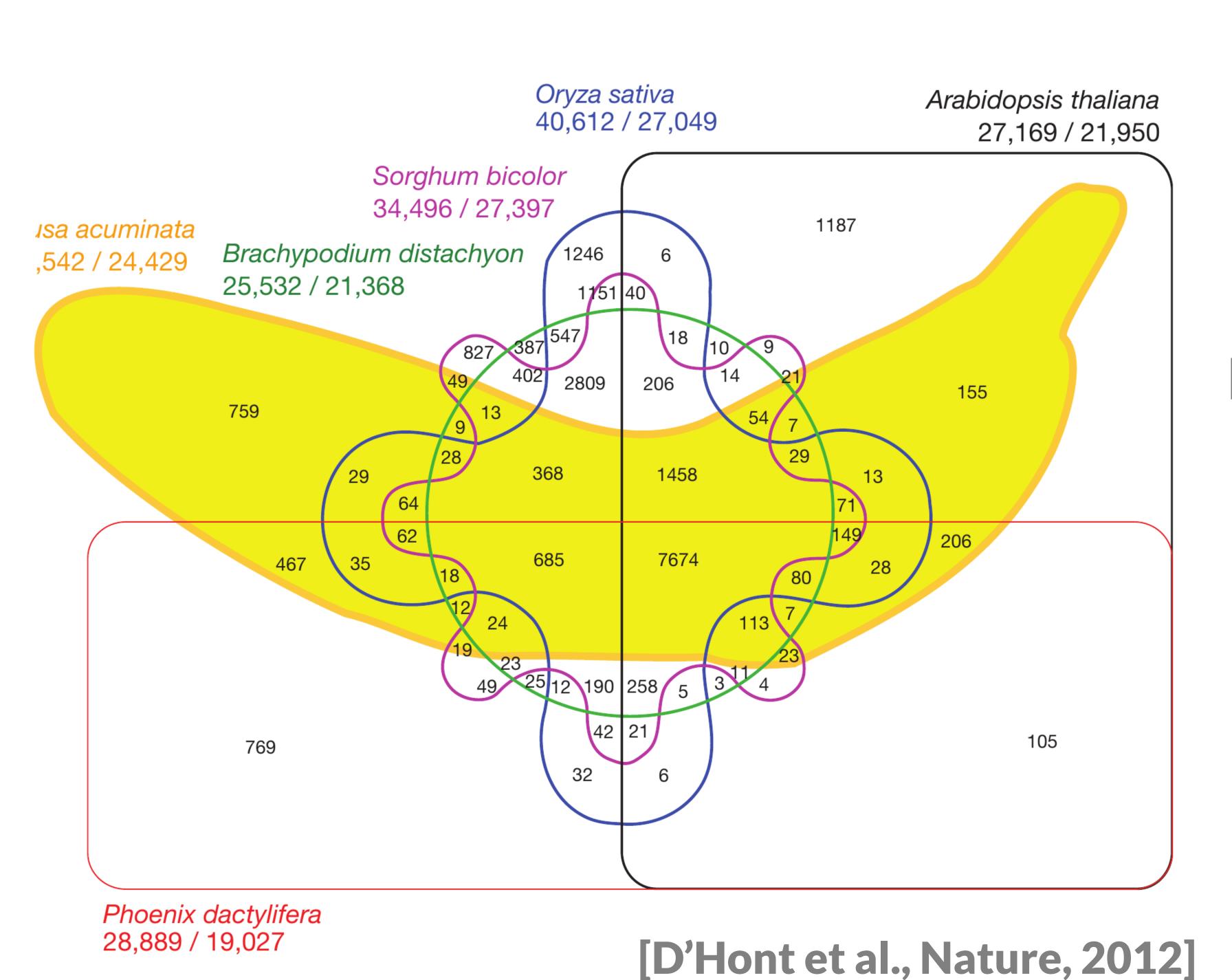
Brome Brachypodium distachyon



[Neale et al., BMC Genome Biology, 2014]



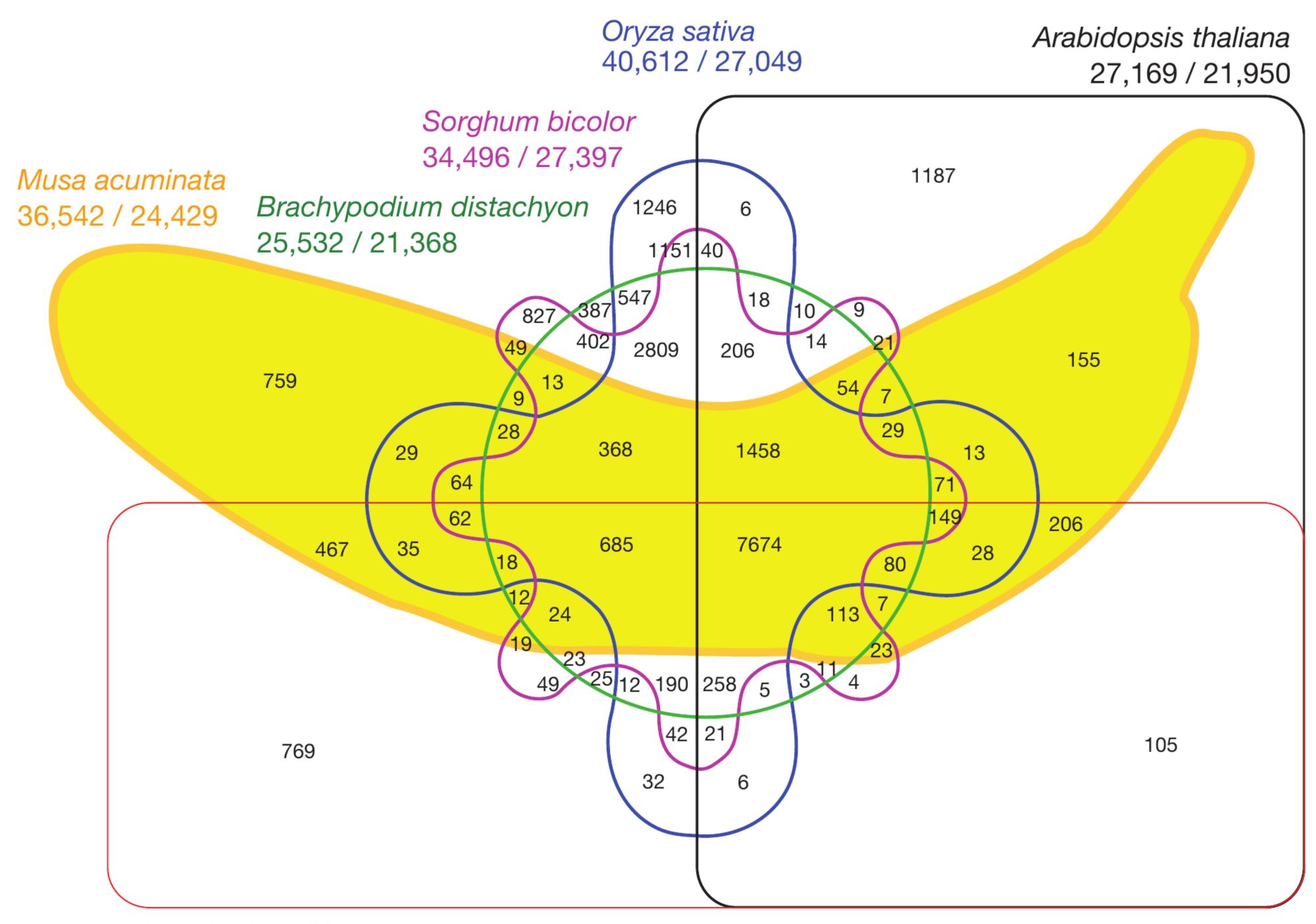
[Wiles et al., BMC Systems Biology]



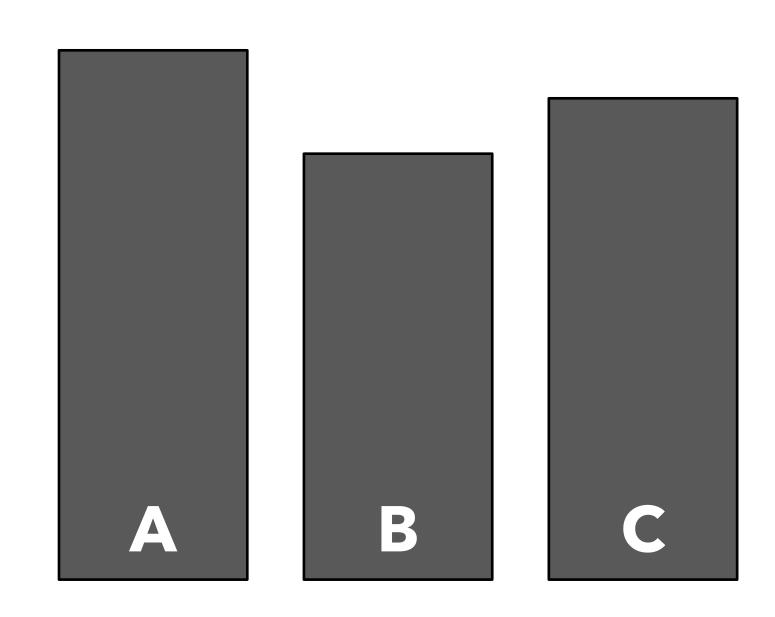
Rat 2,500 Mb Mouse 2,400 Mb 298 378 358 162 471 23 681 Human 2,800 Mb Genomic ORat Human Mouse Rat-specific Primate-specific Ancestral to Repetitive human-mouse-rat Mouse-Simple Ancestral to mouse-rat

[Gibbs et al., Nature, 2004]

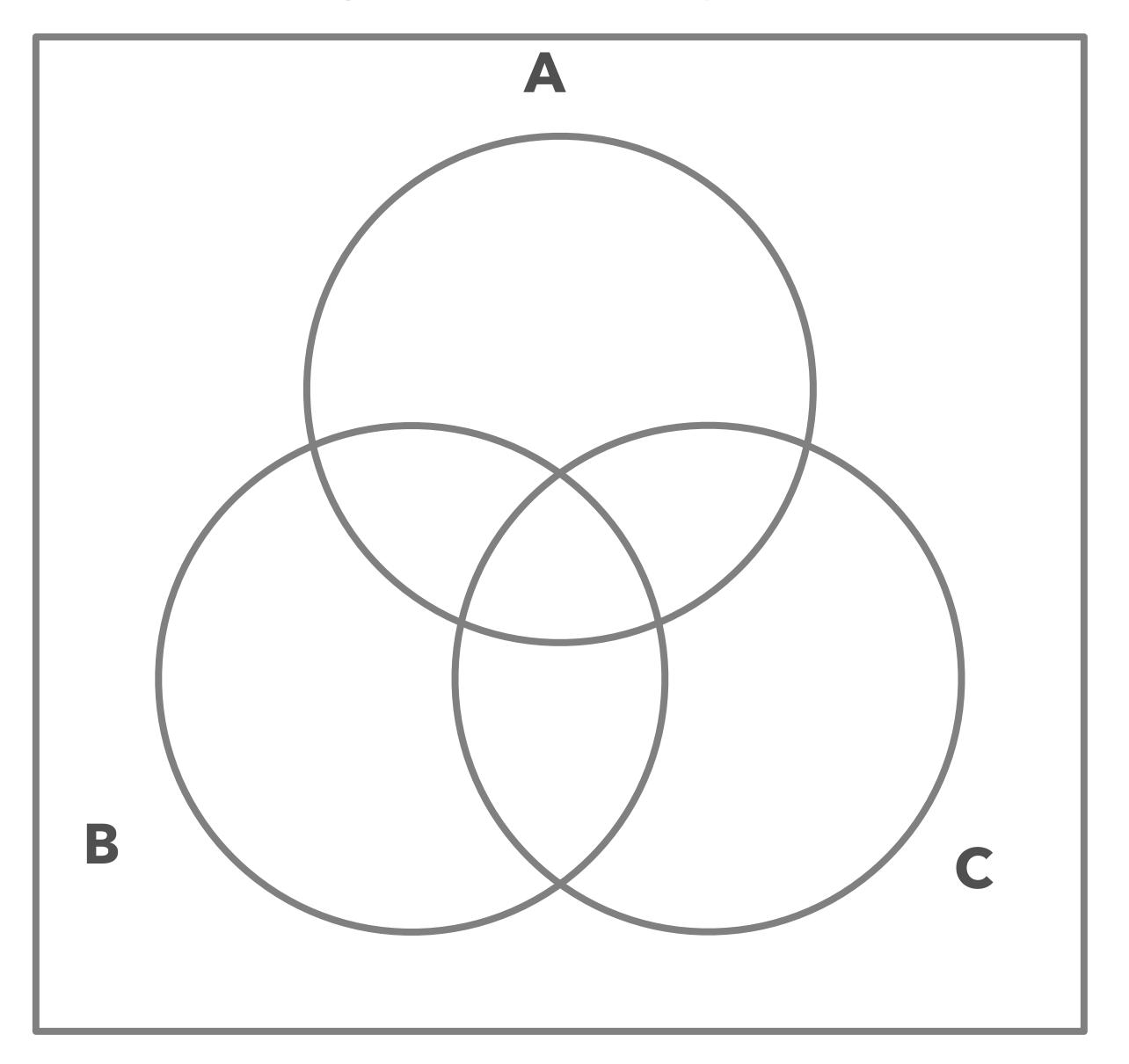
SO CANWEDO BETTER?

