Alexander Lex @alexander_lex http://alexander-lex.net

Visualization in Data Science: Challenges and Opportunities

VISUAIZATION design lab

THE UNIVERSITY OF UTAH

ME&CG

I've spent a lot of time at ICG - and it was great!

2003 First ICG Class with **Franz Leberl** and (then new) Horst Bischof; Teaching Assistant: Tom Pock **2006** ICG **BS** Thesis w. **Horst Bischof** & **Martin Urschler** 2008 ICG MS Thesis w. Dieter Schmalstieg **2012** ICG **PhD** Thesis w. **Dieter Schmalstieg**

RESEARCH AREAS

TECHNICAL CONTRIBUTIONS

Novel Visualization Techniques

Visualization Process Innovations

Data Wrangling Methods

Accessibility

DOMAIN DRIVEN TECHNIQUES

Tailored Methods and Systems for High Impact Science Problems

EMPIRICAL & THEORETICAL WORK

Evaluation Methodology

Qualitative Studies

Design Spaces / Taxonomies

VIS IN DATA SCIENCE CHALLENGES & OPPORTUNITIES

1. SYSTEMS ARE FARD 2. NTERACTION IS POWERFUL BUT 3. DATA IS NOT THE TRUTH

SYSTEMS ARE HARD

Publishing software increases impact of your work

Spent a lot of time on building interactive visualization systems

Adoption is minimal. Why?

EALEUDO

SYSTEMS ARE HARD

Hard to build good UX in academic setting **\$\$\$ Maintenance** != publishing

Analysts don't want a new & complicated tool unless it is a significant improvement

Limited expressivity

WHAT CAN WE DO?

1. The idea matters most

2. Work on reusable components

3. Meet users where they are

4. Commercialize

Associate Professor, SCI Institute, School of Computing, University of Utah Verified email at sci.utah.edu - Homepage Information Visualization Visualization Bioinformatics Visual Analytics Data Science

TITLE

UpSetR: An R Package For The Visualization Of Intersecting JR Conway, A Lex, N Gehlenborg Bioinformatics 33 (18), 2938-2940

UpSet: Visualization of Intersecting Sets

A Lex, N Gehlenborg, H Strobelt, R Vuillemot, H Pfister IEEE Transactions on Visualization and Computer Graphics 20 (12), 1983

LineUp: Visual Analysis of Multi-Attribute Rankings

S Gratzl, A Lex, N Gehlenborg, H Pfister, M Streit IEEE Transactions on Visualization and Computer Graphics 19 (12), 2277-2286

	CITED BY	YEAR
ng Sets And Their Properties	1763	2017
33-1992	1390	2014
	344	2013

Reusable component in common environment **Idea matters** Commercialize

Associate Professor, SCI Institute, School of Computing, University of Utah Verified email at sci.utah.edu - Homepage Information Visualization Visualization Bioinformatics Visual Analytics Data Science

TITLE

UpSetR: An R Package For The Visualization Of Intersectin JR Conway, A Lex, N Gehlenborg Bioinformatics 33 (18), 2938-2940

UpSet: Visualization of Intersecting Sets

A Lex, N Gehlenborg, H Strobelt, R Vuillemot, H Pfister IEEE Transactions on Visualization and Computer Graphics 20 (12), 1983

LineUp: Visual Analysis of Multi-Attribute Rankings S Gratzl, A Lex, N Gehlenborg, H Pfister, M Streit IEEE Transactions on Visualization and Computer Graphics 19 (12), 2277-2286

Basic UpSet Idea has been reimplemented in R, Python, Tableau, JavaScript, etc.

	CITED BY	YEAR
ng Sets And Their Properties	1763	2017
83-1992	1390	2014
and the second and the second states and the proversion of the second states and the second st	- O'S COR Section	with when we have a second of

Idea matters

log10(votes)		
-	5	
	4	
	3	
	2	
	1	

Associate Professor, SCI Institute, School of Computing, University of Utah Verified email at sci.utah.edu - Homepage Information Visualization Visualization Bioinformatics Visual Analytics Data Science

TITLE

A torrise and and the second in marine state second to partice state second to a strict state second

UpSetR: An R Package For The Visualization Of Intersectin JR Conway, A Lex, N Gehlenborg Bioinformatics 33 (18), 2938-2940

nessen provinser and a service of the service of th

UpSet: Visualization of Intersecting Sets A Lex, N Gehlenborg, H Strobelt, R Vuillemot, H Pfister IEEE Transactions on Visualization and Computer Graphics 20 (12), 1983

LineUp: Visual Analysis of Multi-Attribute Rankings

S Gratzl, A Lex, N Gehlenborg, H Pfister, M Streit IEEE Transactions on Visualization and Computer Graphics 19 (12), 2277-2286