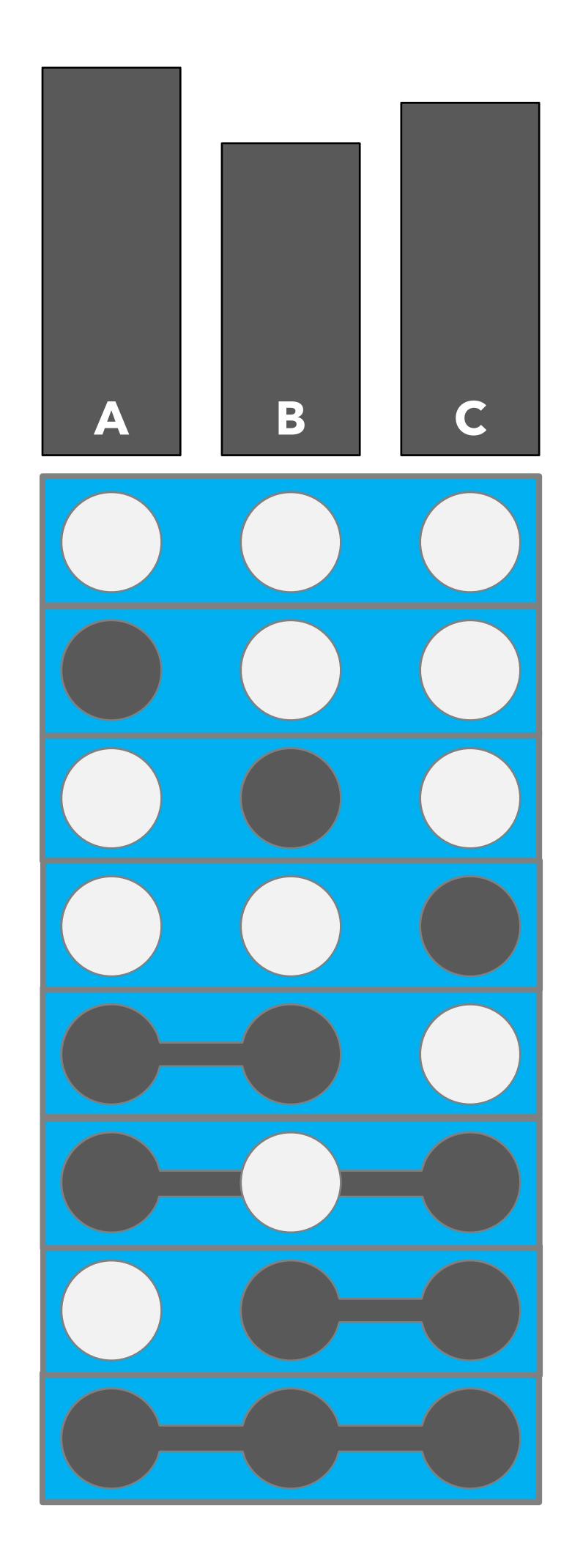


Phoenix dactylifera 28,889 / 19,027

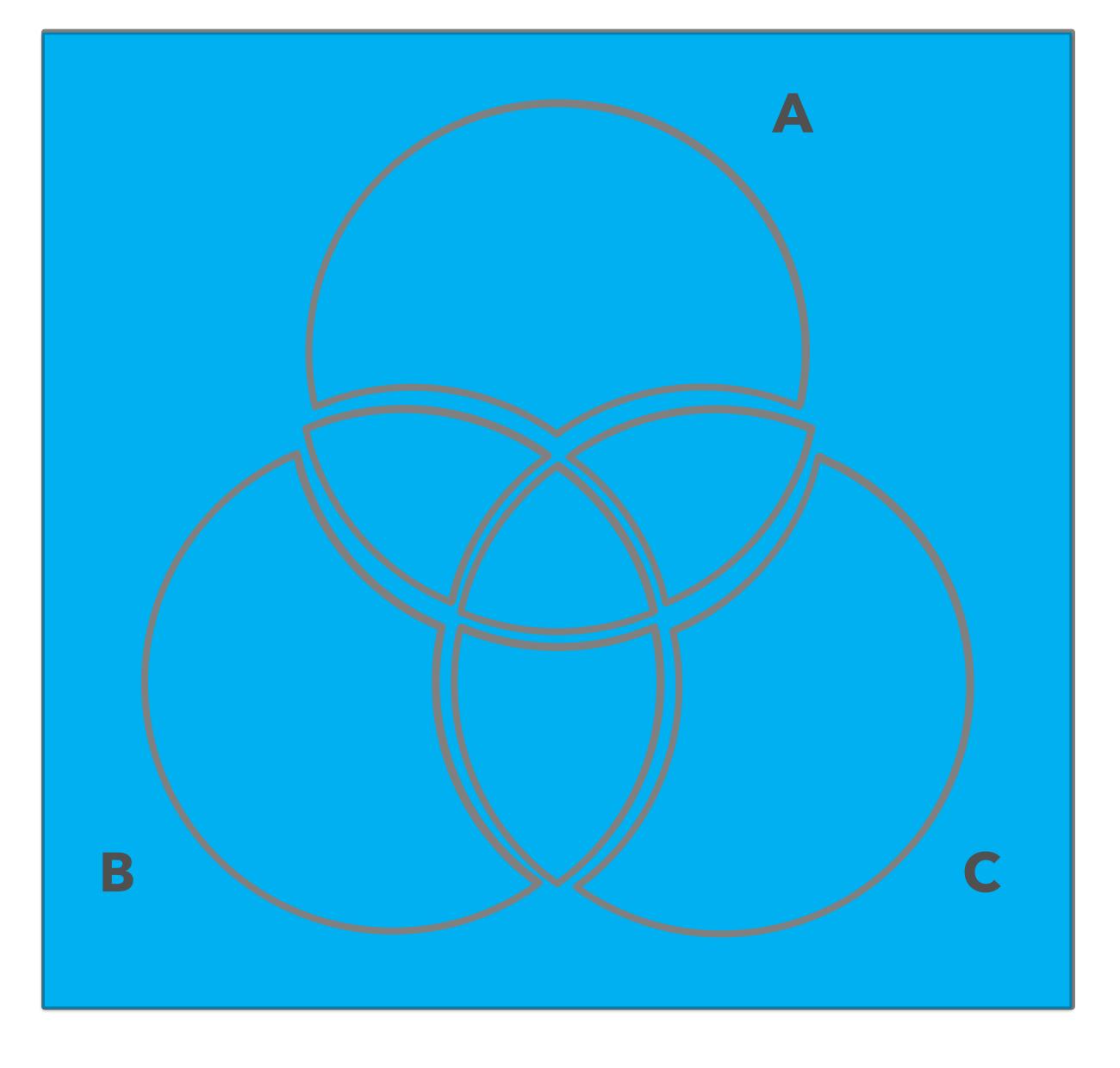


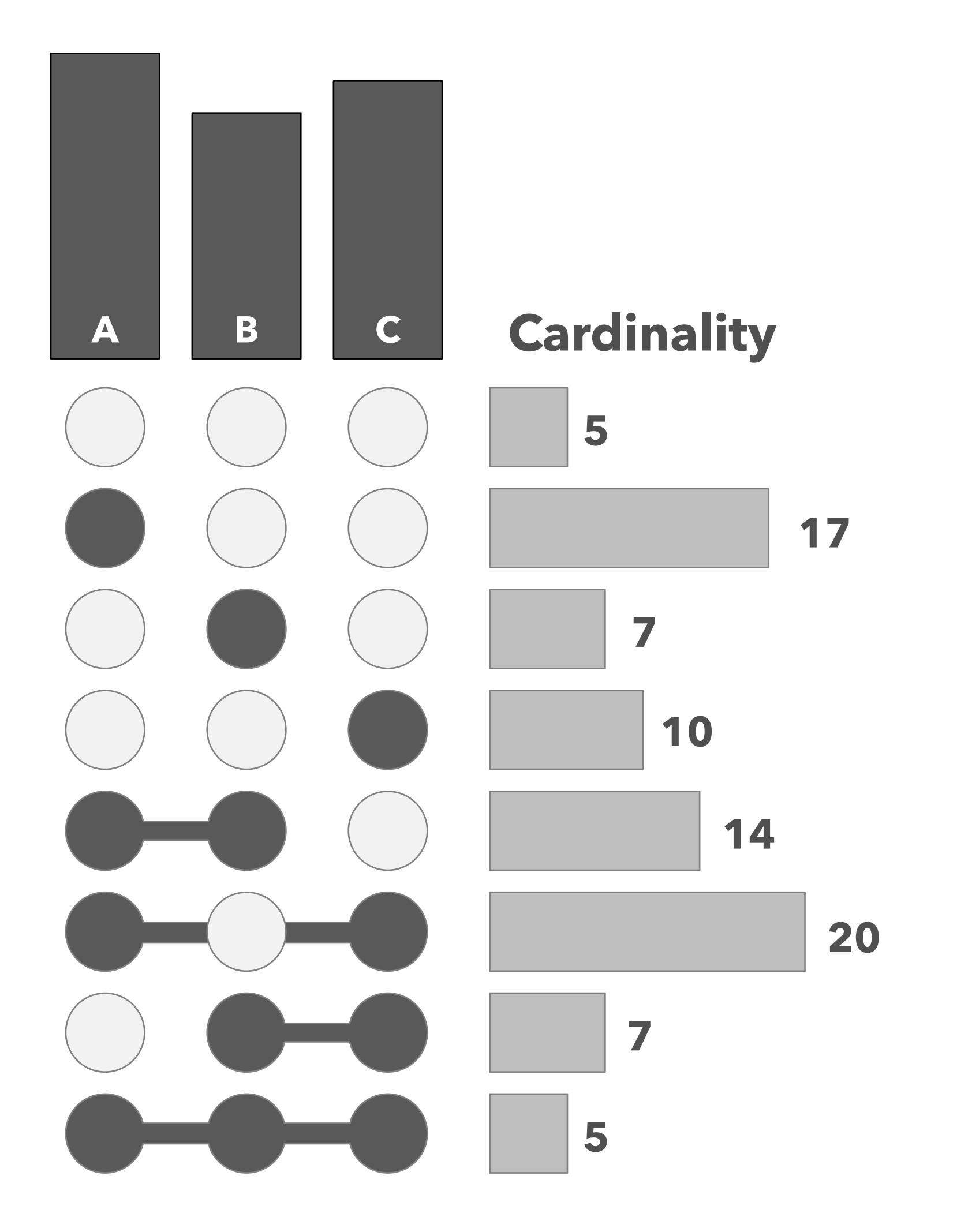
Universal Set

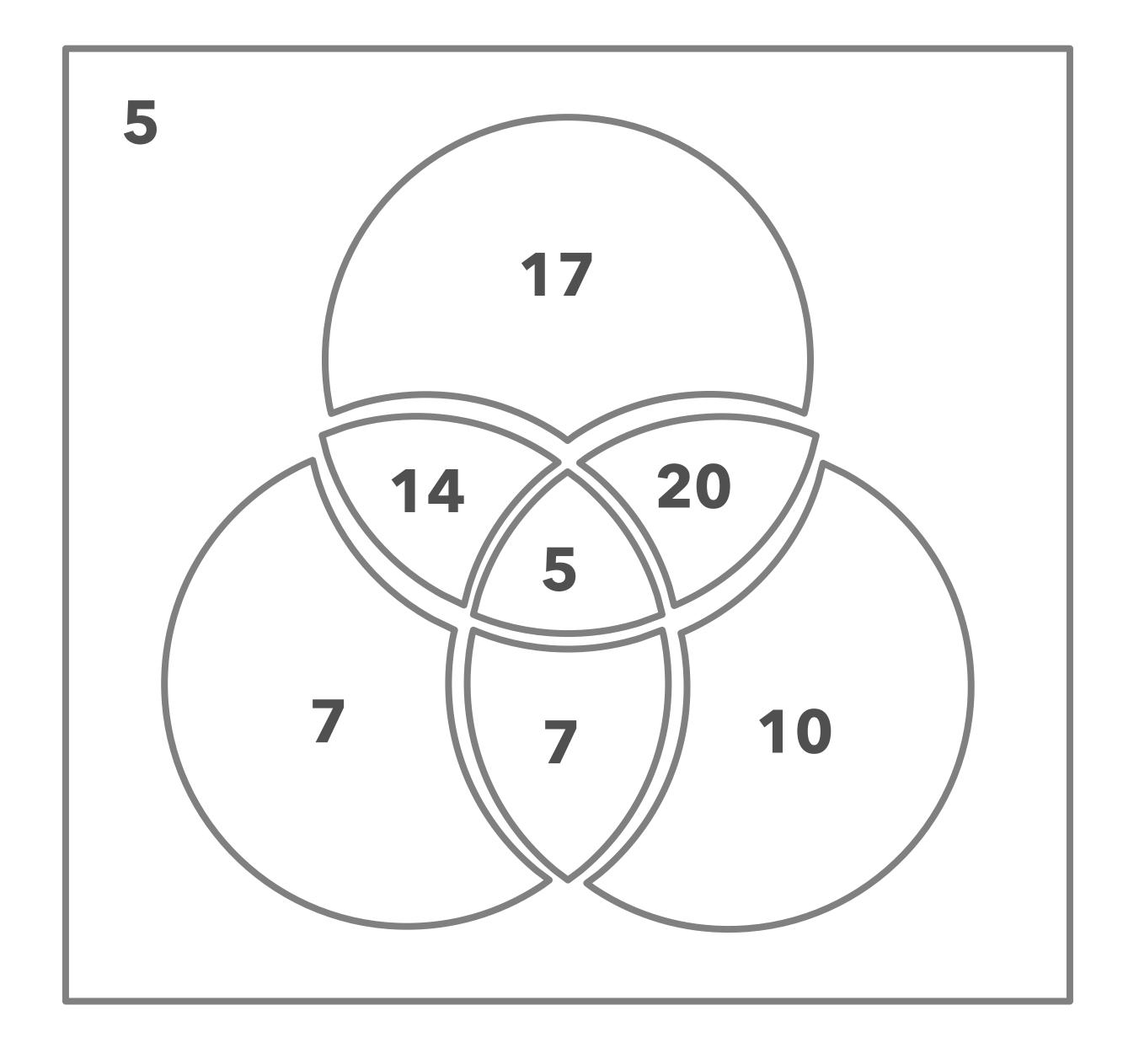




Universal Set







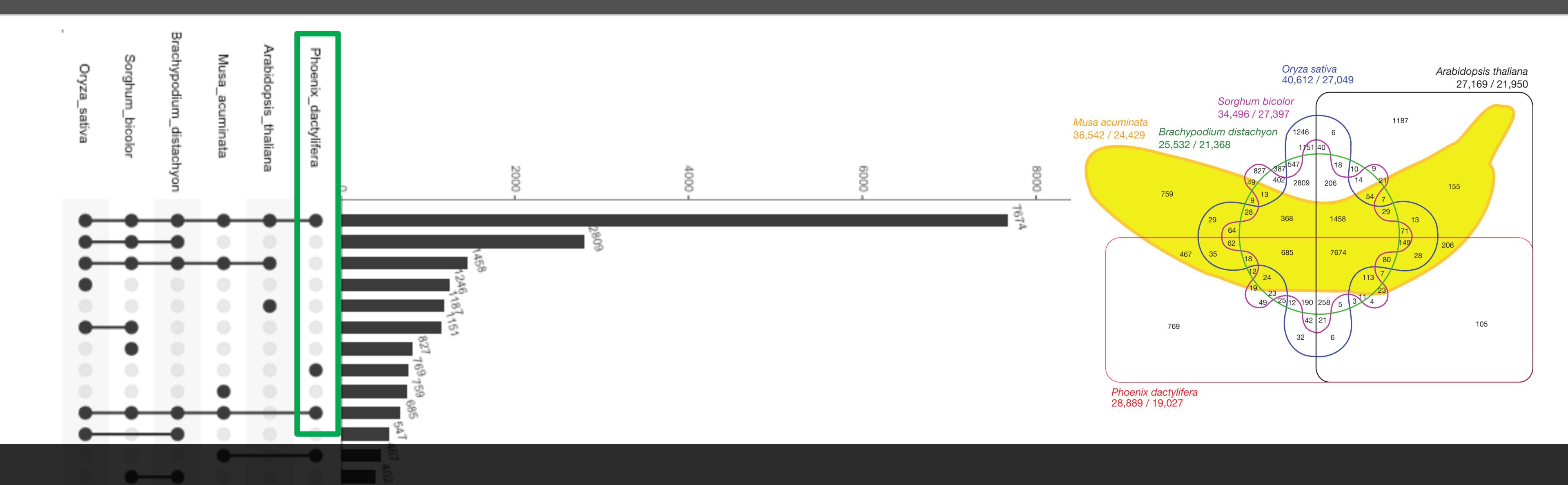
THE BANANA CHART REDESIGNED: UPSET

Largest Intersection Includes All Sets

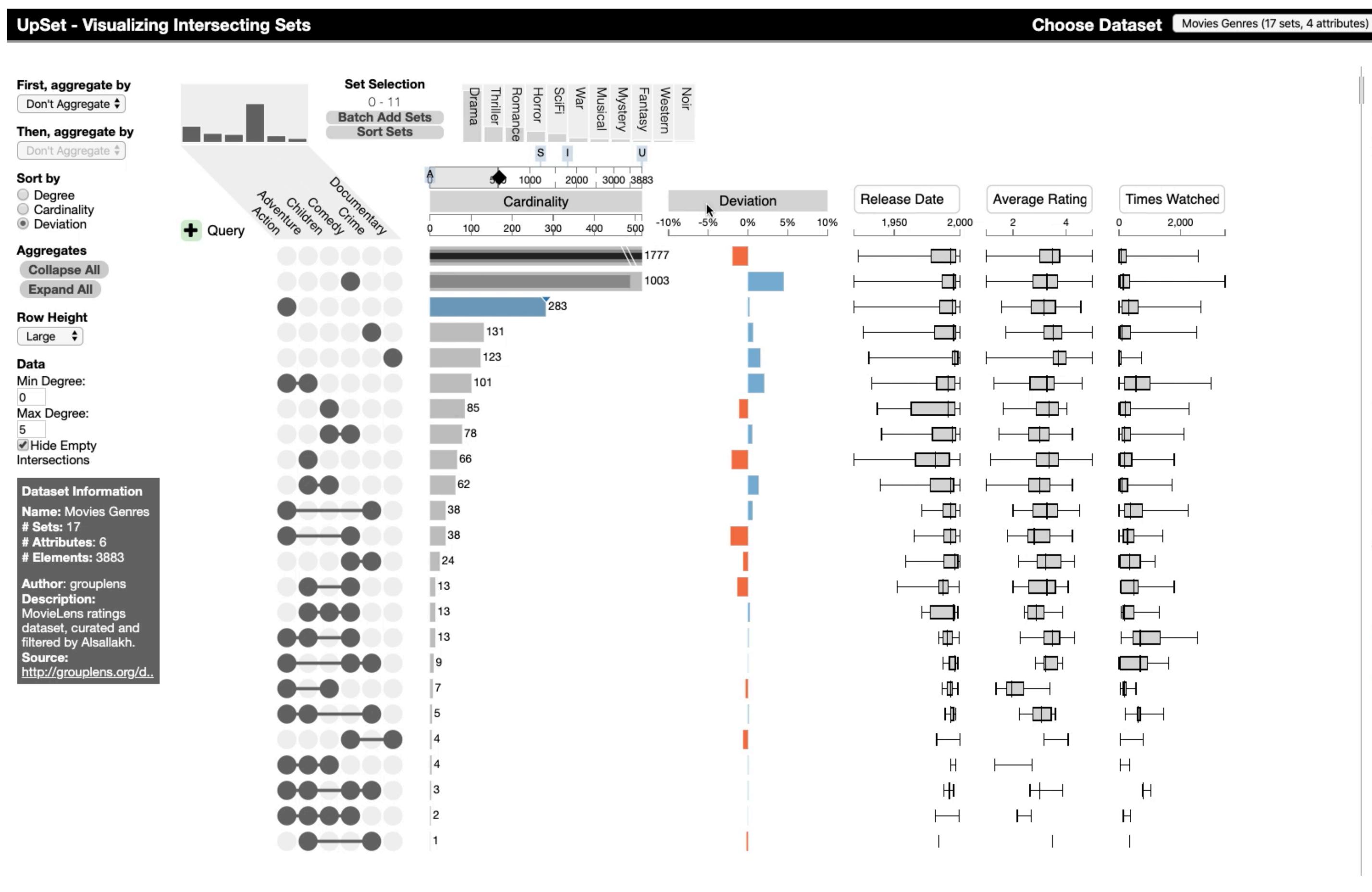
THE BANANA CHART REDESIGNED: UPSET

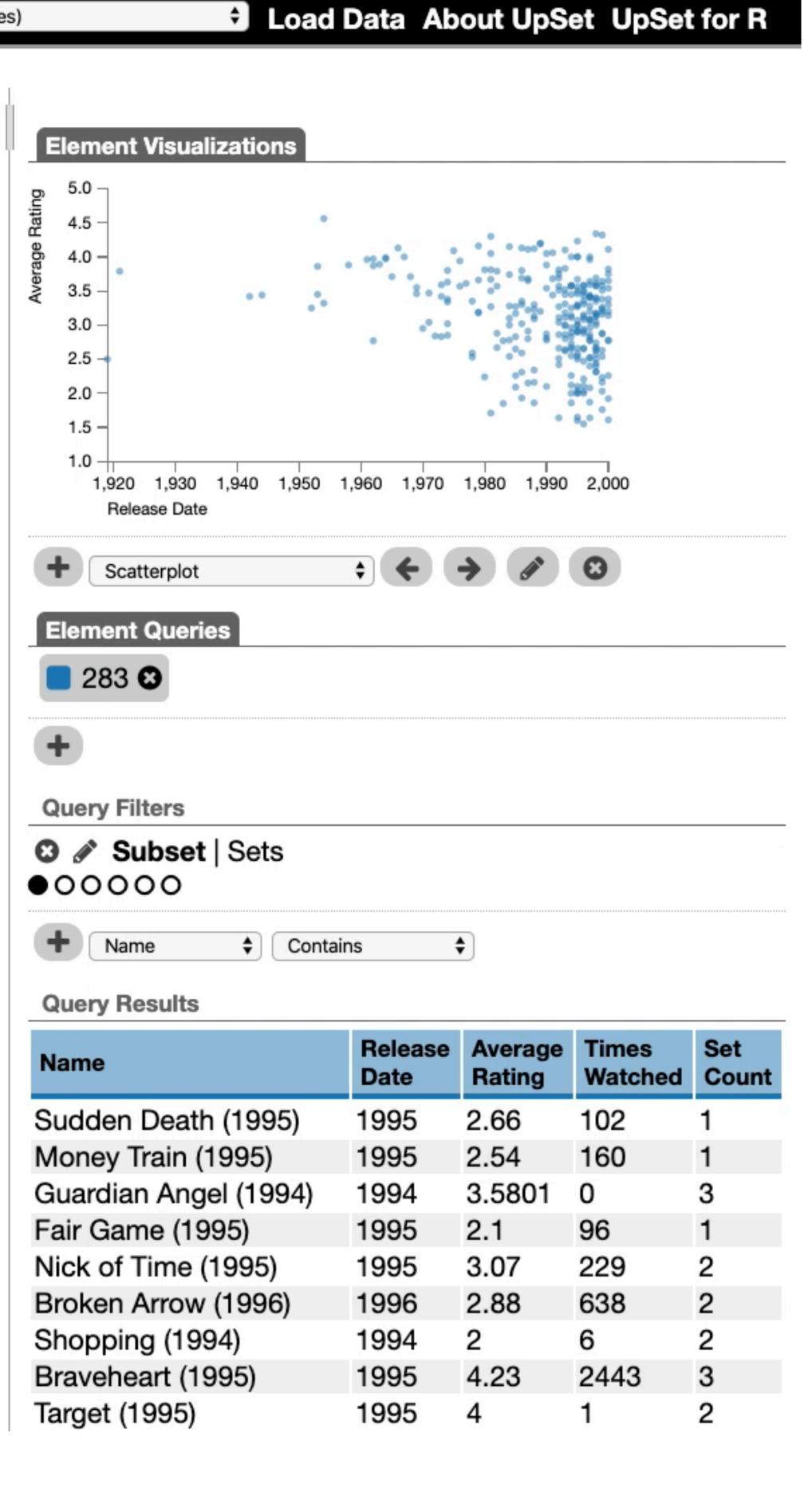
Three Leftmost Species Are Most Similar

THE BANANA CHART REDESIGNED: UPSET



Rightmost species is most different





http://vcg.github.io/upset/

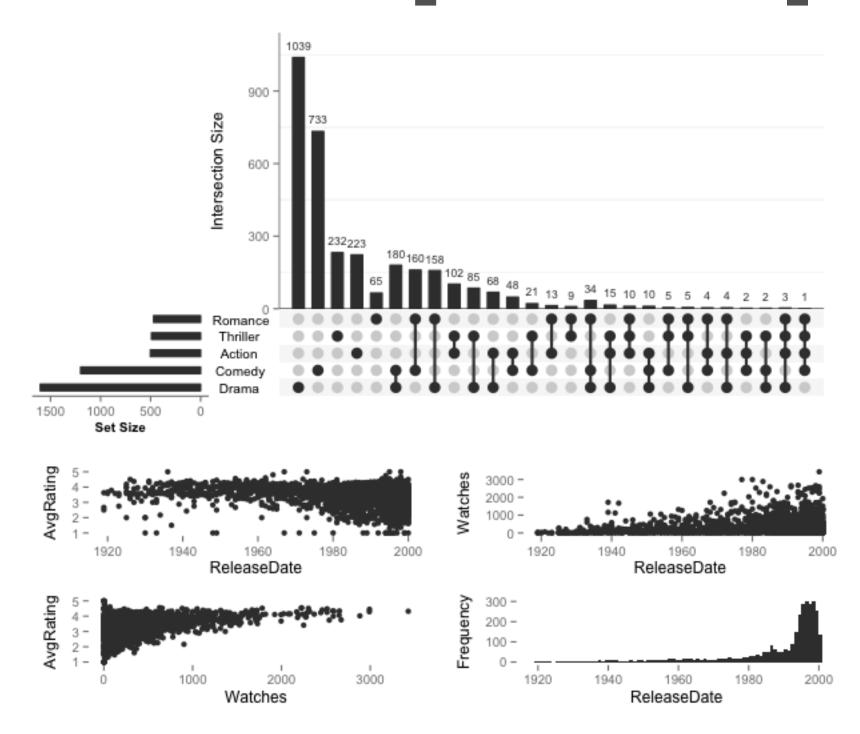
COMMUNITY IMPACT

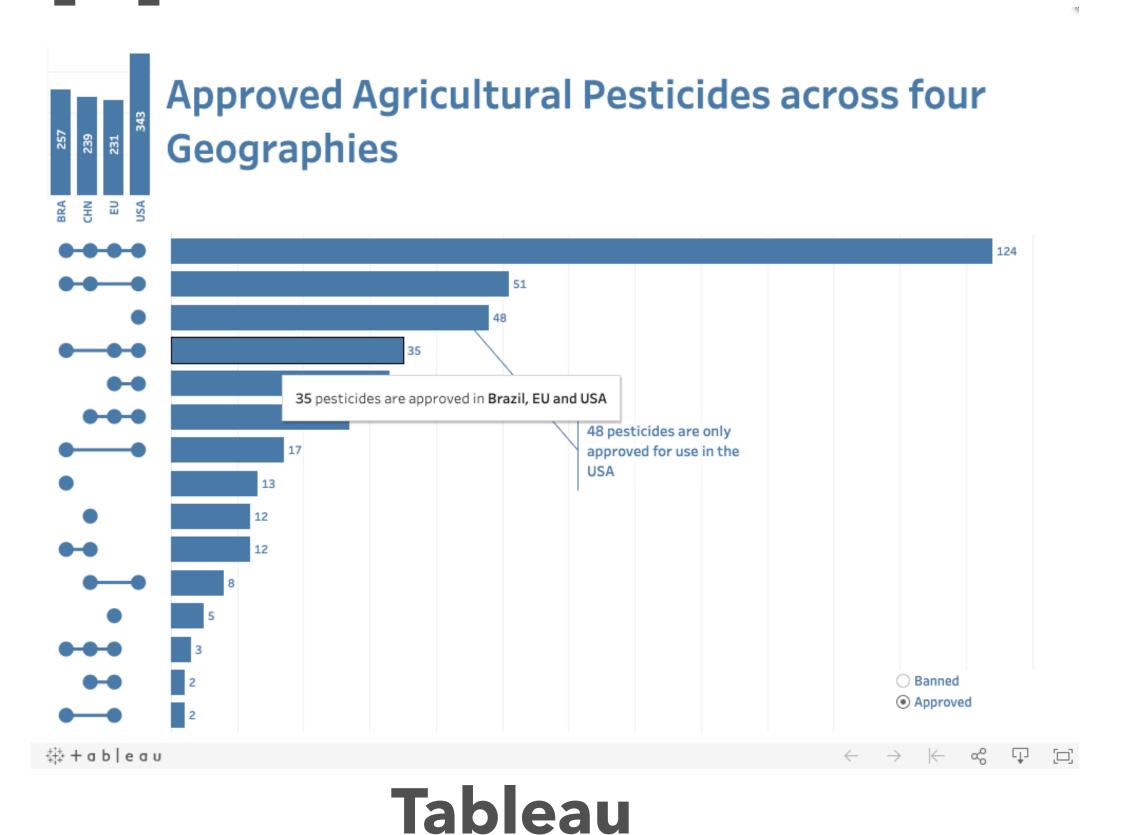
The canonical way to show set data with > 3 sets

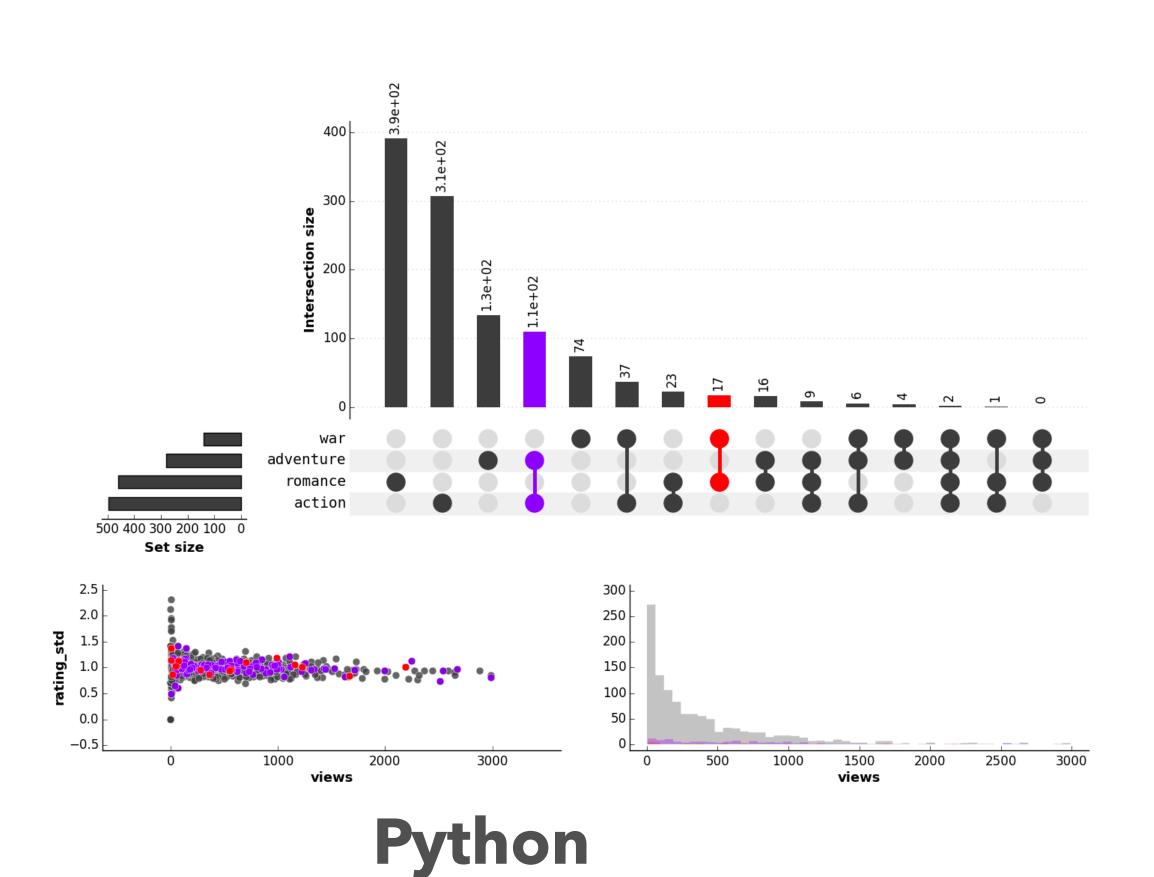
Second-most cited VIS paper of the last decade

> 11 implementations in various languages

See https://upset.app







RESEARCH AREAS

TECHNICAL CONTRIBUTIONS

DOMAIN DRIVEN TECHNIQUES

EMPIRICAL & THEORETICAL WORK

Novel Visualization
Techniques

Visualization Process Innovations

Data Wrangling
Methods

Tailored Methods
and Systems for High
Impact Science
Problems

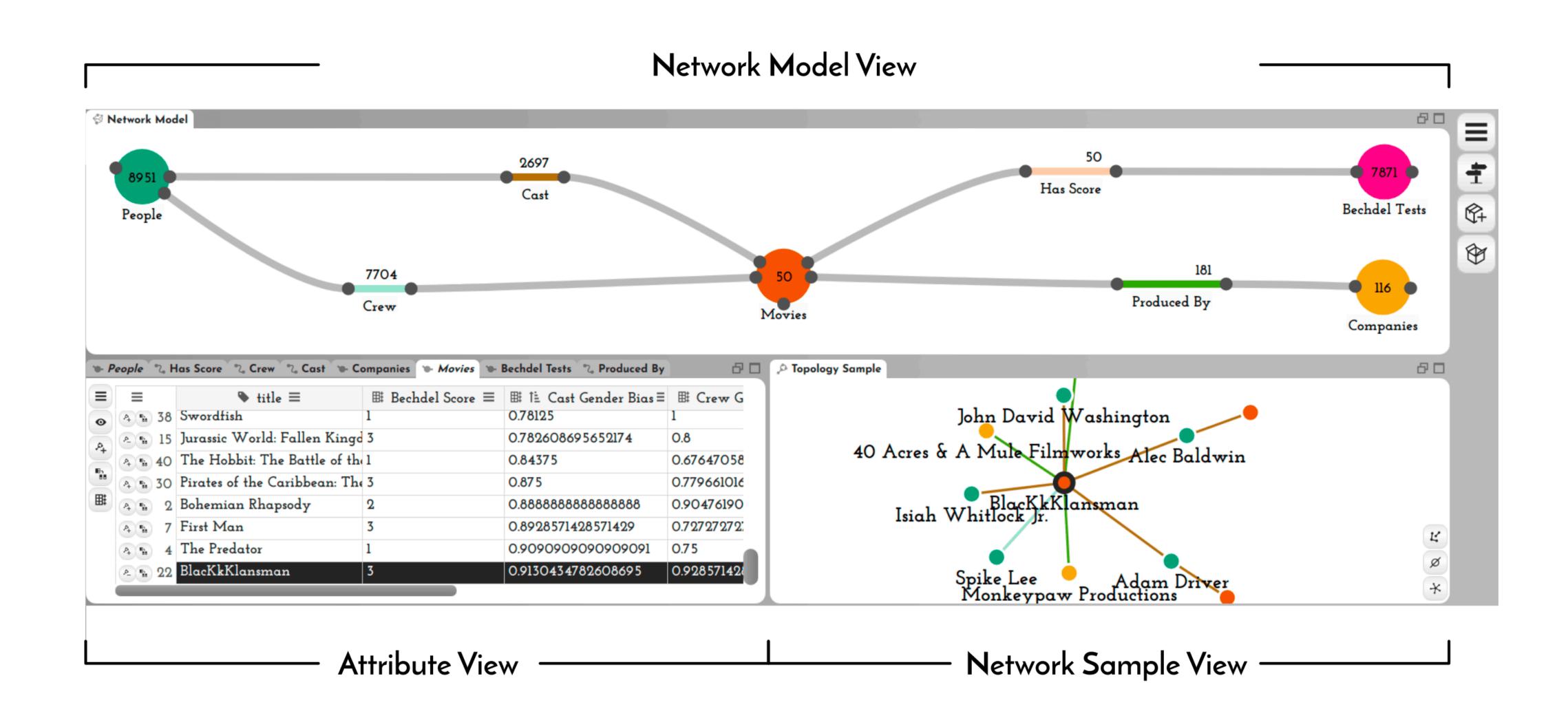
Evaluation
Methodology

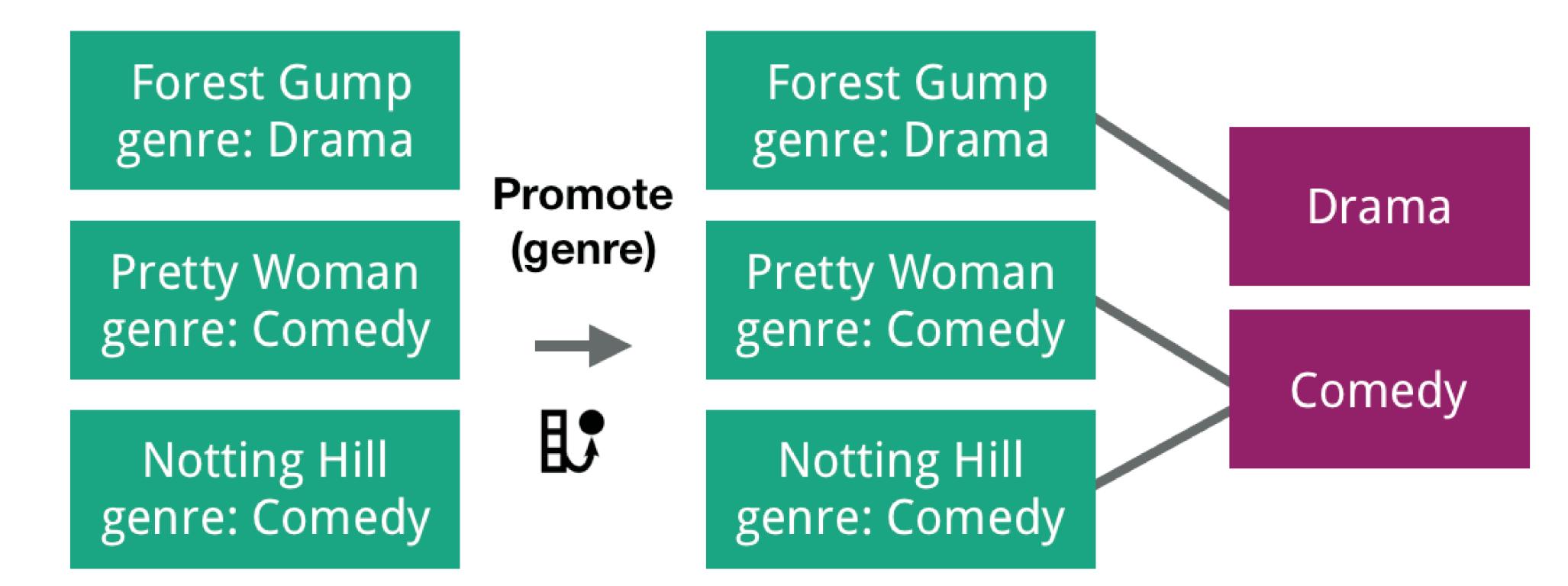
Design Spaces / Taxonomies

TECHNICAL CONTRIBUTIONS

Reshaping Networks

Data Wrangling
Methods





TECHNICAL CONTRIBUTIONS

DOMAIN DRIVEN TECHNIQUES

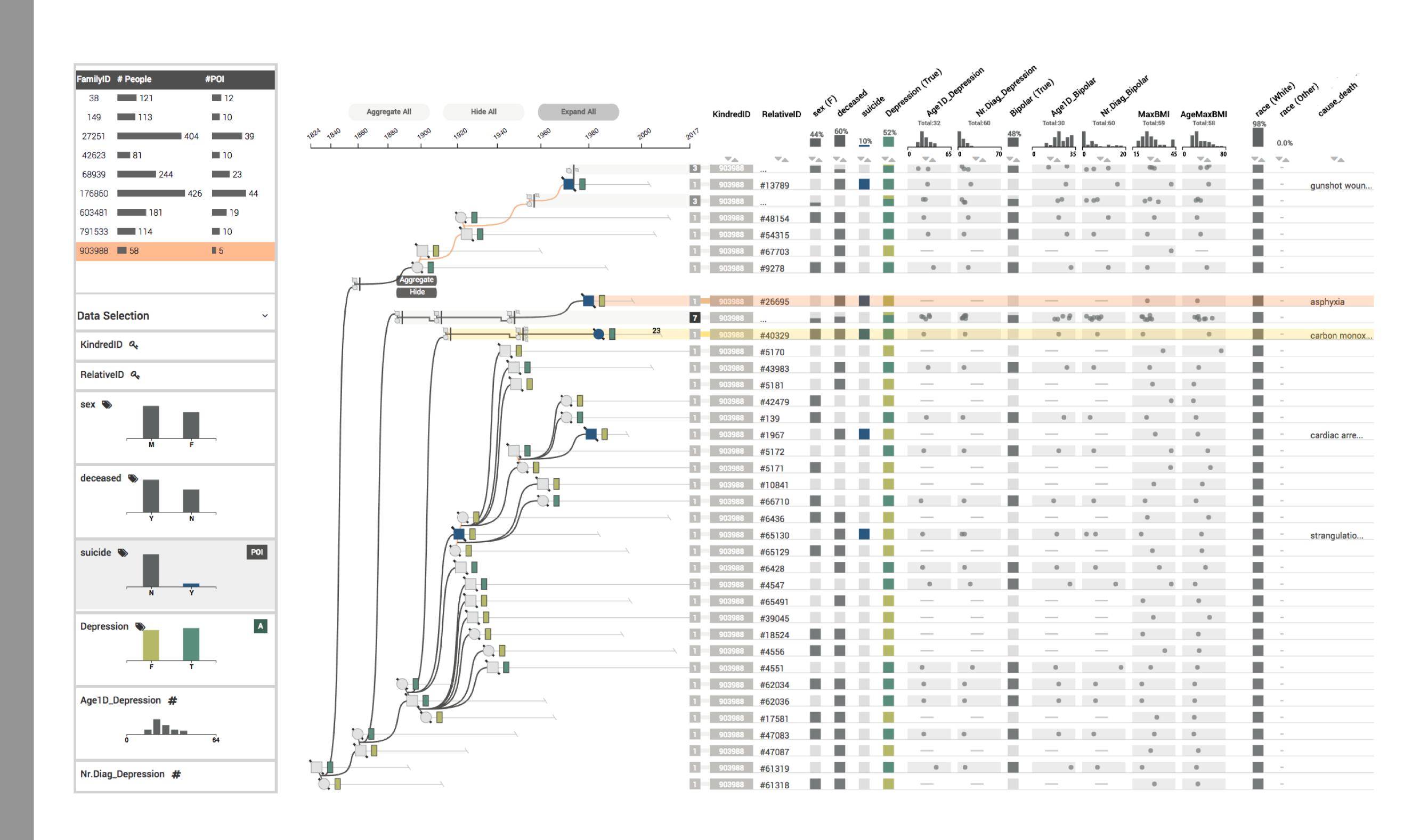
Data Wrangling
Methods

Tailored Methods
and Systems for High
Impact Science
Problems

DOMAIN DRIVEN TECHNIQUES

Genealogies for Clinical Data Analysis

Tailored Methods
and Systems for High
Impact Science
Problems



DOMAIN DRIVEN TECHNIQUES

Tailored Methods
and Systems for High
Impact Science
Problems

EMPIRICAL & THEORETICAL WORK

Evaluation
Methodology

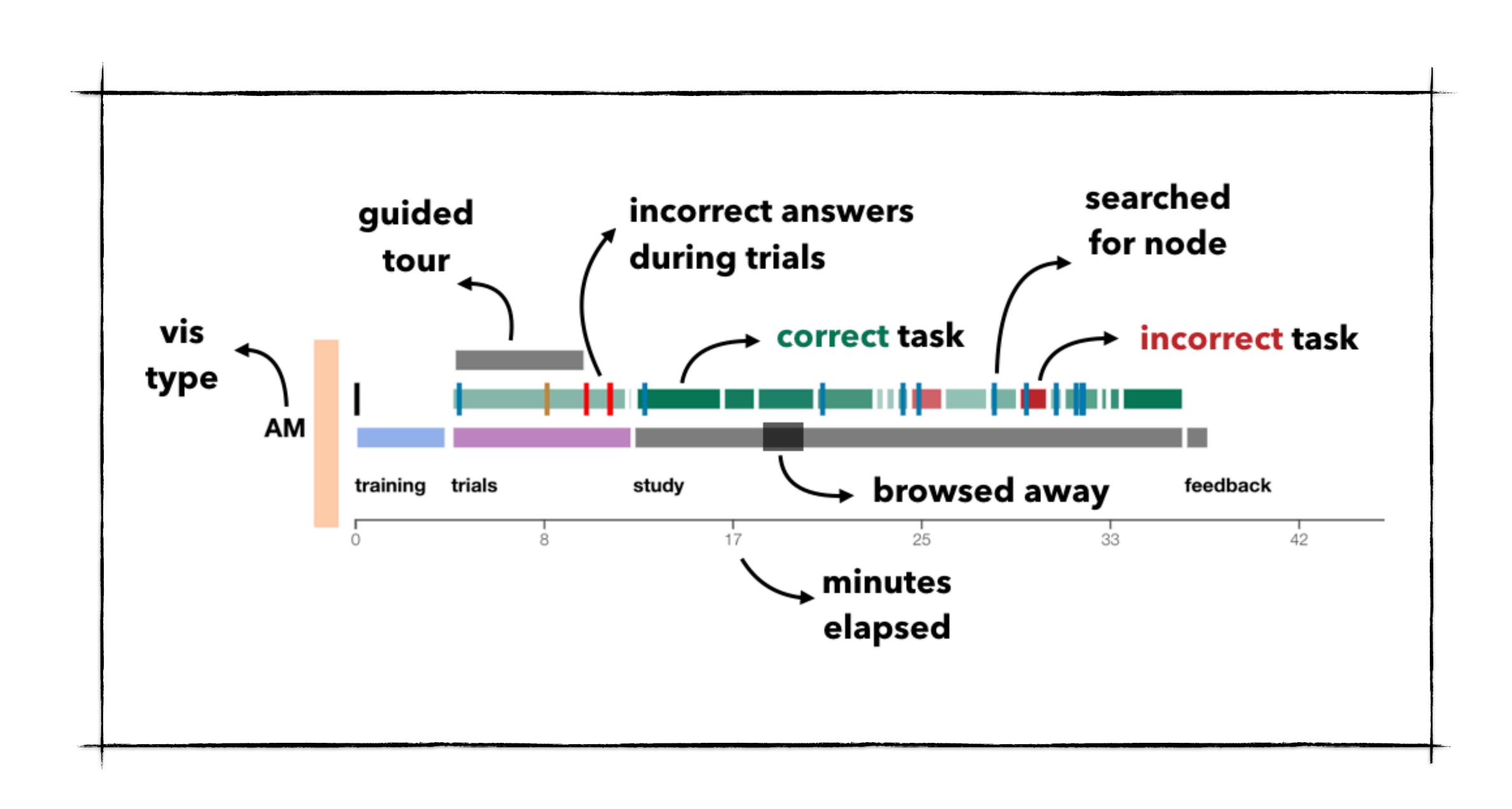
Design Spaces / Taxonomies

EMPIRICAL & THEORETICAL WORK

Evaluation

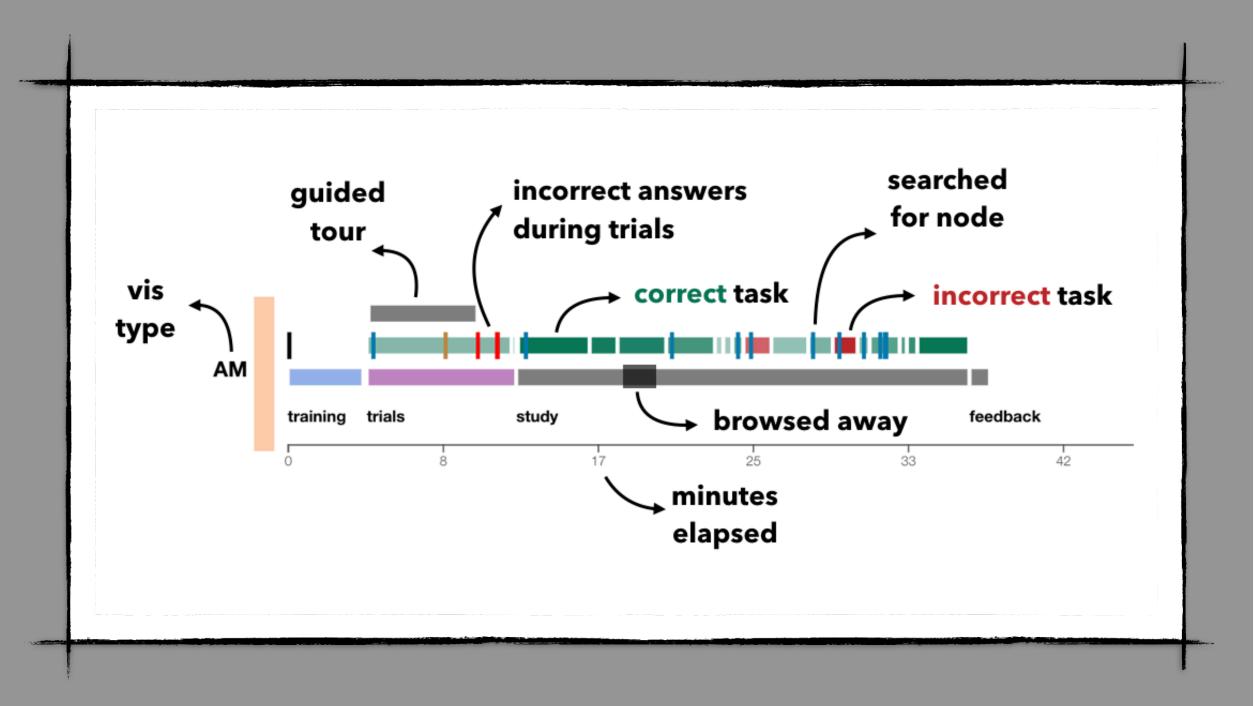
Methodology

Design Spaces / Taxonomies



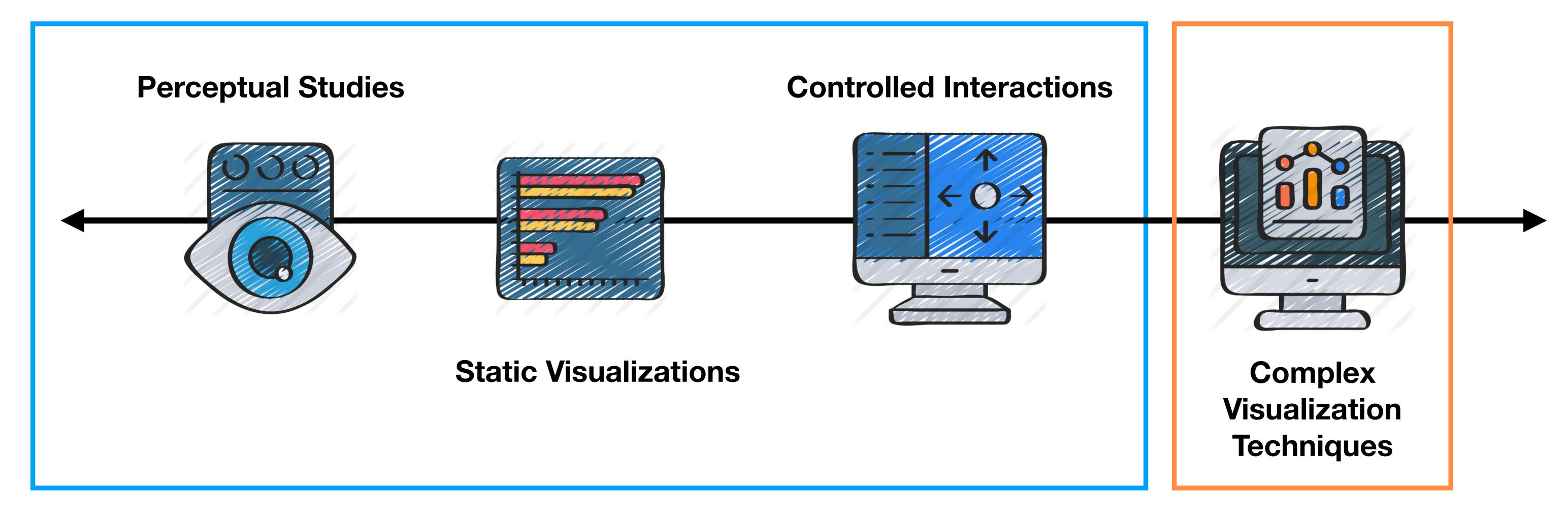
EMPIRICAL & THEORETICAL WORK

Evaluating Complex Systems



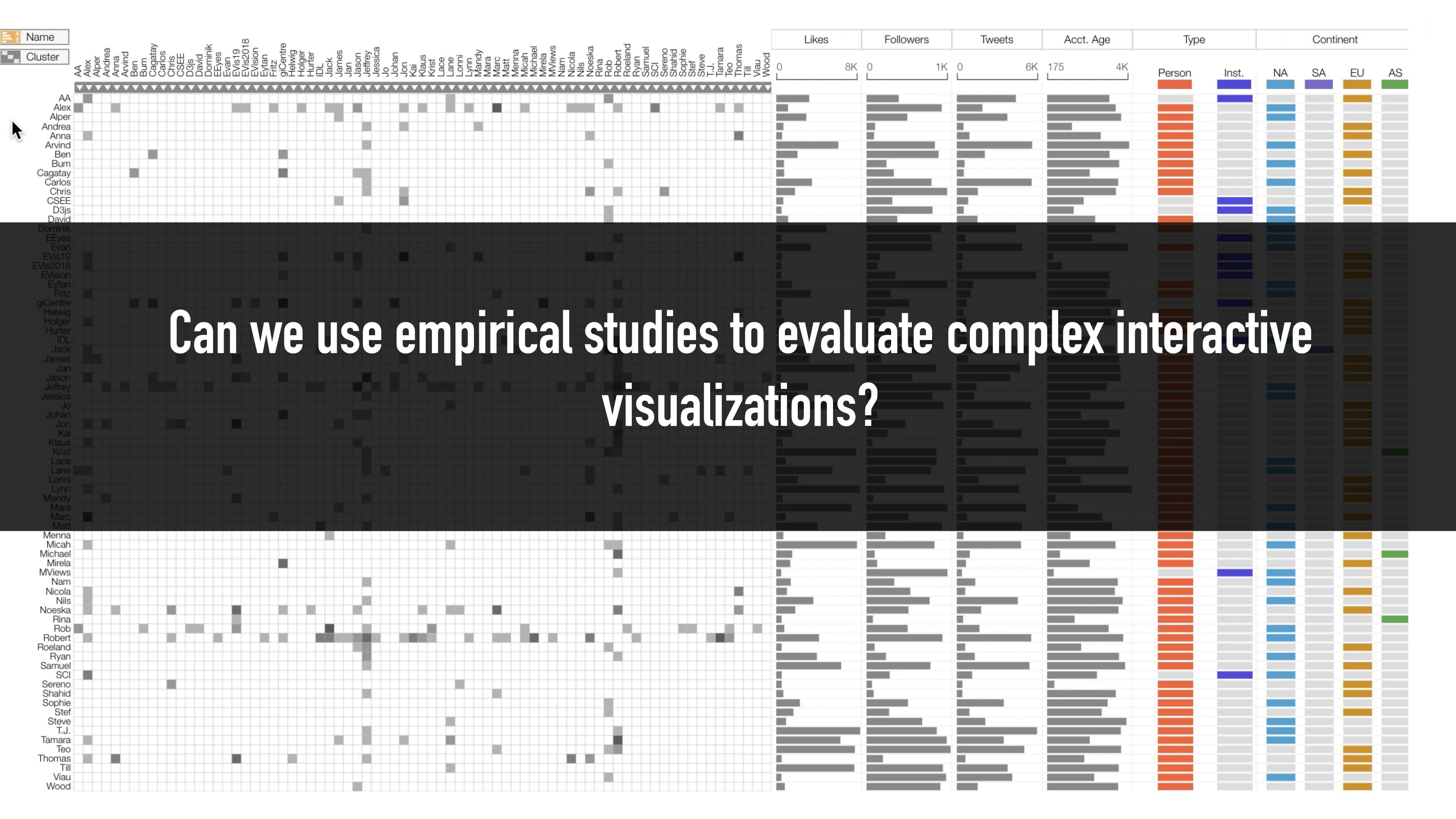
Empirically Evaluating Complex Interactive Visualization Techniques

Carolina Nobre, Dylan Wootton, Lane Harrison



Commonly Evaluated Using Crowdsourcing

Considered not Amenable to Crowdsourced Evaluation



The State of the Art in Visualizing Multivariate Networks

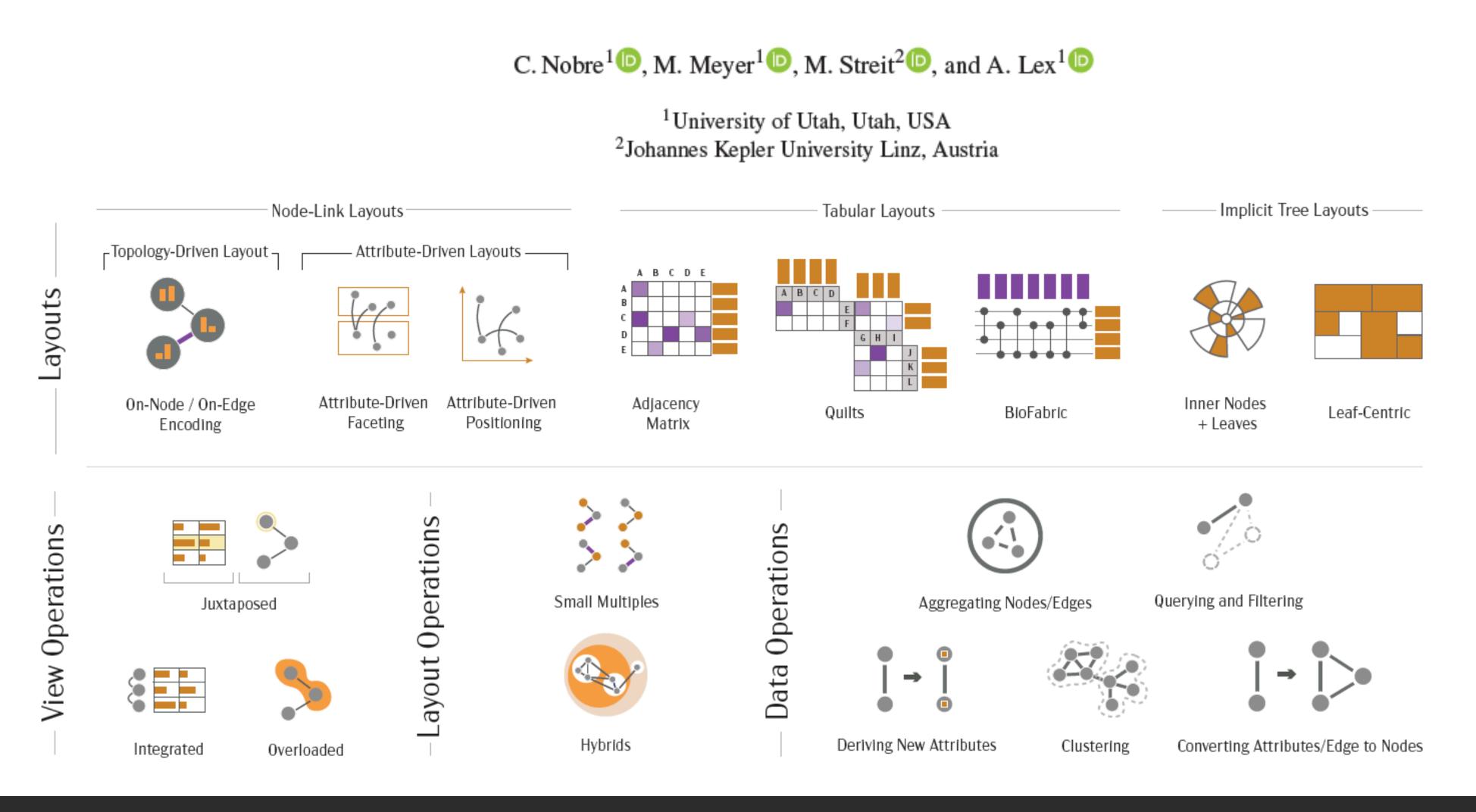


Figure 1: A typology of operations and layouts used in multivariate network visualization. Layouts describe the fundamental choices for encoding multivariate networks. View Operations capture how topology and attribute focused visualizations can be combined. Layout Operations are applied to basic layouts to create specific visualization techniques. Data Operations are used to transform a network or derive attributes before visualizations. The colors reflect node attributes (orange), edge attributes (purple), and topology (grey).