An R package that generates useful figures for inclusion in papers

	CITED BY	YEAR	
ng Sets And Their Properties	1763	2017	
33-1992	1390	2014	

344

Reusable component in common environment

upset(movies,attribute.plots=list(gridrows=60,plots=list(list(plot=scatter_plot, x="ReleaseDate []] /= list(plot=scatter_plot, x="ReleaseDate", y="Watches"),list(plot=scatter_plot, x="Watches", y="Avgkat list(plot=histogram, x="ReleaseDate")), ncols = 2))

Associate Professor, SCI Institute, School of Computing, University of Utah Verified email at sci.utah.edu - Homepage Information Visualization Visualization Bioinformatics Visual Analytics Data Science

TITLE

UpSetR: An R Package For The Visualization Of Intersectin JR Conway, A Lex, N Gehlenborg Bioinformatics 33 (18), 2938-2940

UpSet: Visualization of Intersecting Sets

A Lex, N Gehlenborg, H Strobelt, R Vuillemot, H Pfister IEEE Transactions on Visualization and Computer Graphics 20 (12), 1983 The State of the second in an anistic second to an anistic second to an anistic second to an anistic state

LineUp: Visual Analysis of Multi-Attribute Rankings S Gratzl, A Lex, N Gehlenborg, H Pfister, M Streit IEEE Transactions on Visualization and Computer Graphics 19 (12), 2277-2286

There is a need for complex visualization systems, but you need resources to make it useful.

datavisyn works with 5 of the 10 biggest pharmaceuticals

	CITED BY	YEAR	
ng Sets And Their Properties	1763	2017	
33-1992	1390	2014	
DD-1992	344	2013	

datavisy

Commercialize

🛟 Ordino

elegant lamport O Temporary Session 1

í		

土 🖹 🕹 🔍 G 5908.52 お日節 2589.29 12日前… 2956.0

OPPORTUNITES

Publish good ideas! [dough] Publish small, maintainable software packages that fit into an ecosystem **Reusability, flexibility, less maintenance burdens Develop DSLS** instead of UI systems (Vega, reVISit, ...) Uls are just A LOT OF WORK **DSLs can do things in well defined ways Tooling (including Uls) can follow later**

1. SYSTEMS ARE FARD 2. NTERACTION IS POWERFUL BUT 3. DATA IS NOT THE TRUTH

2. INTERACTION IS POWERFUL BUT EPHEMERAL

WHAT ARE SELECTIONS?

SOME THINGS ARE BEST DONE THROUGH VISUALIZATION -NTERACTION

Filter

Categorize

Unassigned

Category A

★ Category B

Interesting

EPHEMERAL **INTERACTION**

BUT, unlike code interaction typically leaves no trace Not reproducible Not reusable

Interaction is also "siloed" Typically a dead end

INSPRATONE LITERATE PROGRAMMING

Text Videos Links Code

LITERATE PROGRAMMING Explain the why and how using any means necessary!

- Images / Visualizations Formulas
- [Donald E. Knuth, 1984]

LITERATE PROGRAMMING IN THE WILD

Observable

R Markdown

Jupyter Notebooks

THERE IS NO STRAIGHTFORWARD WAY TO DO LITERATE DATA VISUALIZATION

LITERATE VISUAL DATA ANALYSIS

Current State: no record of what was done, let alone why

Idea: make the process of an interactive, visual analysis session well reasoned and documented

Gratzl, Lex, Gehlenborg, Cosgrove, Streit; EuroVis 2016

CLUE

Expl	oration

Authoring

admin ึ

🌣 🕄 💡

T

A Provenance

- Start
- Service X=GDP
- Service Street S
- Size=Population
- Scolor=Continent
- Year 1800
- elill[≈] scale(X)=Log
- Year 1900

CLUE

i ?

A Provenance

- Year 1800 Y=Child Mortality ♦ III^C scale(X)=Log ♦ ILL^C scale(Y)=Log • Pear 1860 • Year 1920 • Year 2015 Country Somalia

CLUE

	Exploration	Authoring	Presenta
	Country Soma	lia	
ion l			DK

Presentatio

3	?
	•
Bookmarke	d
	-
	10
Somalia	
	-
ia	

TRRACK

A web-based provenance library Easy to integrate in web apps

https://github.com/Trrack/trrackjs

PROGRESS: PROVENANCE S "NINR"

BUT

We solved the WHAT, but not the WHY

No progress towards reusability.

So, what else can we do?

SEMANTIC SELECTIONS

Oliver Deussen, Miriah Meyer, Jeff Phillips, Alexander Lex

Information Visualization 2021. Kiran Gadhave, Jochen Görtler, Carolina Nobre,

Categories

Clusters

Multivariate Optimization

Correlation

Ranges

WHY DO WE CARE? Speed up complex selections

Selection

Outliers?