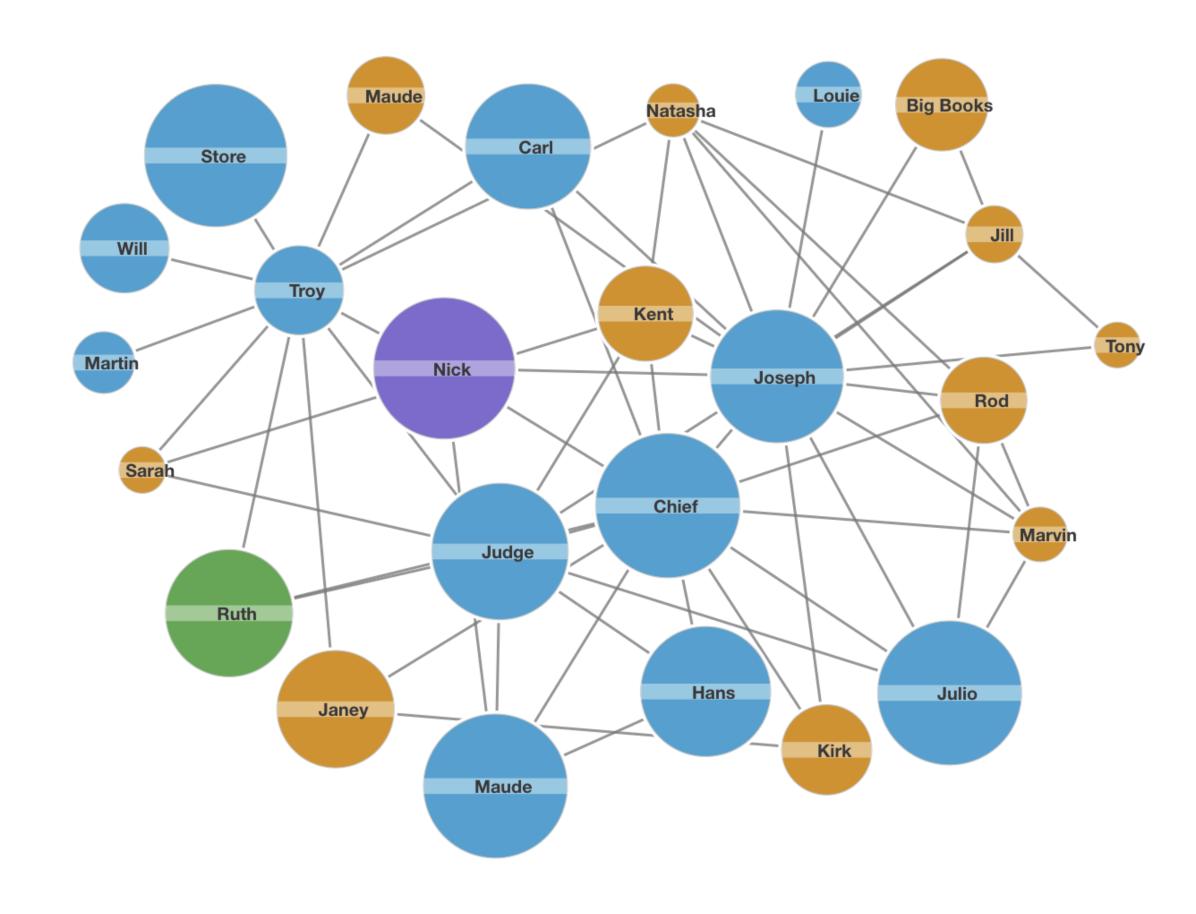
Abstract

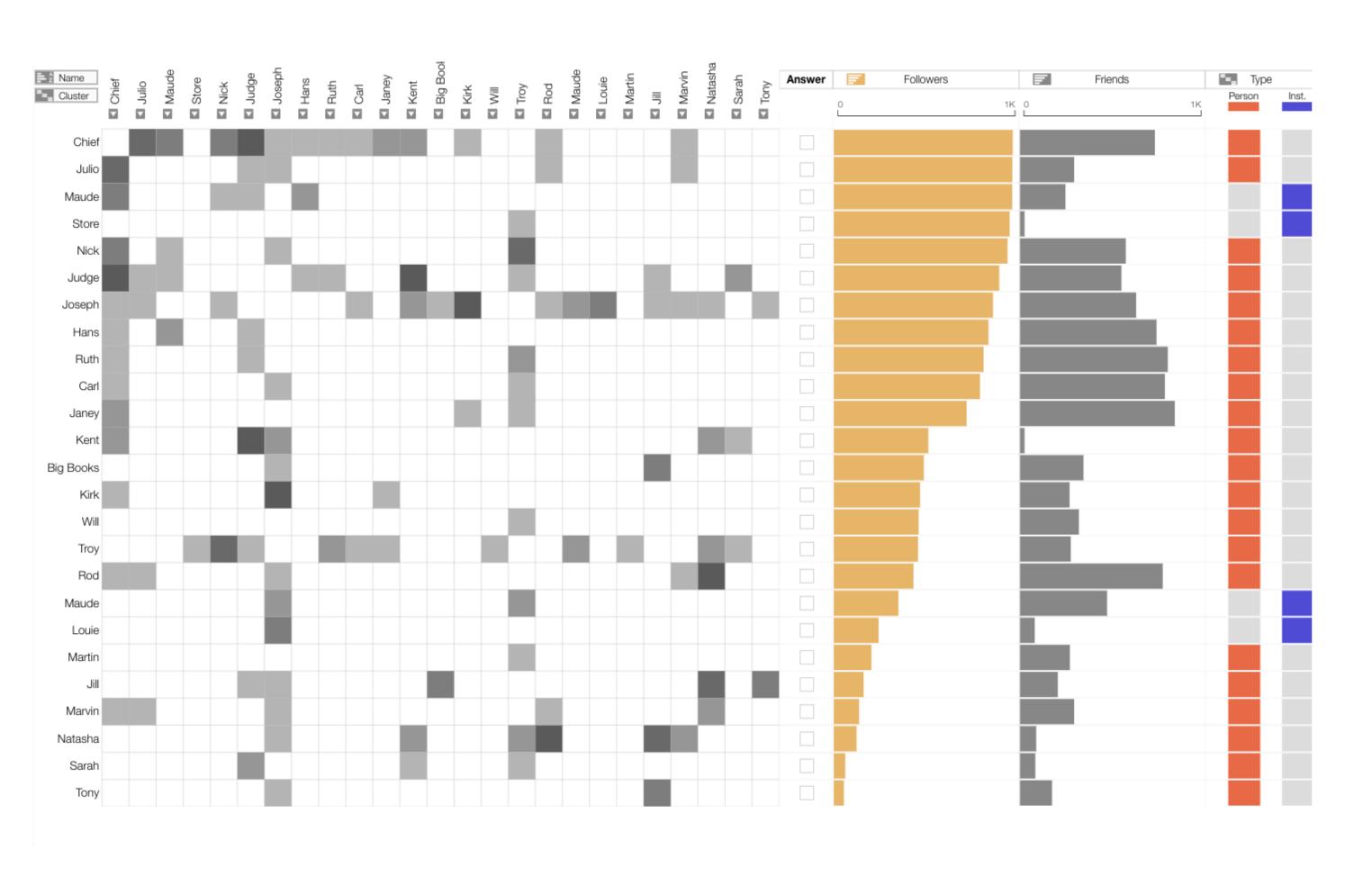
Multivariate networks are made up of nodes and their relationships (links), but also data about those nodes and links as attributes. Most real-world networks are associated with several attributes, and many analysis tasks depend on analyzing both, relations Which Echsus September 1988 and classify the networks and Echsus September 1989 and classify the line of the networks and give recommendations for which technique to use in which scenario. Finally, we survey application areas and evaluation methodologies.

CHALLENGE

CONFOUNDERS

HOW CAN WE MAKE SURE THAT WHAT WE TEST IS WHAT WE CARE ABOUT?





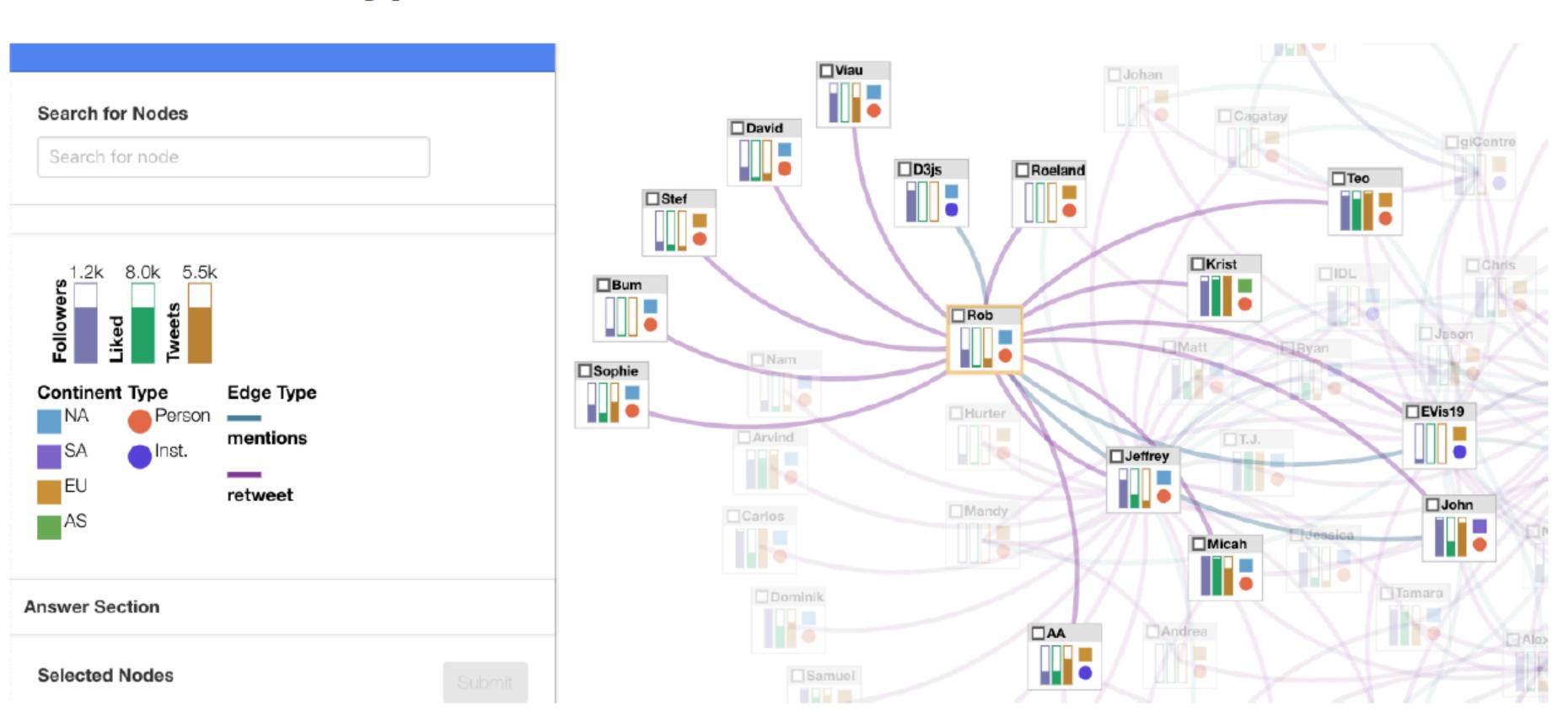
SOLUTION CONFOUNDERS

DESIGN BASED ON EXISTING
GUIDELINES AND KNOWLEDGE

VALIDATED & REFINE DESIGN
BASED ON EXPERT HEURISTIC
EVALUATION

Please rate relative to conceivable design alternatives but assuming a node-link diagram as given.

Nested Bars/Glyphs



26. Embedded bar charts are well suited to encode multiple numerical attributes. Mark only one oval.

	1	2	3	4	5	6	7	
Strongly Disagree								Strongly Agree

27. Embedded colored glyphs are well suited to encode multiple categorical attributes. Mark only one oval.

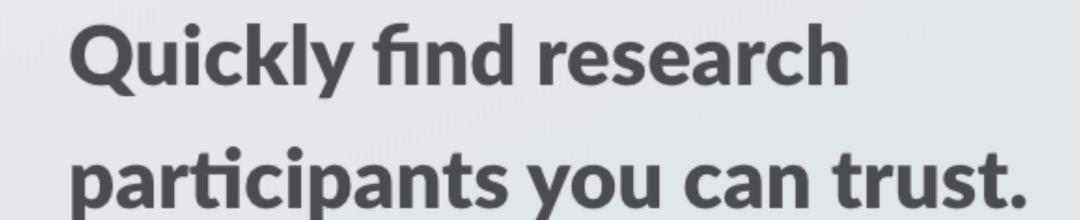
	1	2	3	4	5	6	7	
Strongly Disagree								Strongly Agree

ABOUT HOW IT WORKS PARTICIPANTS PRICING

CHALLENGE

NEED STATISTICAL POWER

HOW CAN WE DO THIS IN A CROWDSOURCED SETTING?



Launch your study to tens of thousands of trusted participants in minutes. Recruit niche or representative samples on-demand. Prolific builds the most powerful and flexible tools for online research. Sign up for free.

Research

Collect high quality responses from people around the world within minutes. Learn more

SIGN UP TO RESEARCH

Participate

Take part in engaging research, earn cash, and help improve human knowledge. Learn more

SIGN UP TO PARTICIPATE

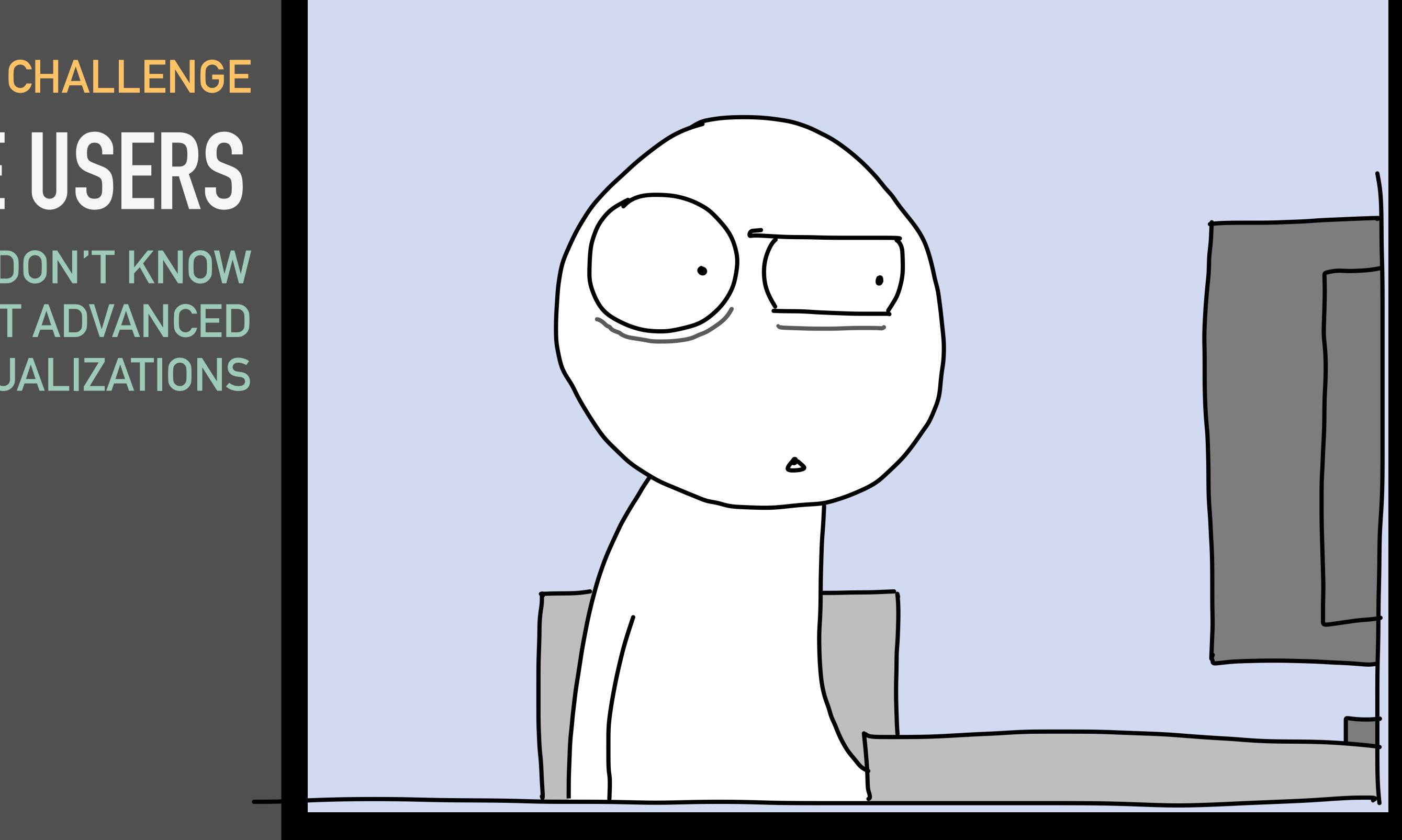
Find any research participant, anywhere in the world

Our participant pool is profiled, high quality and fast. The average study is completed in under 2 hours. Filter particip

NOVICE USERS

NOVICE USERS DON'T KNOW VISUALIZATIONS

MIAT DID JUST SEEP

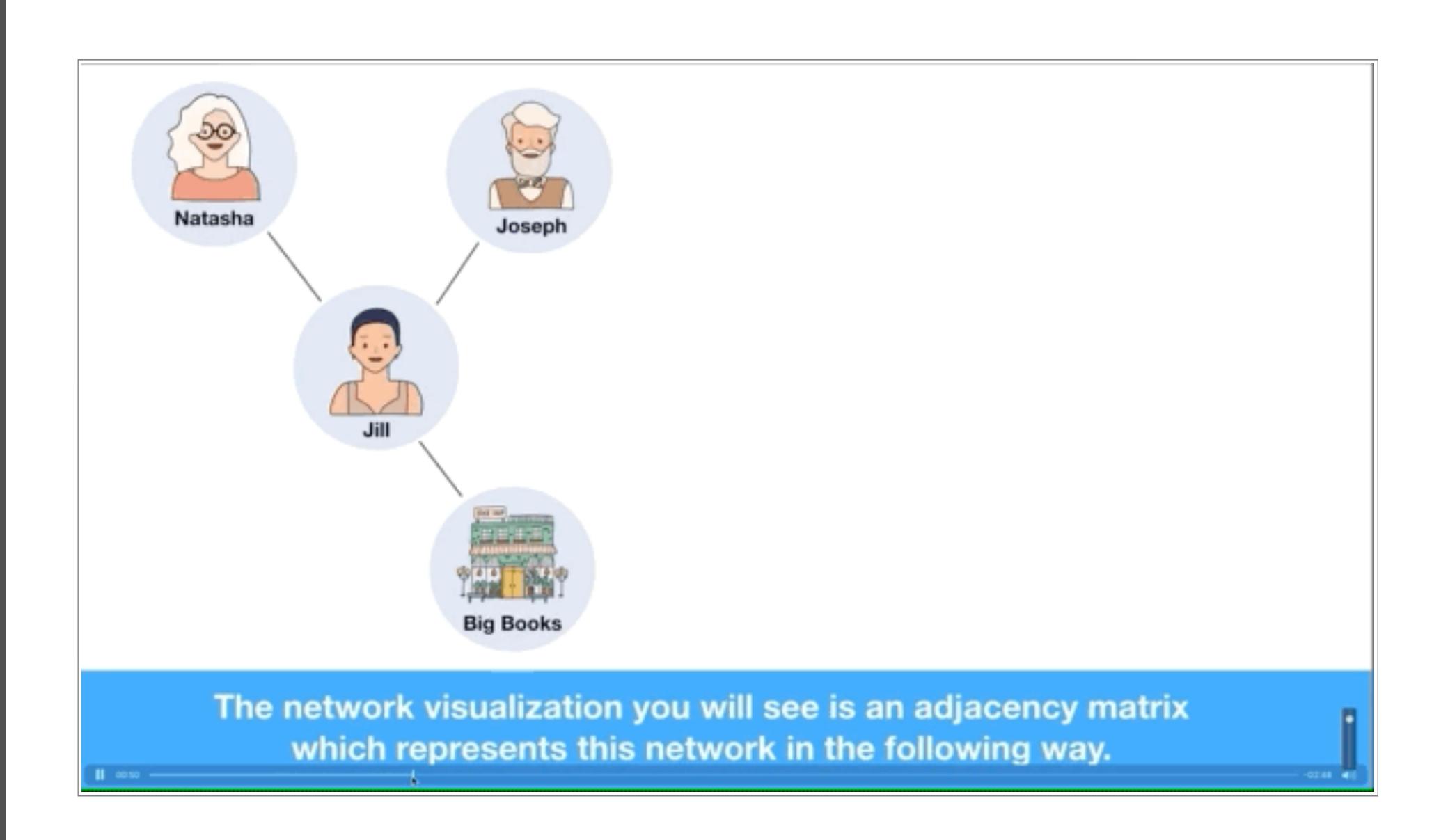


SOLUTION

NOVICE USERS

TRAINING CAN GIVE USERS THE EXPERTISE NECESSARY TO COMPLETE THE TASKS.

Passive Training

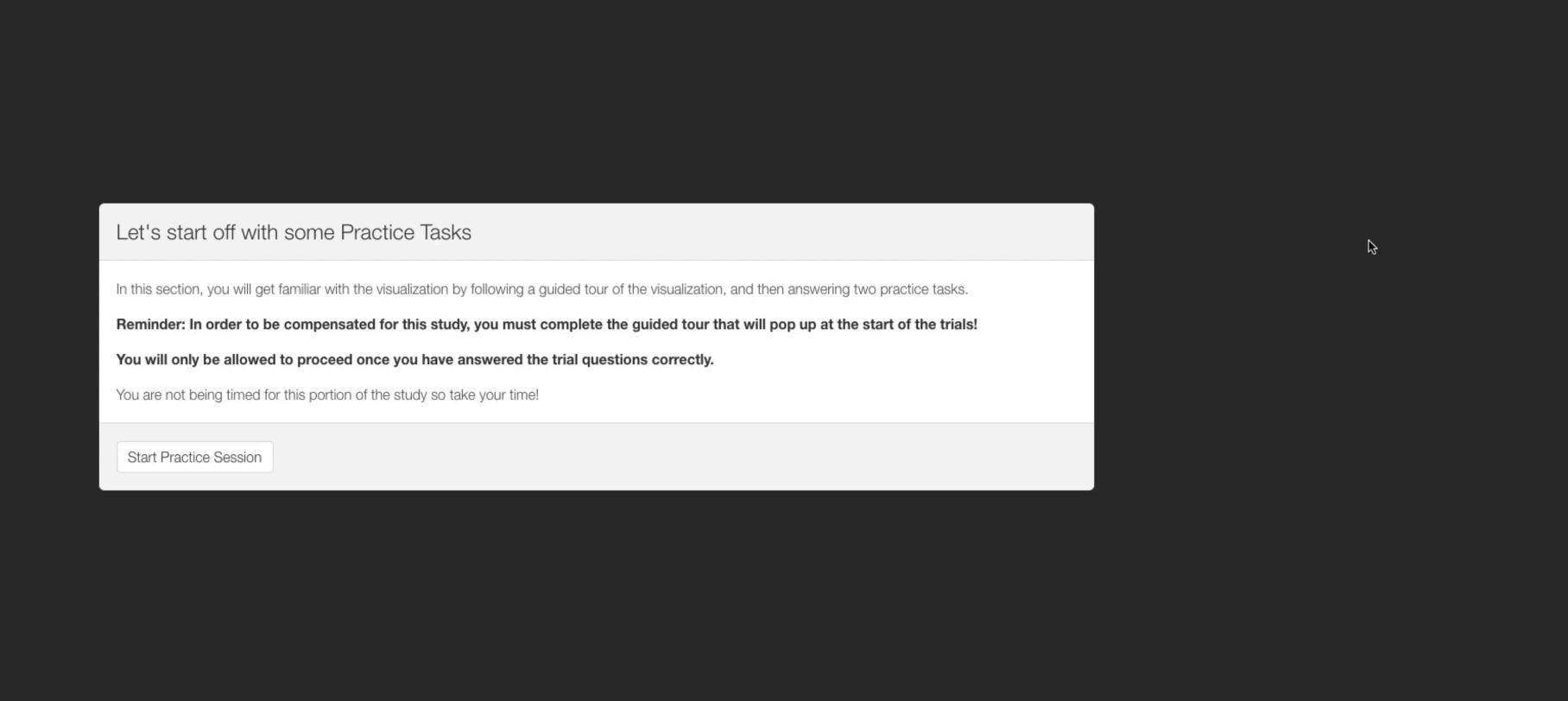


Active Training

SOLUTION

NOVICE USERS

TRAINING CAN GIVE USERS THE EXPERTISE NECESSARY TO COMPLETE THE TASKS.



CHALLENGE

INCENTIVES

HOW CAN WE GET USERS
TO TRY HARD

AND

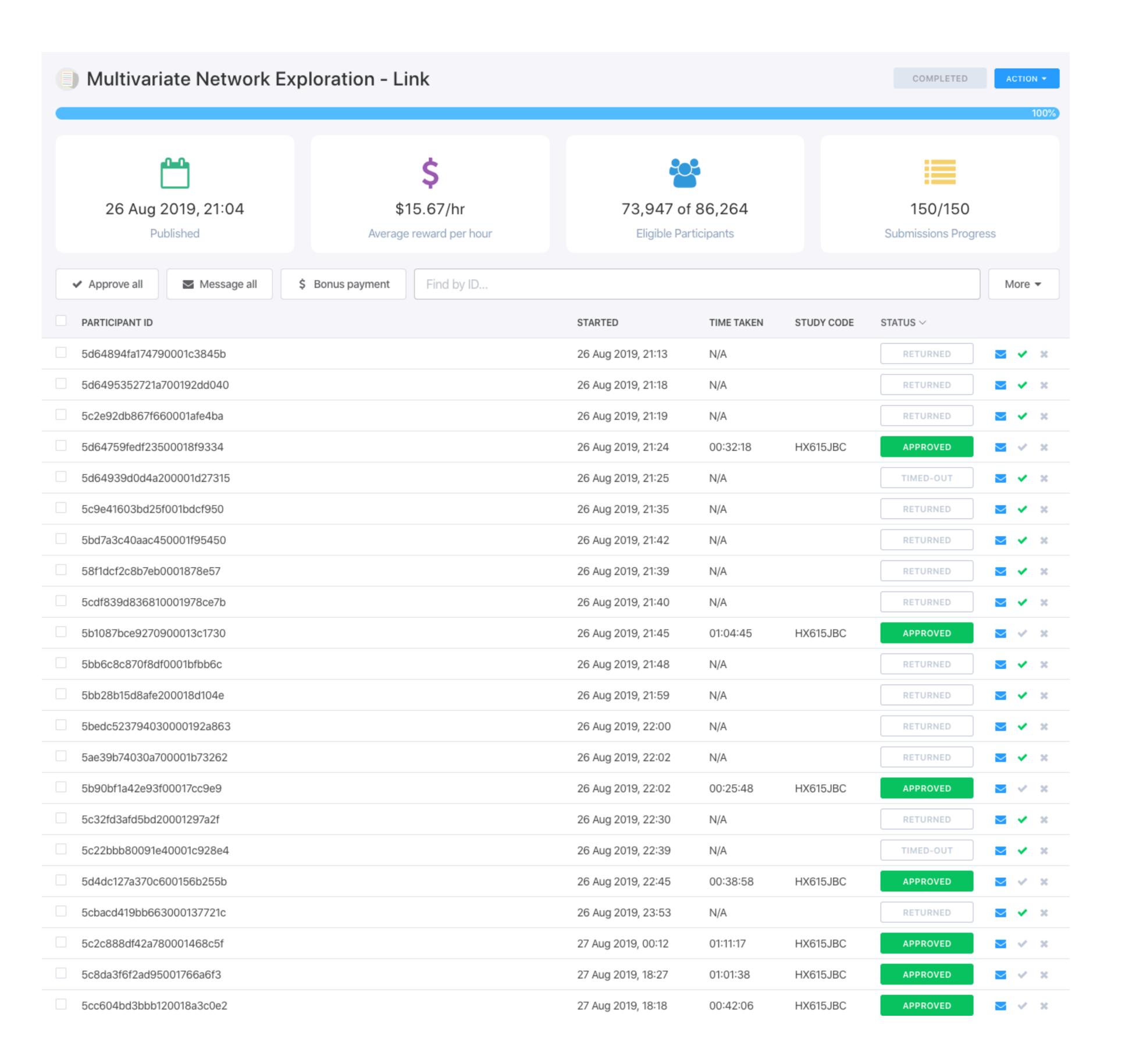
TO PARTICIPATE IN AN EXPERIMENT
THAT TAKES ~1H

SOLUTION

INCENTIVES

AN INTERESTING PROBLEM

MONEY



~ \$4,500 in 2h

VALIDATION

HOW CAN WE MAKE SURE THIS ALL WORKS?

DETAILED PROVENANCE TRACKING

MULTIPLE PILOTS



A library for reproducible tracking

TRRACK

Example Applications

Trrack Provenance Visualization

Tracks "differential state"

Tracks 2 levels:

Application State

Study Metadata (responses, etc.)

https://vdl.sci.utah.edu/trrack/

[VIS Short 2020]

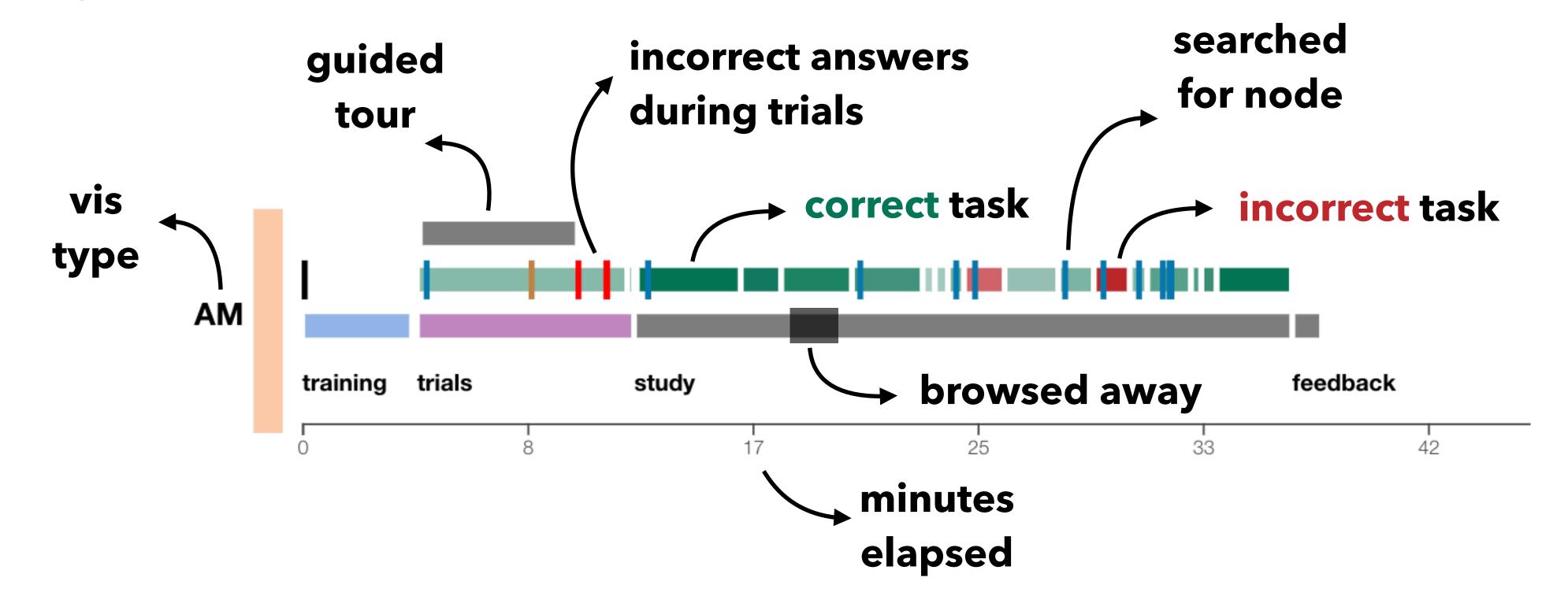
PROVENANCE TRACKING

Allows a full re-hyrdrate of every analysis session

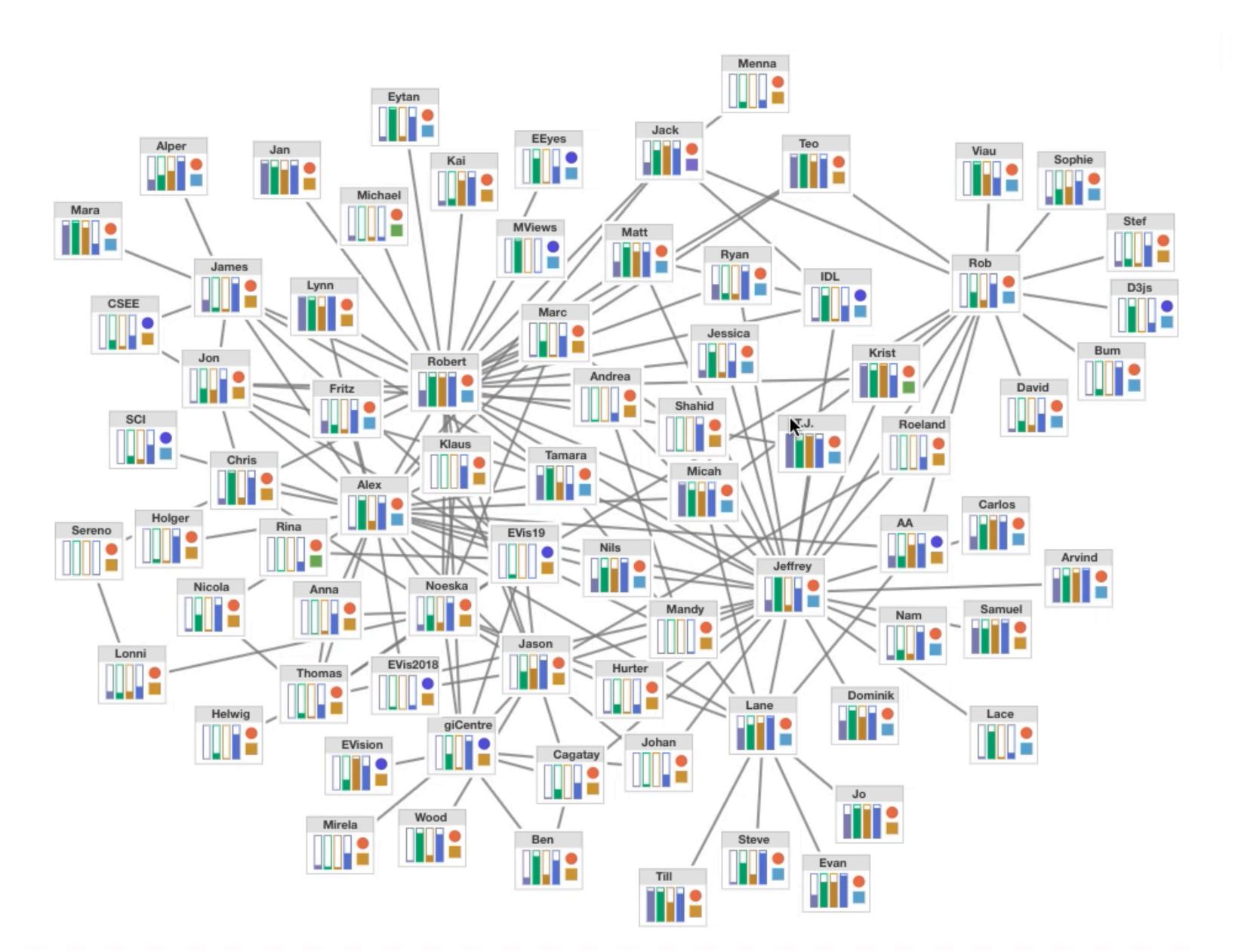
Great for debugging pilots - what went wrong for this person?

Great for detailed analysis

Provenance data vis to spot problems e.g. with tasks

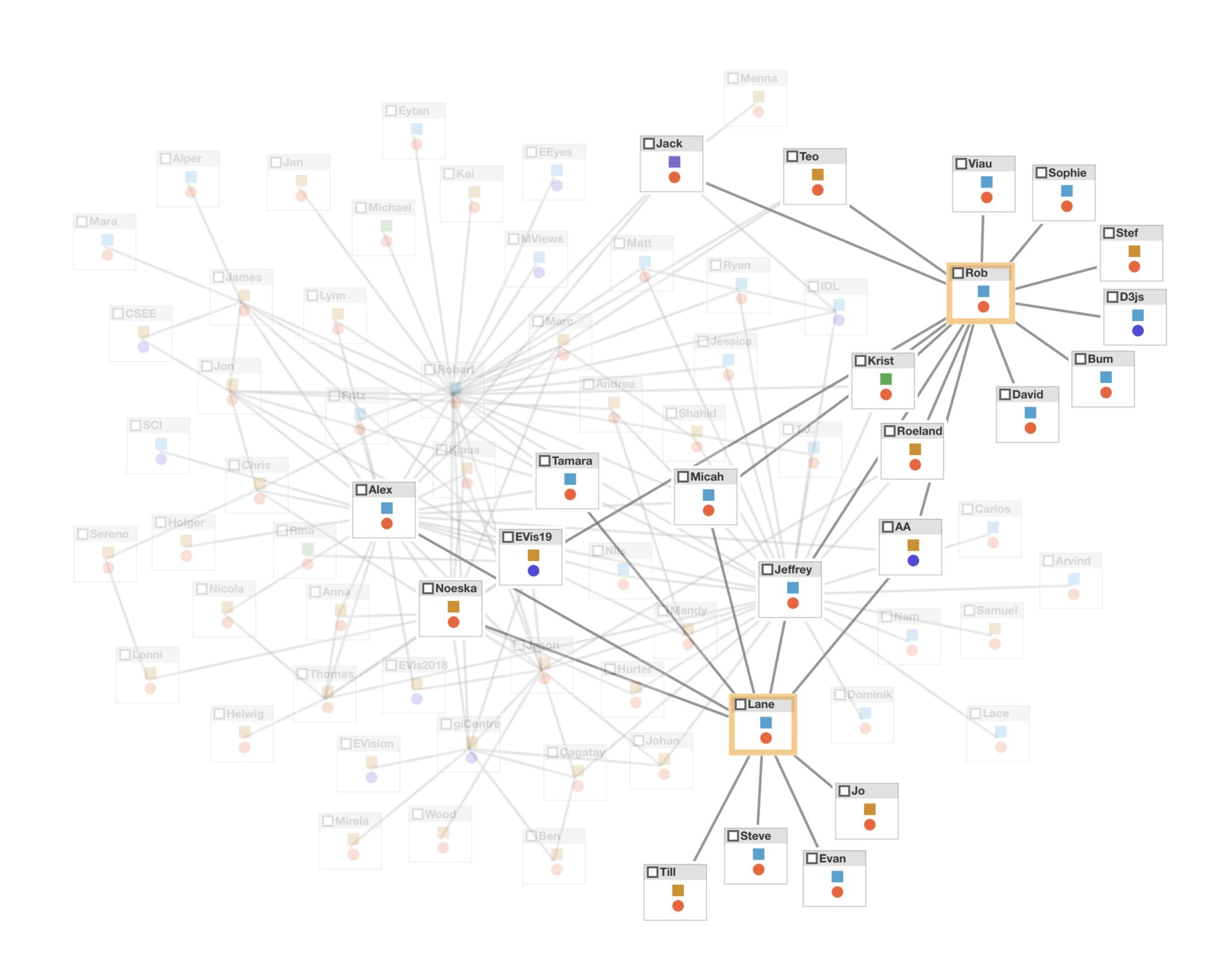


SELECTED RESULTS



PATHS

Is NL or AM better for Path Tasks?

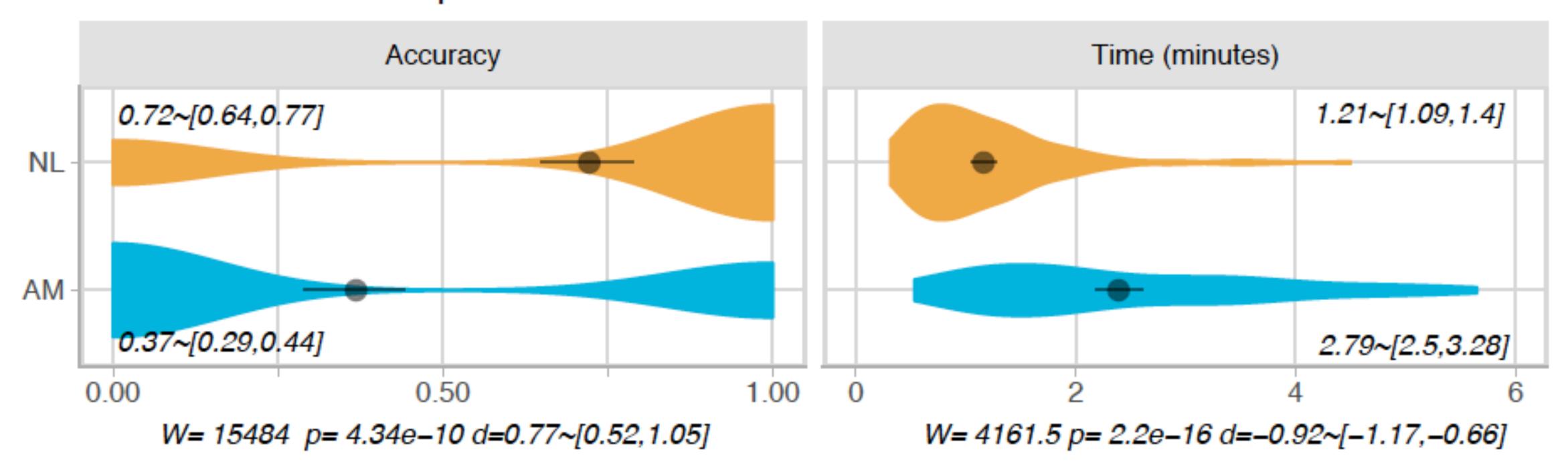


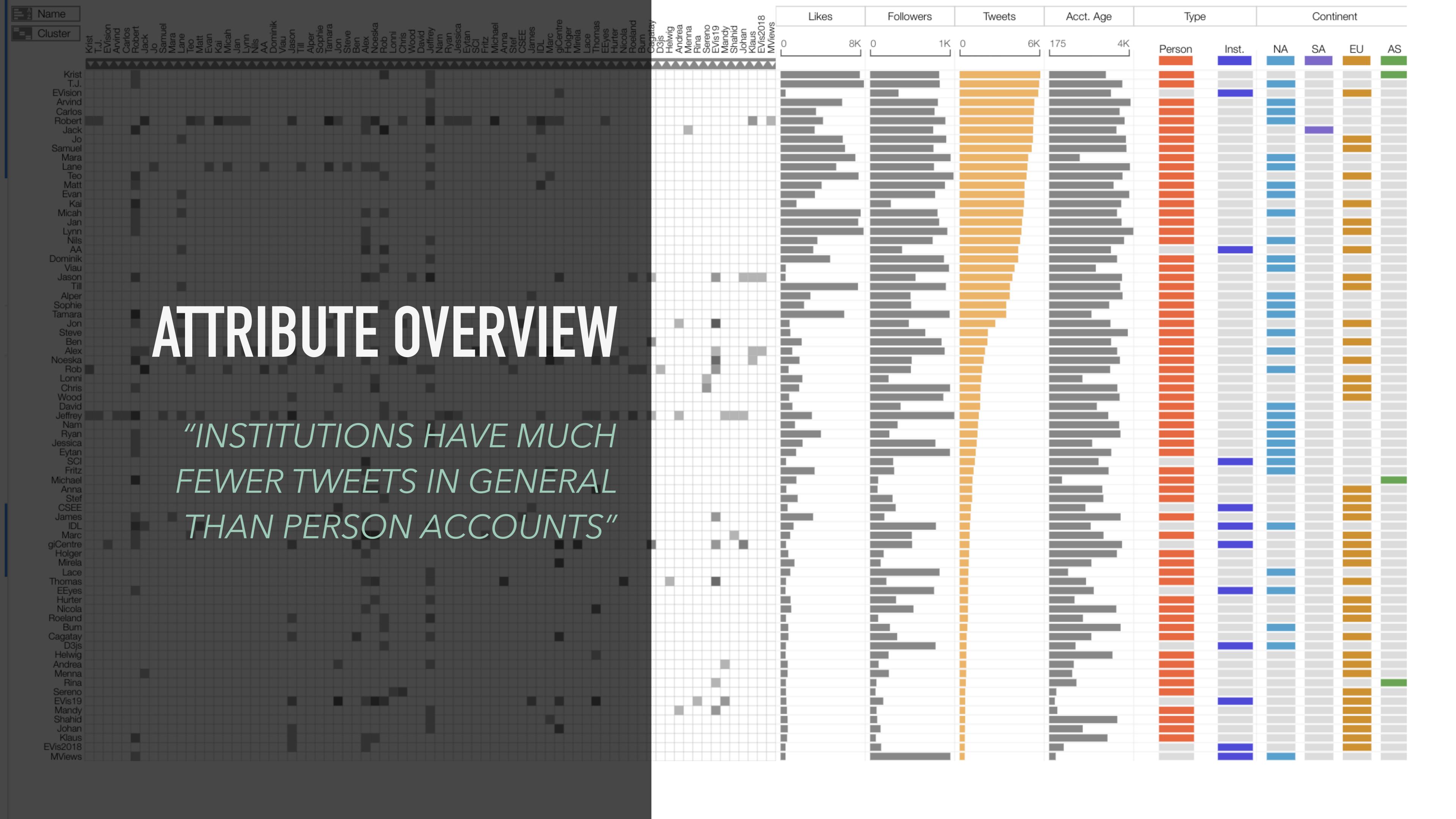
NL 0.89~[0.83,0.93] 1.04~[0.97,1.11] NL 0.54~[0.46,0.62] 1.94~[1.76,2.18] 0.00 0.50 1.00 0 2 4 6