WHY JOWE CARE2

Semantic Selection: Elements in K-Means cluster centered at [2, 3]

Meaningful, higher level concept: improves reproducibility

Robust to changes and updates in dataset: enables re-usability

Selected Elements: 7, 9, 13, 18, 22

HOW DO WE INFER INTENT?

Selection

Predictions

K-Means DBScan Regression Outlier Detection Skyline Decision Trees / Ranges Categories

I think this cluster...

Ranking Jaccard Distance Naive Bayes Classifier Heuristic Measures

Confirming Intent & Annotation

Visualization and Selection

http://vdl.sci.utah.edu/predicting-intent/

		Inte	ent	
	Please interact			
	Annotate			
		Predictions	me required: 0.01 seconds	
ot				
		Selec	tions	
	UNION			0 total
10				

Annotation of Intent and Predictions

	1

WORKFLOWS Based on semantic selections, we can create reusable workflows!

EuroVis 2022. Kiran Gadhave, Zach Cutler, Alexander Lex

CAPTURING SEMANTICS OF WORKFLOWS

Robust "Filter Outliers" Workflow

REUSING WORKFLOWS ON UPDATED DATA

Apply Workflow

REUSING SELECTIONS ON UPDATED DATASETS

Original Selection

Changed Dataset

Tracking A Selected Cluster

NEXT: CAN WE ALL DO THIS WITH STANDARD PYTHON PLOTS?

Track interaction in native plots Enable data wrangling operations (filter, label, aggregate, etc.) Make steps permanent (like code) Allow downstream use of modified data


```
....
         💭 examples (auto-v : 2) - Jupyter 🗙 🕂
 ← → C ☆ () localhost:8888/lab/workspaces/auto-v/tree/examples
 🛅 Google 🛅 Email 🚱 Website
                                         Trrack Repositories
                                                          dotfiles
                               GitHub
 -
    File Edit View Run Kernel Tabs Settings Help
~
                          X Cemo.ipynb
                                                     X +
     basic_ext_test.ipynb
     0
         [ ]: import altair as alt
               from vega datasets import data
               import numpy as np
≣
               import pandas as pd
*
               import interactivede.ide as IDE # Our library
               IDE.enable('altair') # Call this to enable integration with altair
               source = data.movies.url
          111
               selected_cols = ["Title", "IMDB_Rating", "Rotten_Tomatoes_Rating", "Major_Genre"]
               pts = alt.selection_point(name="point_sel", encodings=['x'])
               rect = alt.Chart(data.movies.url).mark_rect().encode(
                   alt.X('IMDB_Rating:Q').bin(),
                   alt.Y('Rotten_Tomatoes_Rating:Q').bin(),
                   alt.Color('count()').scale(scheme='greenblue').title('Total Records')
               circ = rect.mark_point().encode(
                   alt.ColorValue('grey'),
                   alt.Size('count()').title('Records in Selection')
               ).transform_filter(
                   pts
               bar = alt.Chart(source, width=550, height=200, name="bars").mark_bar().encode(
                   x='Major_Genre:N',
                   # y='count()',
                   y" mean(Rotten_Tomatoes_Rating):Q',
                   colorwalt.condition(pts, alt.ColorValue("steelblue"), alt.ColorValue("grey"))
               ).add_params(pts)
               alt.vconcat(
                  rect + circ,
                   bar
               }.resolve_legend(
                   color="independent",
                   size="independent"
          : # df_4495f_dyn[0]
          : # df = df_4495f_dyn[0]
               # grouped_df = df.groupby("__aggregate")
          ; # grouped_df.groups.keys()
          []: # grouped_df.get_group("Agg_70312c3e")
          ( ); # annunad de ant aroun("Hone")
   Simple 0 5 3 @ Python 3 (ipykernel) | Idle
```

								,
٥	\$ Þ	R	R	*	ø		۰	
					8	Other	Book	mar
			Pvt	hon 3	3 (inv	kerne	0.0	P
					. (44)			d
		10	Ť	¥	÷	Ŧ	•	
							1	1
							1	

°a

MAINTAINABLE SOFTWARE FITS INTO AN ECOSYSTEM

Fits perfectly in ecosystem of python data analysis No installation burden Interactive VIS is suddenly a first class operation in notebooks