 $W = 5419 p = 3.21e - 15 d = -0.92 \sim [-1.07, -0.75]$

T15 – Attribute on Multiple Paths

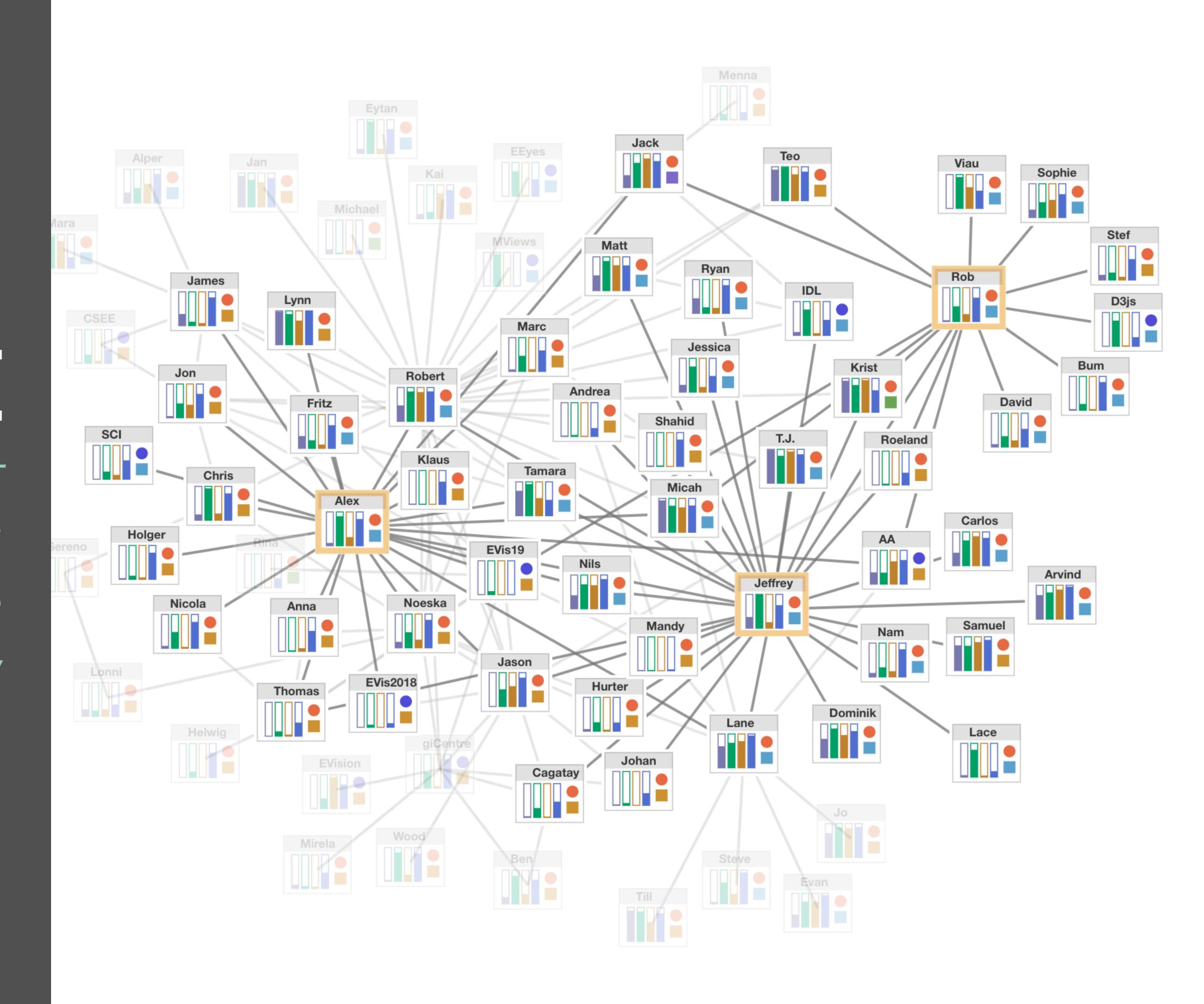
 $W=15630 p=1.36e-12 d=0.88\sim[0.63,1.14]$





TOPOLOGY-ATTRIBUTE

"IT DOES SEEM A BIT ODD THAT
JEFFREY ALEX AND ROB HAVE SUCH
LARGE NETWORKS WITH THEIR
LOWER THEN AVERAGE TWEETING."



RECAP

CAN WE DO QUANTITATIVE EVALUATION WITH COMPLEX SYSTEMS?

Yes We Can!

- Picking the right techniques
- Evidence-based design
- Design validation
- Careful training
- Good compensation
- Interesting Tasks

Pushing the boundary of what can be evaluated using crowdsourcing

CAVEATS / THOUGHTS

Should this be the new gold standard to evaluate systems?

NO!

Needs established techniques
Needs specifically designed and
instrumented systems

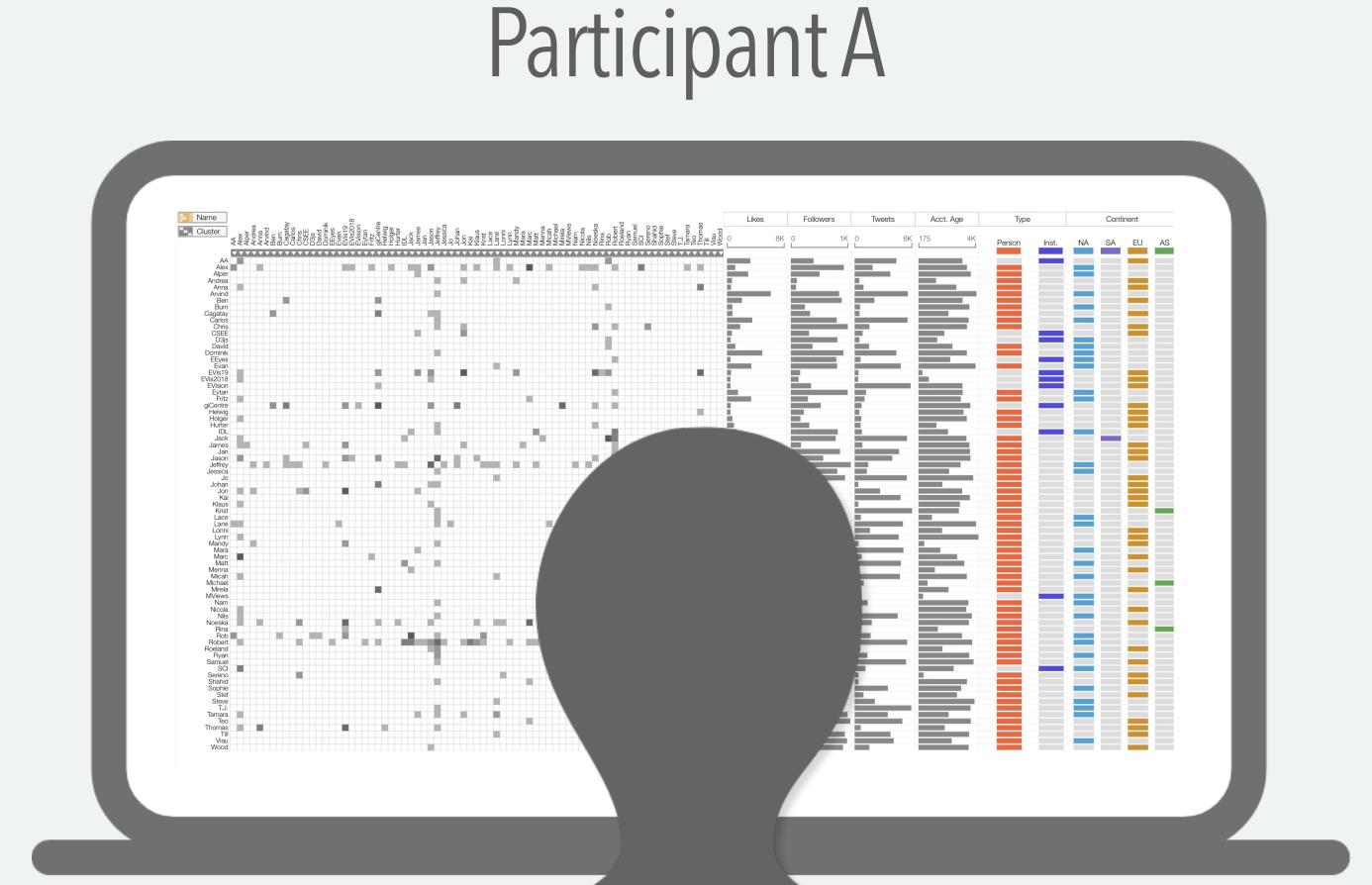
Our instrumentation can be used broadly

ADVANCED ANALYSIS OF STUDY DATA

INSTRUMENTED STUDIES

What else can we do with this rich data?

Do different analysis strategies result in different results?

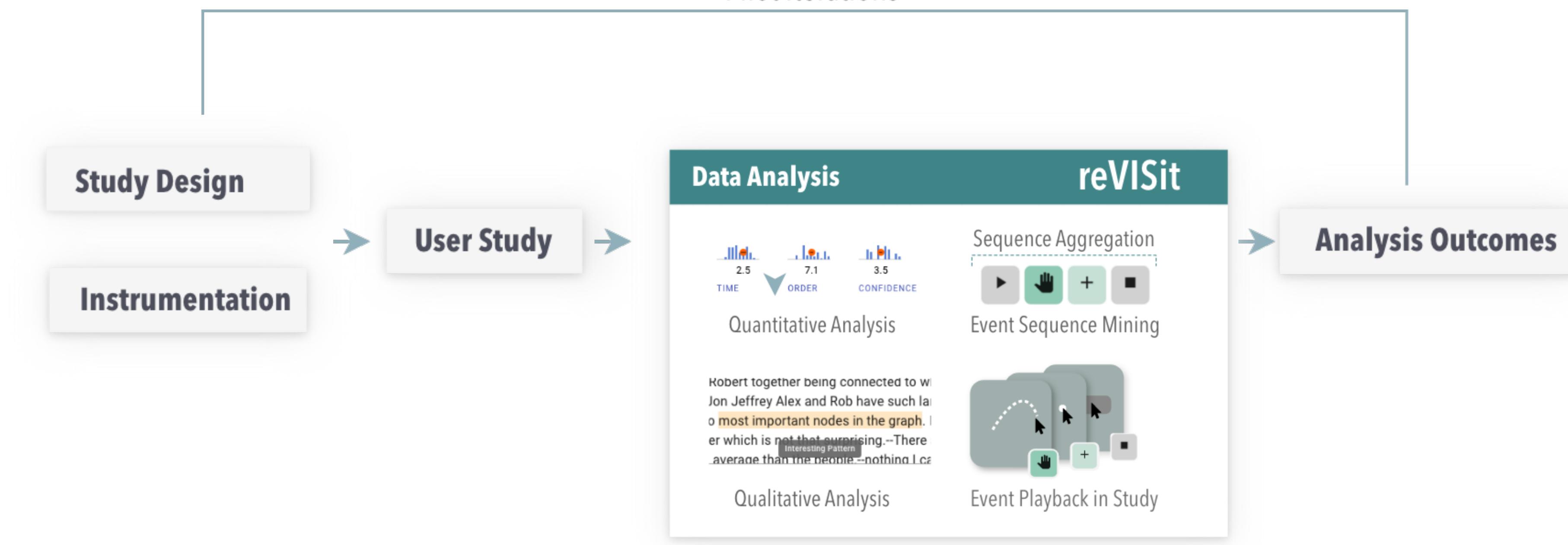


Participant B

How do analysis strategies impact user performance when using interactive visualizations?

Study Design Study Design Data Analysis Analysis Outcomes

Pilot Iterations



Data Analysis

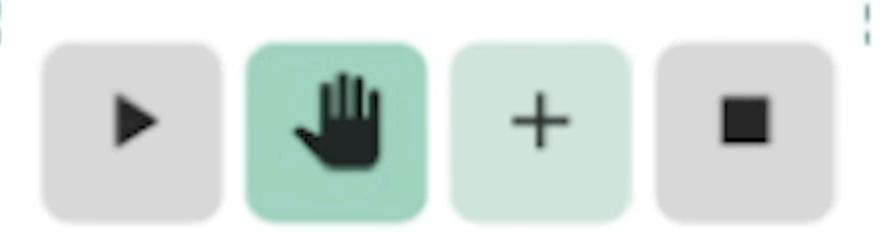
reVISit

Quantitative Analysis

Jon Jeffrey Alex and Rob have such la o most important nodes in the graph. I er which is not that our prising.—There average than the people.—nothing I ca

Qualitative Analysis

Sequence Aggregation

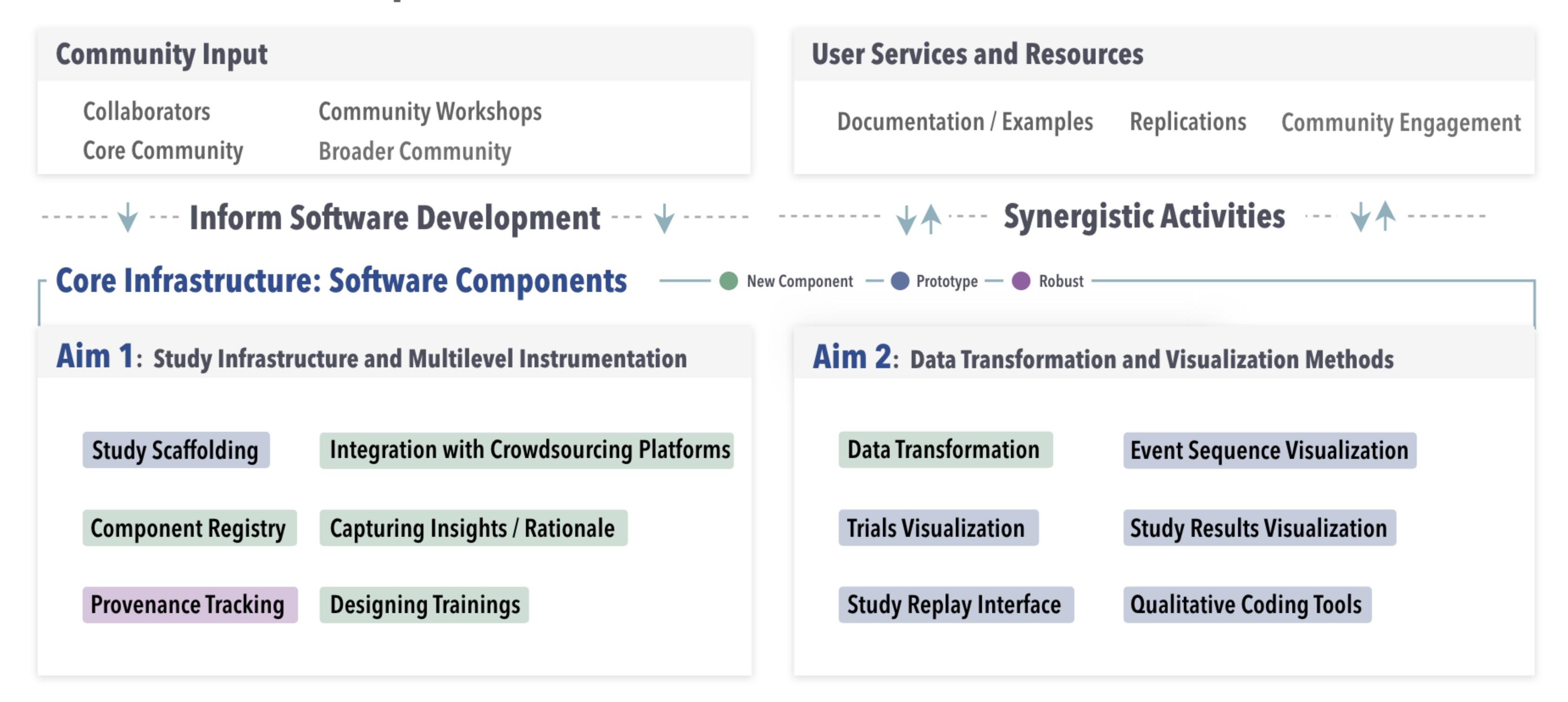


Event Sequence Mining

Event Playback in Study

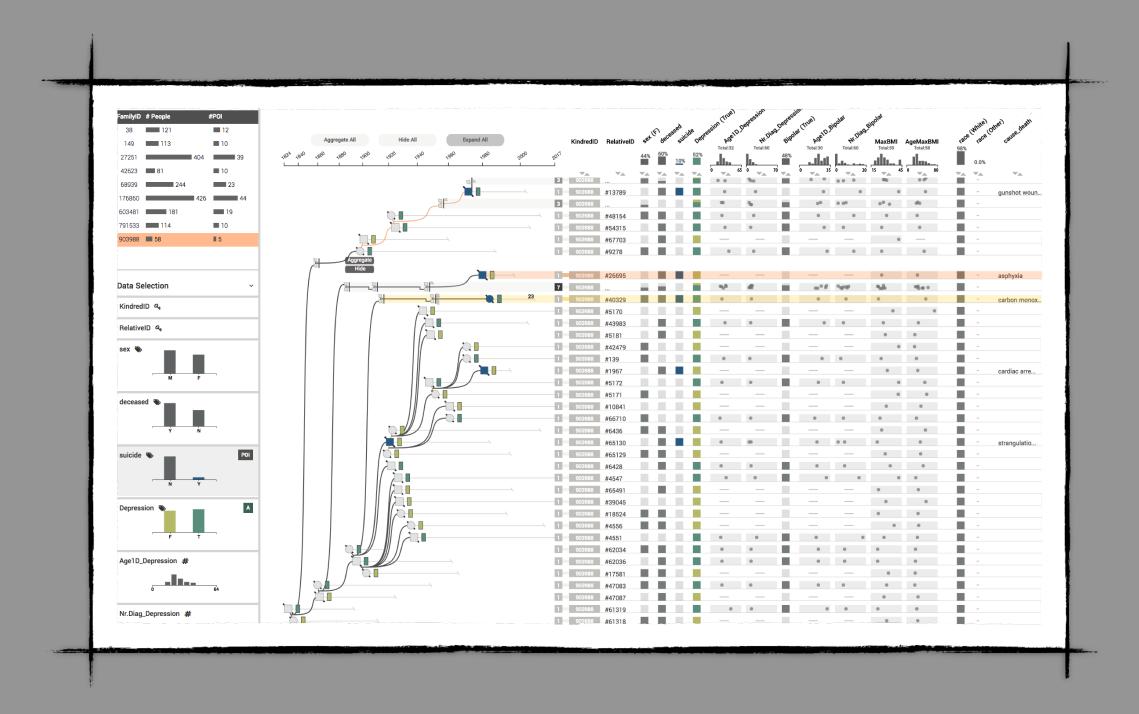
FUTURE WORK: BETTER SCAFFOLDING FOR STUDIES

reVISit: Scalable Empirical Evaluation of Interactive Visualizations



DOMAIN DRIVEN TECHNIQUES

Clinical Genealogies



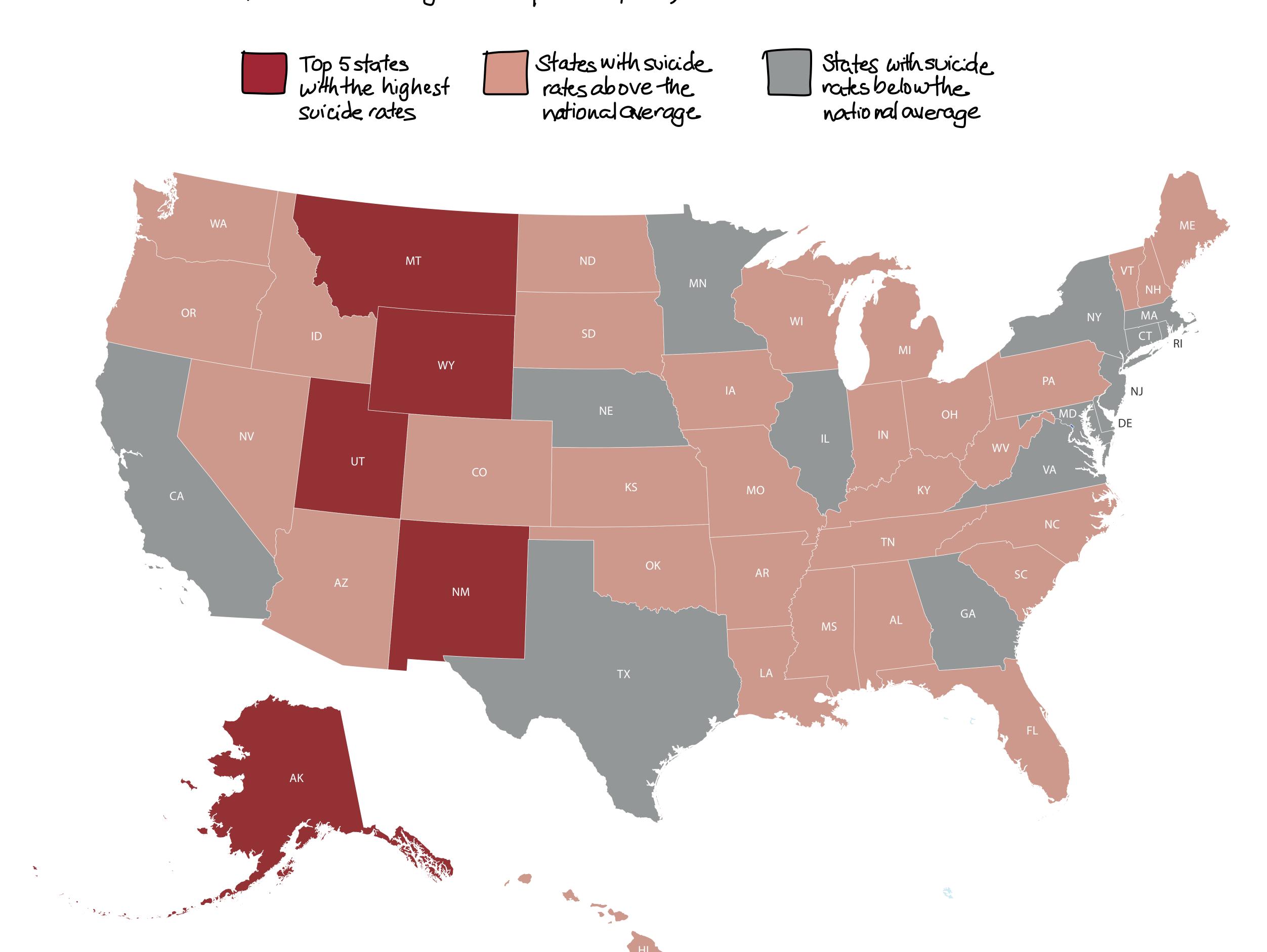
LINEAGE:

VISUALIZING CLINICAL DATA IN GENEALOGY GRAPHS

Carolina Nobre, Nils Gehlenborg, Hilary Coon, Alexander Lex

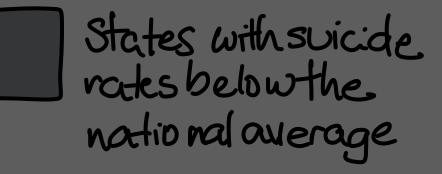
SUICIDE IS THE SECOND LEADING CAUSE OF DEATH IN YOUTHS BETWEEN 15 AND 29 YEARS OLD

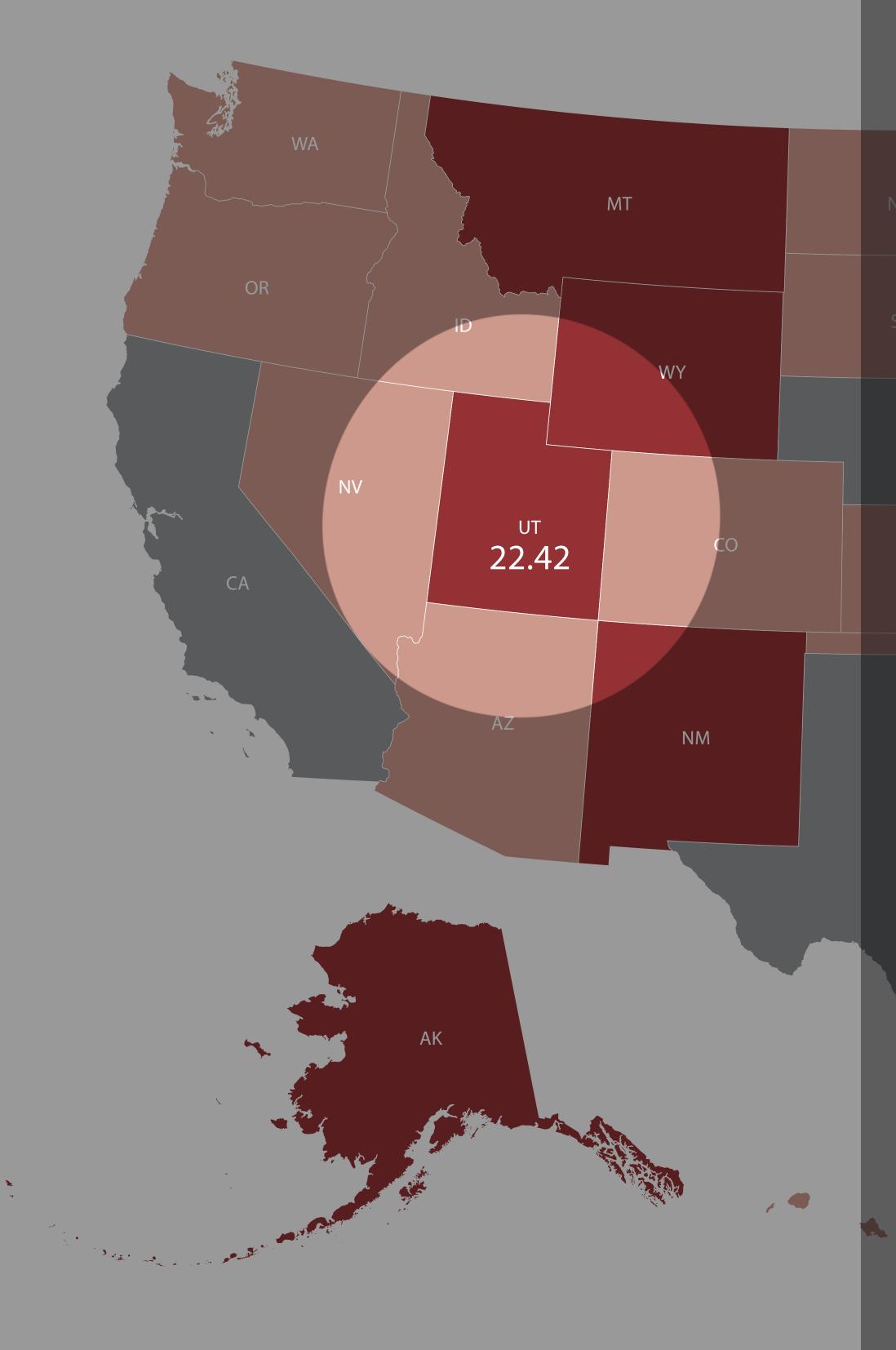
AVERAGE SUICIDE RATE BY STATE (National average 13.26 per 100,000)



AVERAGE SUICIDE RATE BY STATE (National average 13.26 per 100,000)







UTAH HAS THE 5TH HIGHEST SUICIDE RATE IN THE COUNTRY, WITH BETWEEN 500-600 CASES PER YEAR.

OPEN

American Journal of Epidemiology

© The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Vol. 181, No. 5 DOI: 10.1093/aje/kwu341 Advance Access publication: February 10, 2015

Original Contribution

Acute Air Pollution Exposure and Risk of Suicide Completion

Citation: Transl Psychiatry (2013) 3, e325; doi:10.1038/tp.2013.100 © 2013 Macmillan Publishers Limited All rights reserved 2158-3188/13

www.nature.com/tp

ORIGINAL ARTICLE

Genetic risk factors in two Utah pedigrees at high risk for suicide

H Coon¹, T Darlington¹, R Pimentel², KR Smith^{2,3}, CD Huff⁴, H Hu⁴, L Jerominski¹, J Hansen¹, M Klein⁵, WB Callor⁶, J Byrd⁶, A Bakian¹, SE Crowell^{1,7}, WM McMahon¹, V Rajamanickam⁸, NJ Camp⁸, E McGlade^{1,9}, D Yurgelun-Todd^{1,9}, T Grey⁶ and D Gray^{1,9}

We have used unique population-based data resover twice that expected from demographically two high-risk pedigrees. In the first of these (ped death was 30.95. In the second (pedigree 5), 7/5 decedents in pedigree 12 and nine in pedigree analyzed using the Variant Annotation, Analysis, functional impact of the DNA variation, aggregationitized variants that were: (1) shared across (3) ≤ 5% in genotyping data from 398 other Uta from 1358 controls and/or in dbSNP. Results inc FAM38A and HRCT1 for pedigree 5). Other gene

The Role of Social Isolation in Suicide

Deborah L. Trout M.A.

First published: Spring 1980 | https://doi-org.ezproxy.lib.utah.edu/10.1111/j.1943-278X.1980.tb00693.x | Cited by: 95

The author wishes to thank Dr. Charles Neuringer for his assistance with the preparation of this manuscript.

er, Hilary Coon, Douglas Gray, Phillip Wilson, nshaw

Intrument of Psychiatry, School of Medicine, University of Utah, 650 Komas Drive, Suite 206, @hsc.utah.edu).

for publication August 11, 2014.

MOTIVATION & DATA

Understand Complex Conditions

Discover Genetic Risk Factors

Dataset:

118k people, 19k suicide cases, ~2k with genomic data, 550 families
Based on **Utah Population Database**

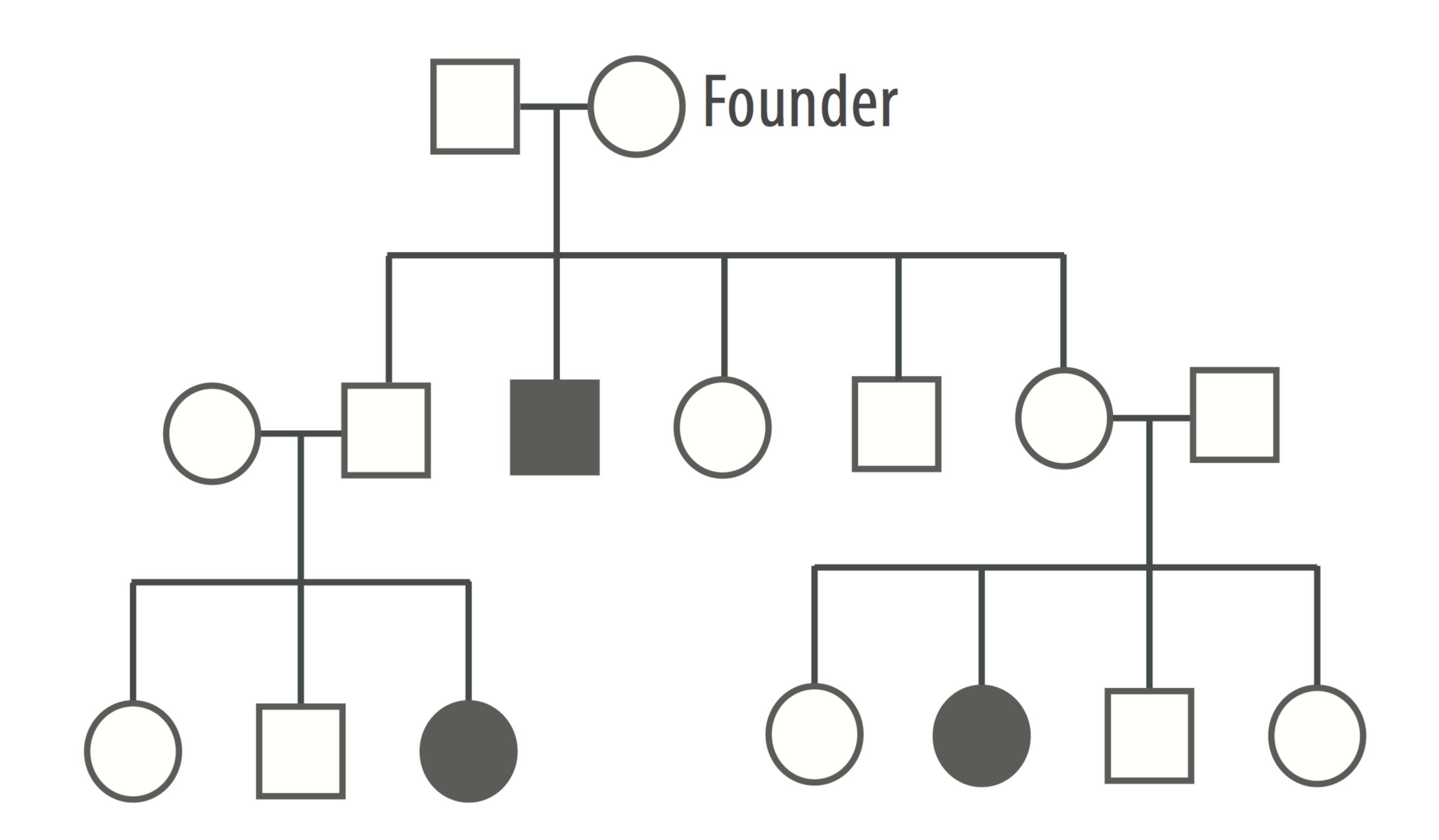
SPECIFIC GOALS

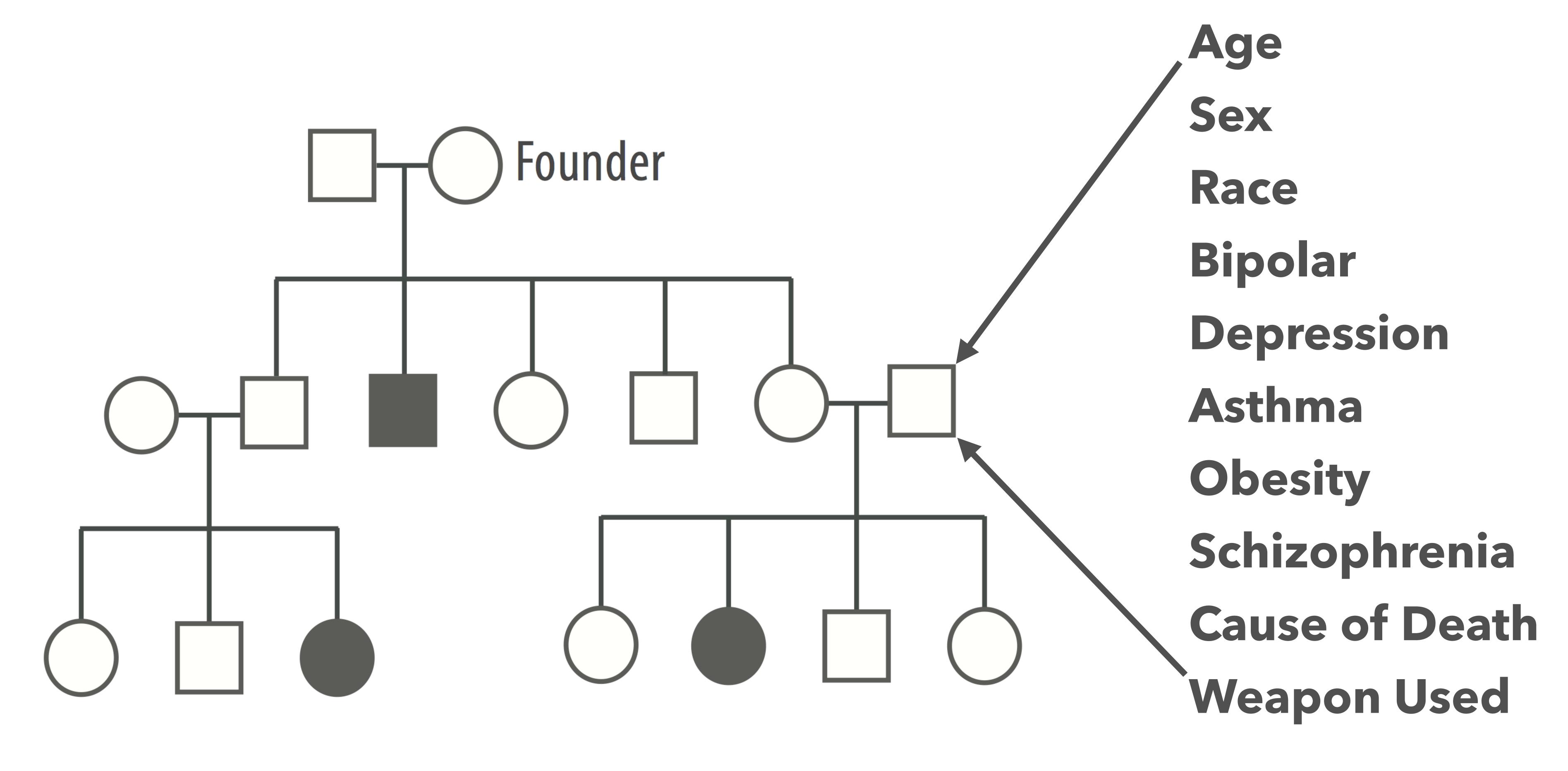
Find familial cases that also have an "interesting" phenotype

e.g., predominantly female, associated with rare psychiatric disease, etc.

Prioritize those cases for analysis of shared genomic sequences

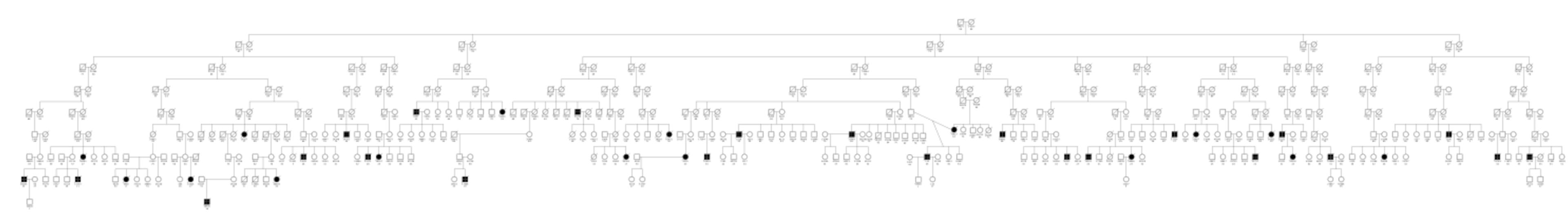
Proofread the Data!