1. SYSTEMS ARE FARD 2. NTERACTION IS POWERFUL BUT 3. DATA IS NOT THE TRUTH

3. DATA IS NOT THE TRUTH

Tracking Coronavirus in Utah: Latest Map and Case Count

Tracking Coronavirus in Utah: Latest Map and Case Count

Sanguine: Visual analysis for patient blood management

Haihan Lin^{1*}¹, Ryan A Metcalf^{2*}, Jack Wilburn¹ and Alexander Lex¹

Abstract

Blood transfusion is a frequently performed medical procedure in surgical and nonsurgical contexts. Although it is often necessary or even life-saving, it has been identified as one of the most overused procedures in hospitals. Unnecessary transfusions not only waste resources but can also be detrimental to patient outcomes. Patient blood management (PBM) is the clinical practice of optimizing transfusions and associated outcomes. In this paper, we introduce Sanguine, a visual analysis tool for transfusion data and related patient medical records. Sanguine was designed with two user groups in mind: PBM experts who oversee blood management practices across an institution and clinicians performing transfusions. PBM experts use Sanguine to explore and analyze transfusion practices and their associated medical outcomes. They can compare individual surgeons, or compare outcomes or time periods, such as before and after an intervention regarding transfusion practices. PBM experts then curate and annotate views for communication with clinicians, with the goal of improving their transfusion practices. We validate the utility and effectiveness of Sanguine through case studies.

Figure 1. An overview of Sanguine visualizing patient blood management data with multiple views. The left panel is dedicated to managing filters and selections. The workspace in the center contains visualizations that can be flexibly arranged. A heatmap, a dot plot, and a dumbbell chart are shown. On the right, a patient-specific detail view shows attributes of a case.

Info Vis

Information Visualization 2021, Vol. 20(2-3) 123-137 © The Author(s) 2021 Article reuse guidelines: sagepub.com/journals-permission DOI: 10.1177/14738716211028565 journals.sagepub.com/home/ivi

The visualization showed many cases not using blood recycling. But to my knowledge, we almost always turn on the machine for it.

Reality

IMPLICIT KNOWLEDGE

Data is imperfect but experts know how and why Challenges: Hardly documented (lab notebooks, methods sections) Not saliently available to others Bad tool support Limited metadata formats

A DATA HUNCH IS AN ANALYST'S KNOWLEDGE ABOUT HOW AND WHY THE DATA IS AN **IMPERFECT AND PARTIAL REPRESENTATION OF** THE PHENOMENA OF INTEREST

COVID Cases

New confirmed cases of COVID-19 (7-day smoothed) per 1,000,000 people, colored by stringency of country's response as of March 01, 2022. Strict Policies stringency indicates a stricter response. If policies vary at the subnational level, the result is shown as the response level of the strictest sub-region. Data shows Mar 01, 2022. Data Source: OurWorldInData

*The categorical labels do not help much

Add an annotation about the chart

-

RATING, COMMENTING, COLLABORATING

COVID Cases

New confirmed cases of COVID-19 (7-day smoothed) per 1,000,000 people, colored by stringency of country's response as of March 01, 2022. Strict Policies stringency indicates a stricter response. If policies vary at the subnational level, the result is shown as the response level of the strictest sub-region. Data shows Mar 01, 2022. Data Source: OurWorldInData

*The categorical labels do not help much

Add an annotation about the chart

Туре	Userna	Label	Reasoning	Conter
manipulati	Haihan Lin	United St	Many states do not	600
data space	Miriah Meyer	Sweden	Sweden does not t	3000
data space	Alexander Lex	Sweden	Sweden does not t	3100
categorical	Alexander Lex	Austria	Austria has similar	Relaxe
range	Derya Akbaba	Germany	Germany might hav	1856.2
data space	Derya Akbaba	United St	United States do no	1000
rating	Miriah Meyer	Norway	I do not trust Norwa	1
rating	Alexander Lex	Norway	NIPH (Norwegian i	5
direction	Haihan Lin	Australia	I think there are mo	higher
annotation	Alexander Lex	France	They are close to e	France
annotation	Miriah Meyer	all chart	This looks like a ve	The ca
inclusion	Haihan Lin	Mexico	A conjecture about	300
exclusion	Haihan Lin	Canada	Canada has much	Canad

Rows per page: 100 - 1-14 of 14 <

CHALLENGES

Biases and Trust Reinforcing preconceived ideas? Explain away "inconvenient" data points?

Need to provide reasoning and justifications Intended for trusted teams

IMPLICATIONS

Currently a stand-alone tool Goals:

hard)

Many other efforts needed to address the gap between data and truth

integrate with plotting library, such as Vega-Altair (see "systems are

preserve hunches across data structures and analysis steps

1. SYSTEMS ARE FARD 2. NTERACTION IS POWERFUL BUT 3. DATA IS NOT THE TRUTH

Alexander Lex @alexander_lex http://alexander-lex.net

Thanks to: Kiran Gadhave, Hainan Lin, Zach Cutler, Devin Lange, Max Lisnic, Marc Streit, Jochen Görtler, Oliver Deussen, Miriah Meyer, Jeff Phillips, Samuel Gratzl, Holger Stitz, Nils Gehlenborg, Hendrik Strobelt, Romain Vuillemot, Hanspeter Pfister, and many others!

VISUAIZATION design lab

THE UNIVERSITY OF UTAH