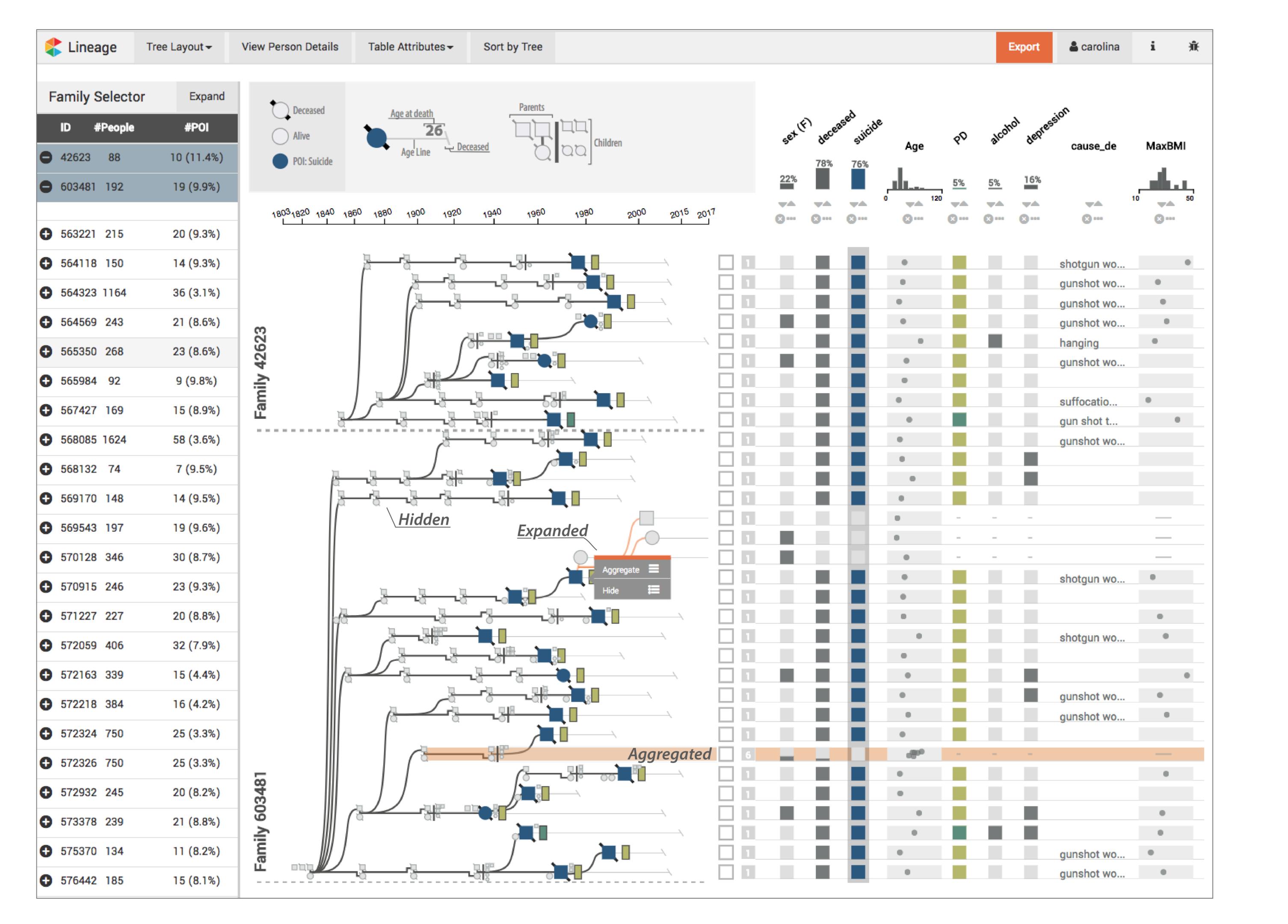


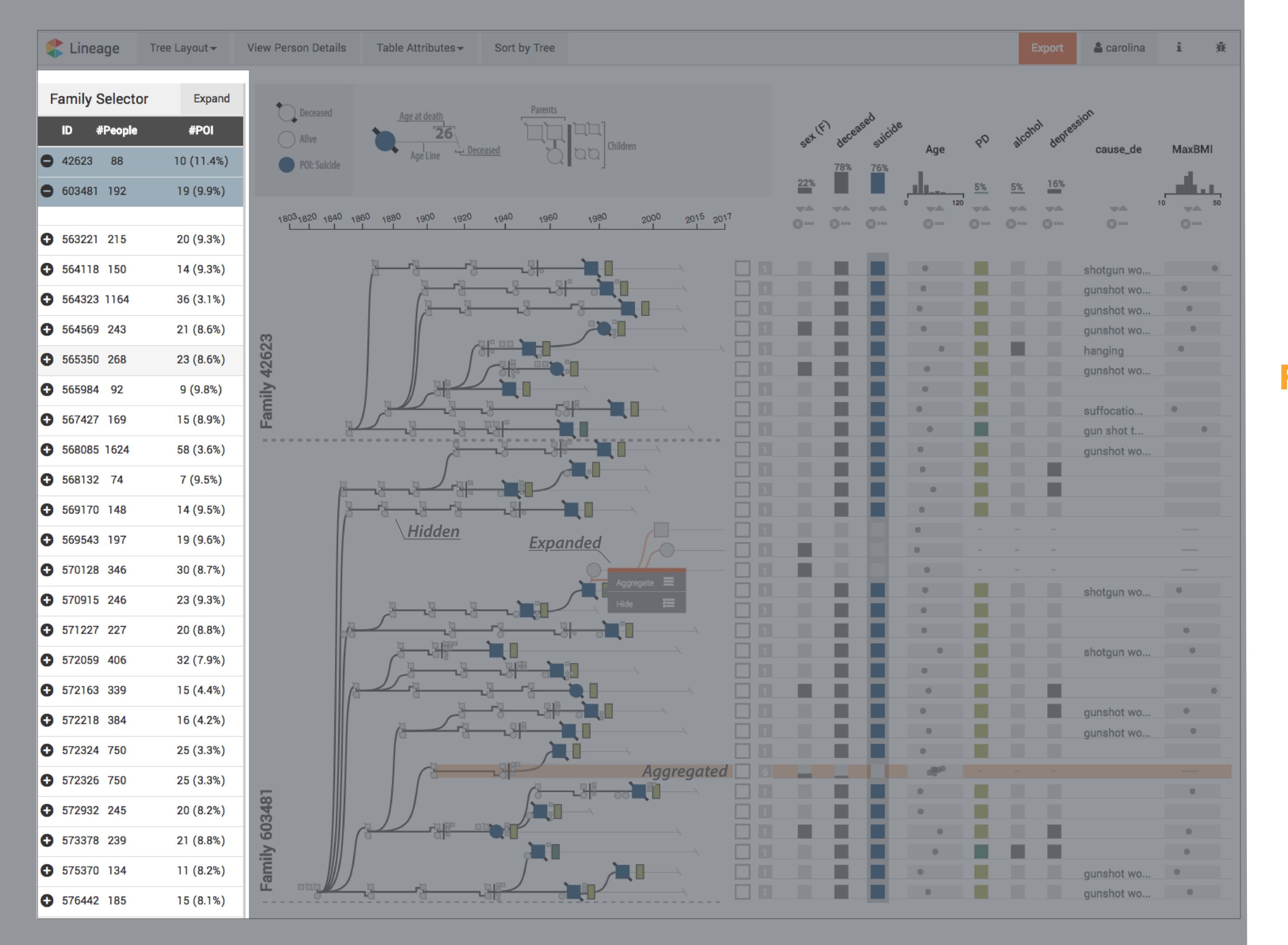


 $\bullet \bullet \bullet$

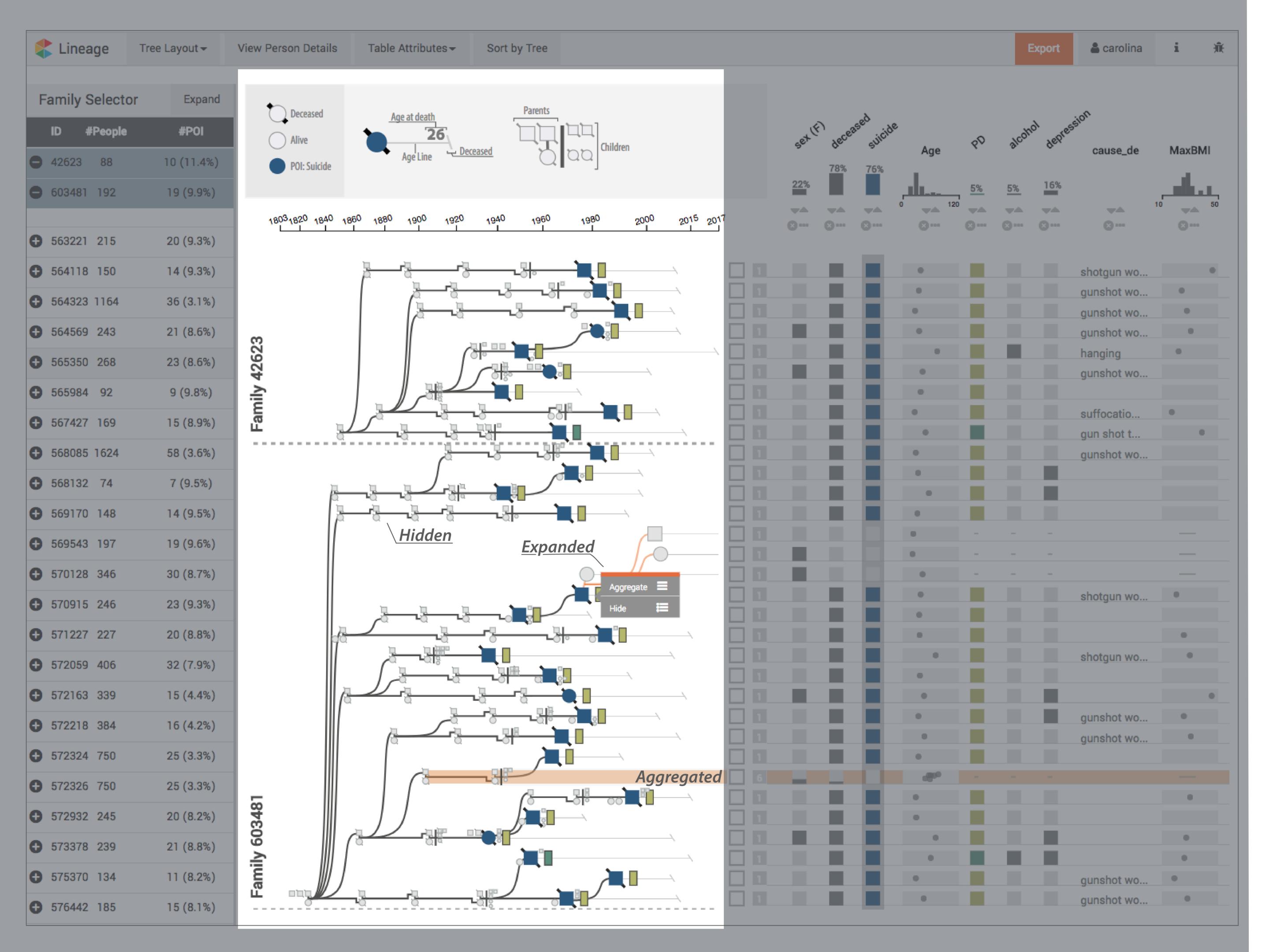
GENEALOGY WITH ~400 MEMBERS RENDERED WITH PROGENY





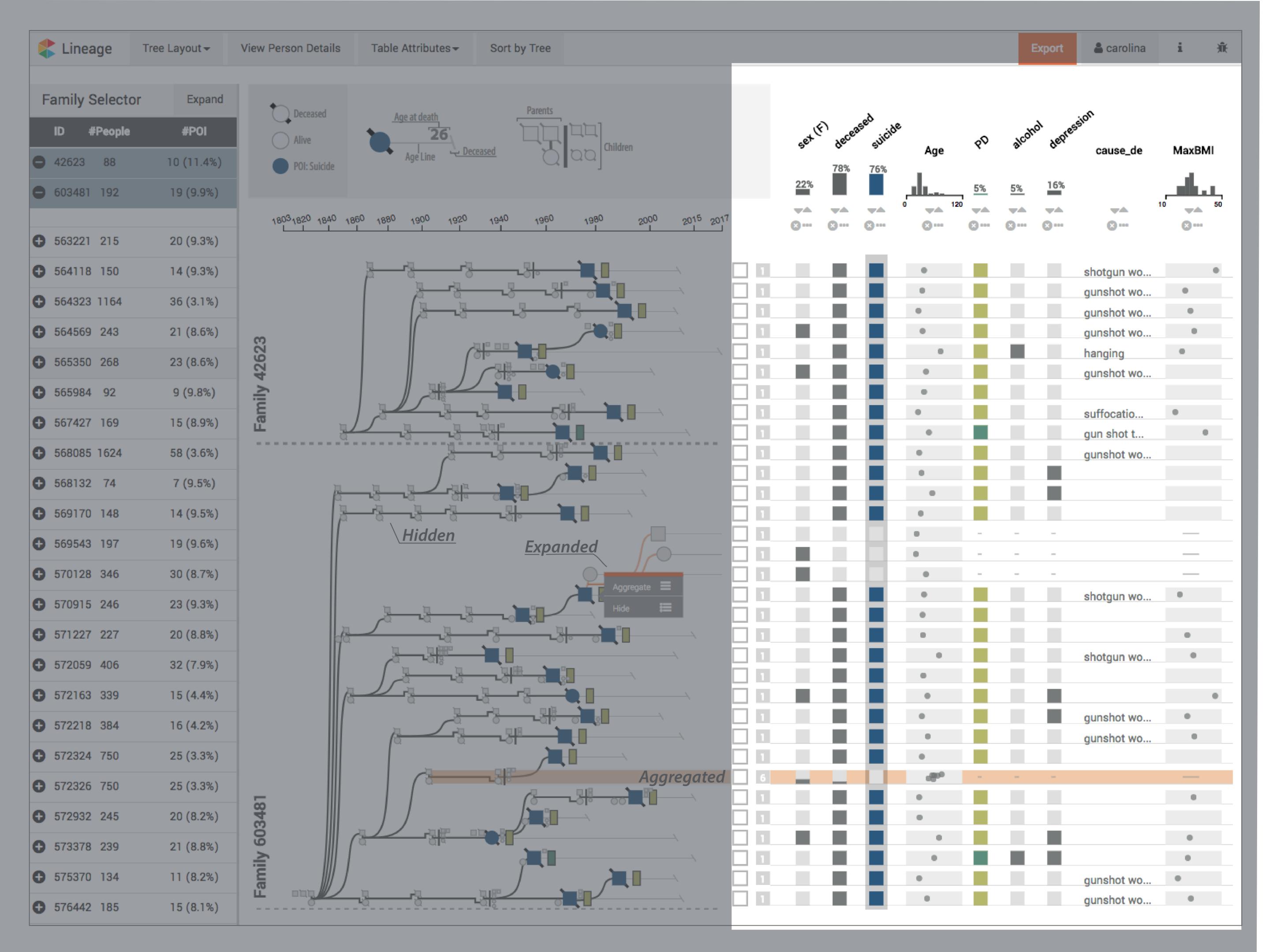


Family Selector



Family Selector

Pedigree Visualization

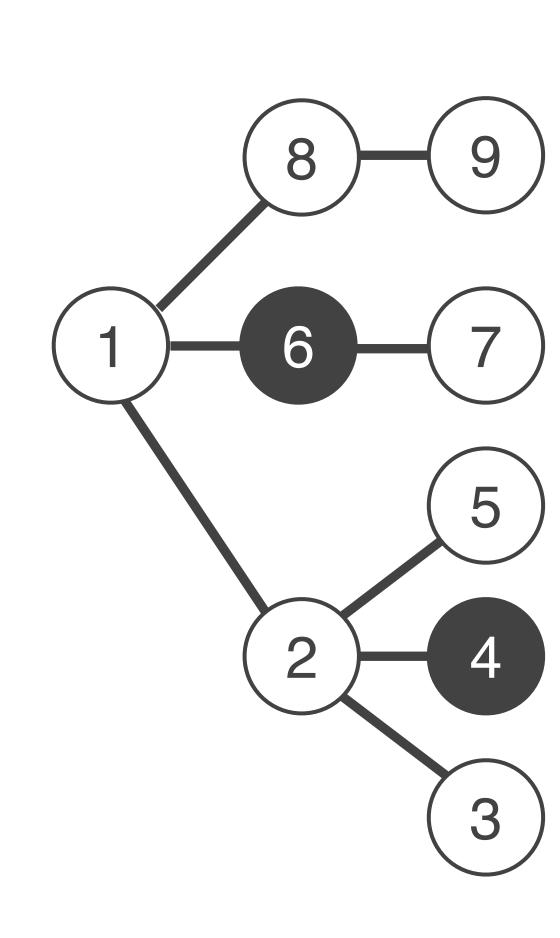


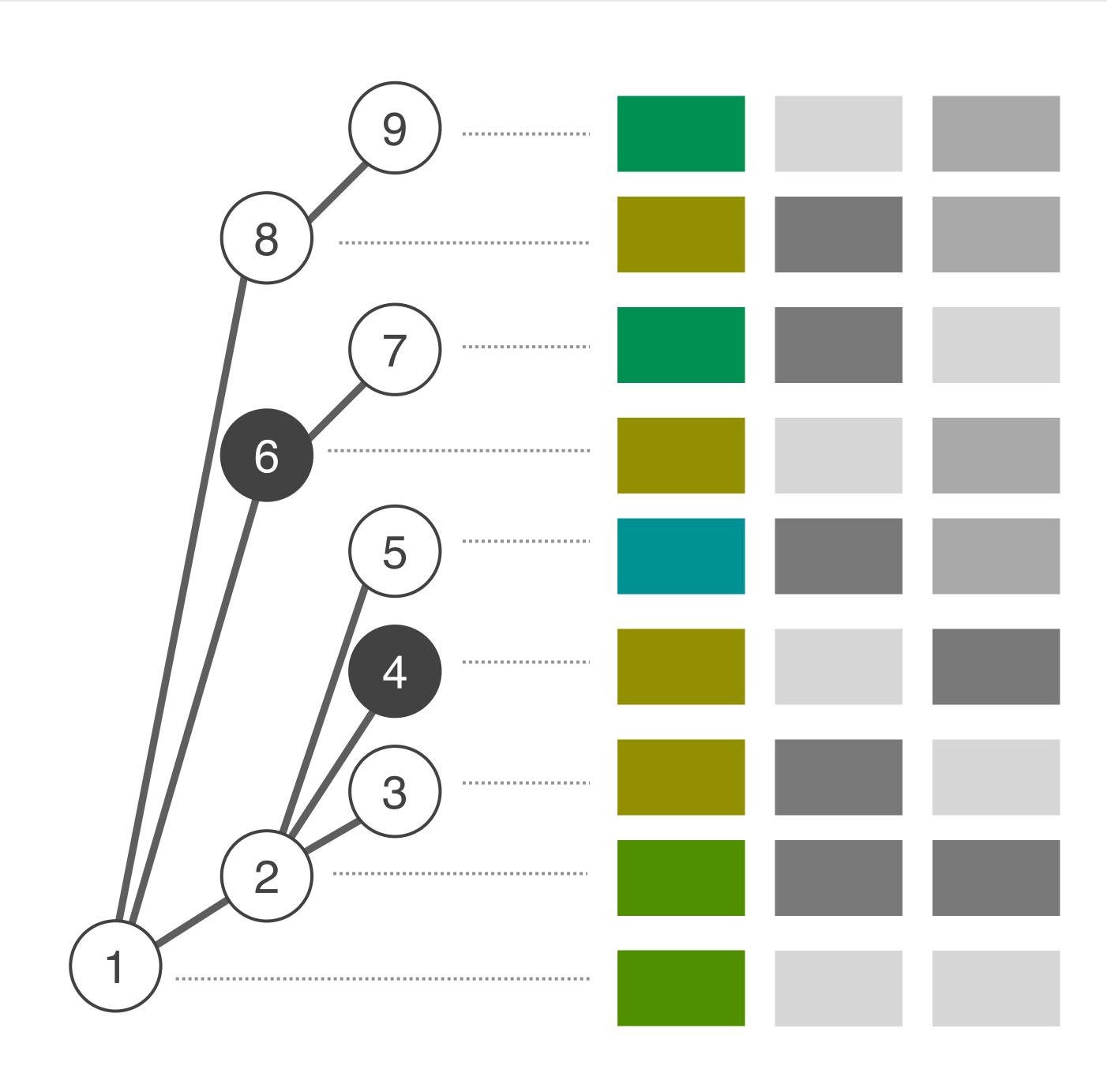
Family Selector

Pedigree Visualization

Attribute Table

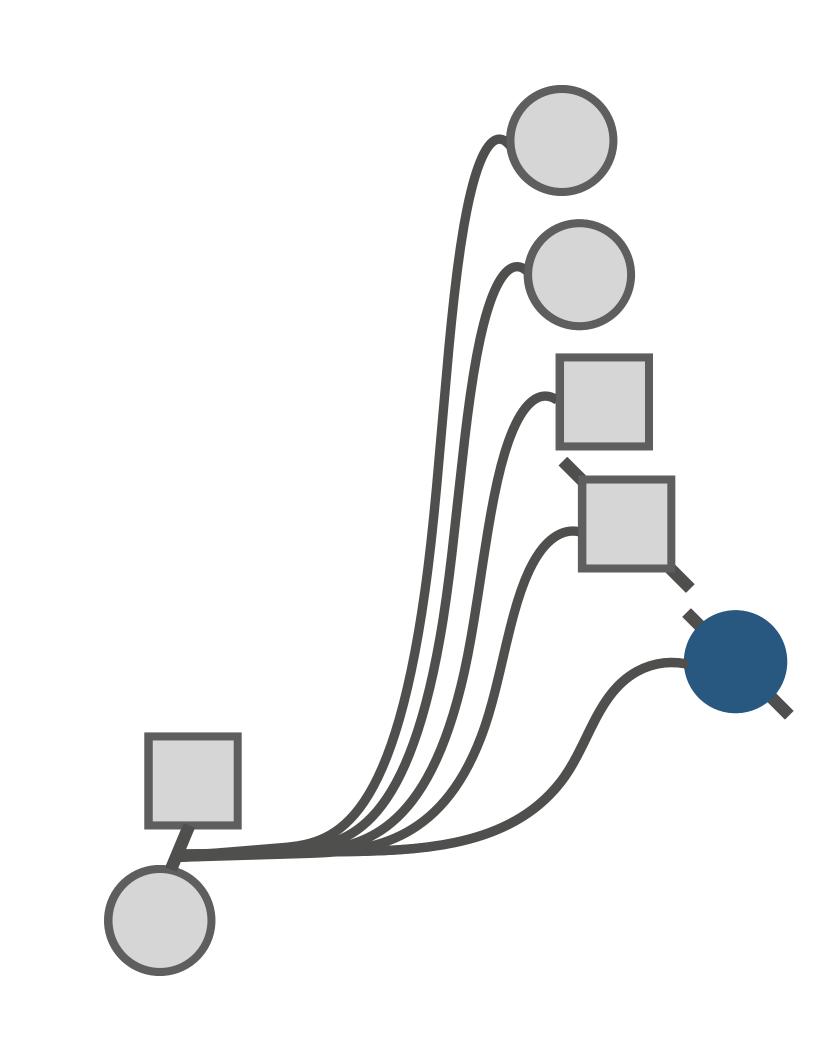
LINEARIZING

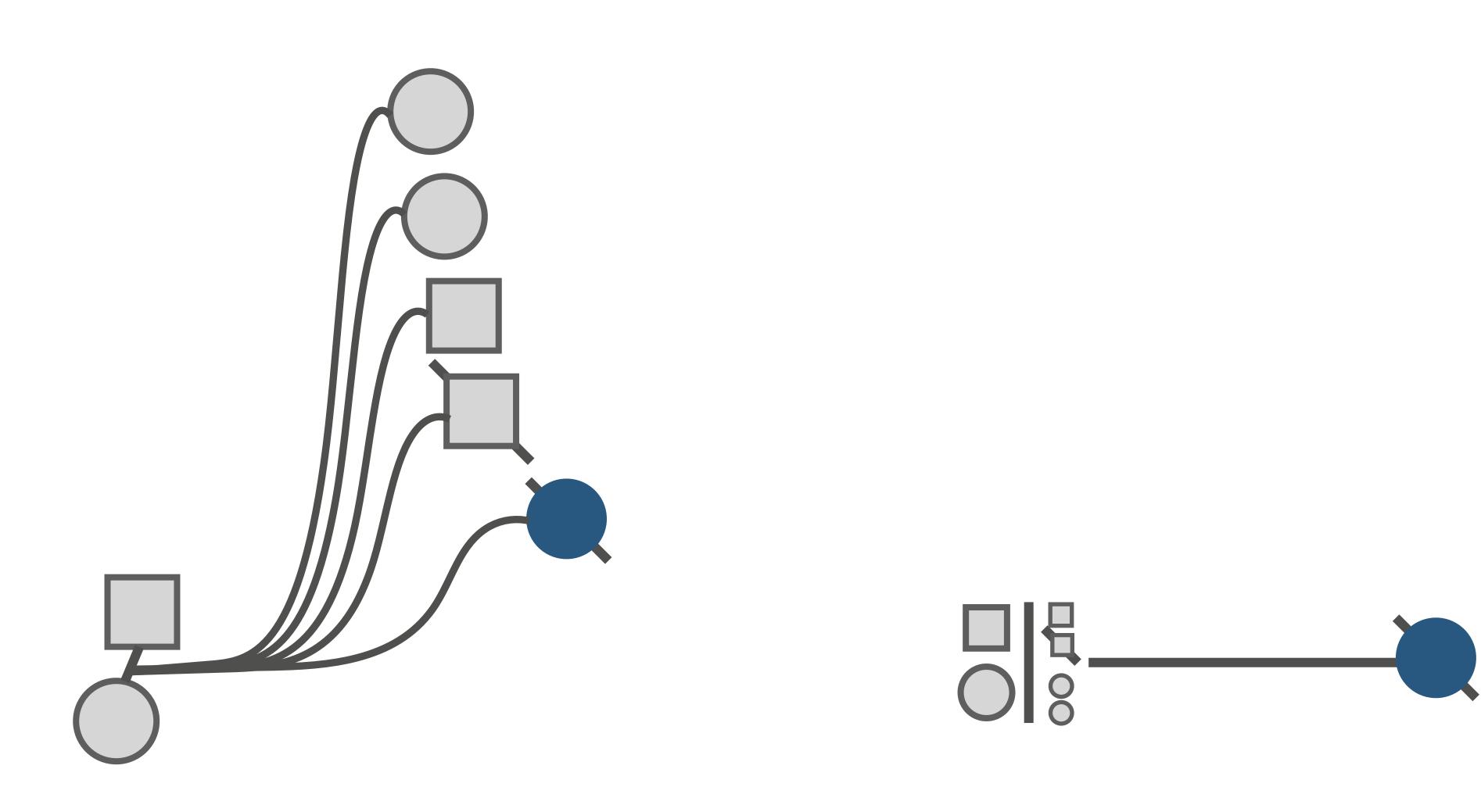


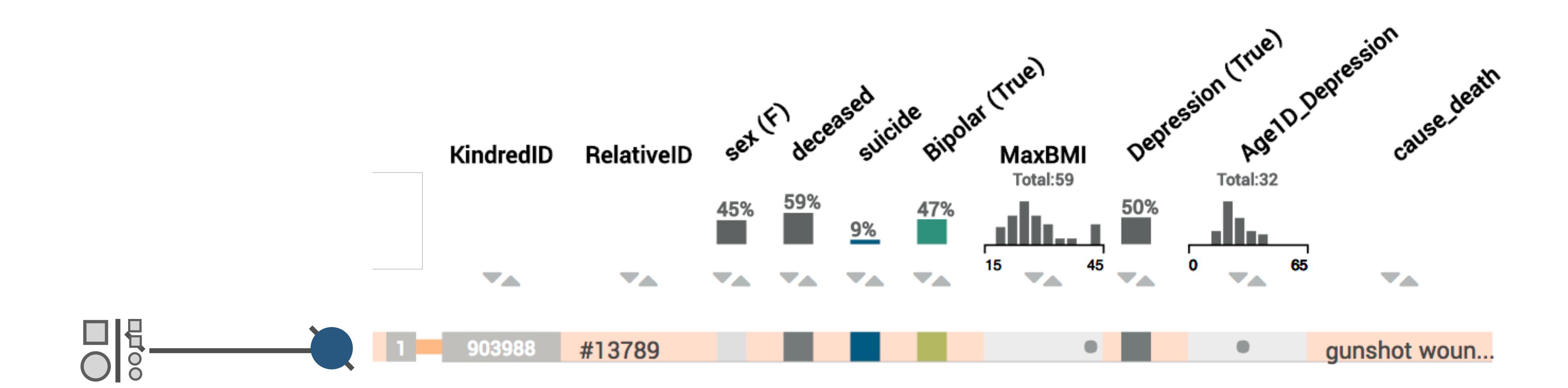


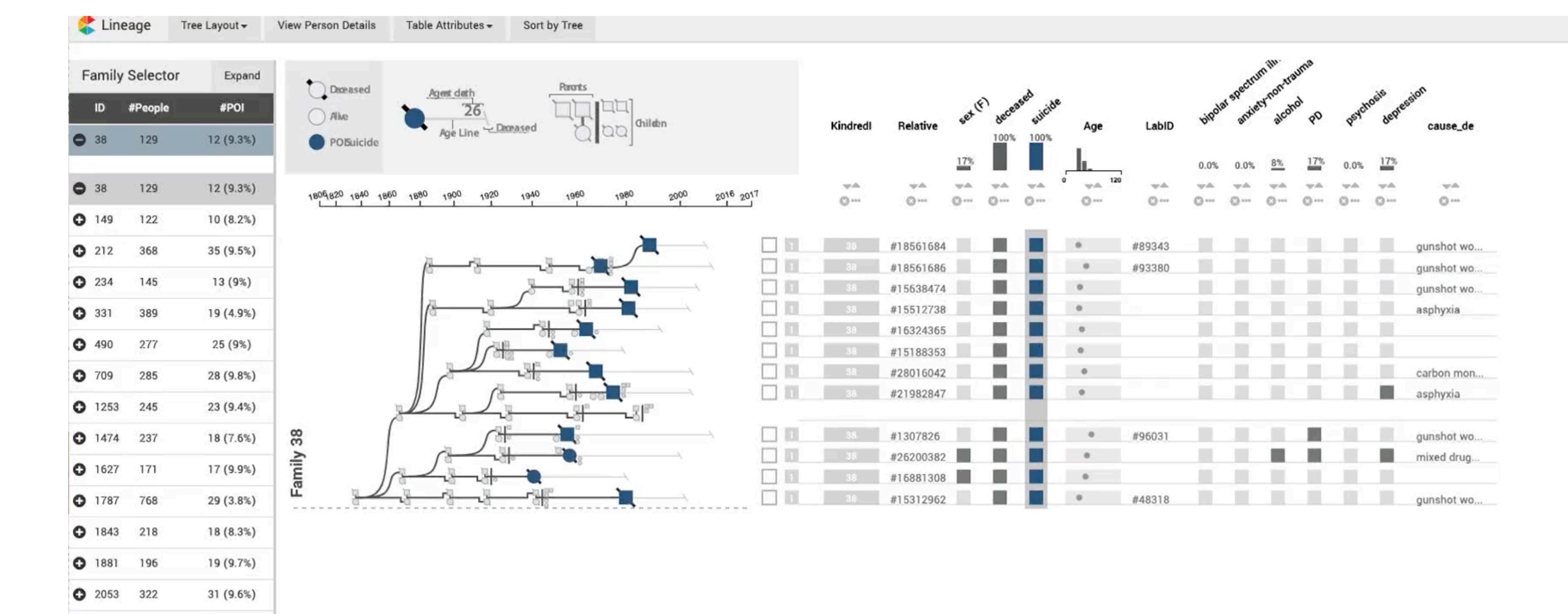
Can't show many people

Lots of missing data









2082 209

2117 190

O 2194 164

2208 162

O 2563 157

O 2749 230

O 2902 224

3222 191

3841 313

3933 198

21 (10%)

17 (8.9%)

13 (7.9%)

13 (8%)

15 (9.6%)

19 (8.3%)

17 (7.6%)

20 (10.5%)

15 (4.8%)

8 (4%)

USAGE & FUTURE WORK

Currently used by team of Psychiatry researchers on a daily basis

Widespread interest from other labs working with UPDB data

Integration of other data types
Geospatial, Environmental, Genomic

Alexander Lex

@alexander_lex
http://alexander-lex.net

Thanks to: **Carolina Nobre**, **Dylan Wootton**, **Kiran Gadhave**, **Zach Cutler**, Marc Streit, Jochen Görtler, Oliver Deussen, Miriah Meyer, Jeff Phillips, Samuel Gratzl, Holger Stitz, Nils Gehlenborg, Hendrik Strobelt, Romain Vuillemot, Hanspeter Pfister, and many others!

