Alexander Lex

Mastodon: @alexlex@vis.social

http://alexander-lex.net

Provenance as a Bridge Between Data Analysis Modalities

ACKNOWLEDGEMENTS

Kiran Gadhave

Zach Cutler

Also: Jochen Görtler, Carolina Nobre, Oliver Deussen, Miriah Meyer, Jeff Phillips, Marc Streit, Nils Gehlenborg

CAREER: Enabling Reproducibilityof Interactive Visual Data Analysis

WHAT IS PROVENANCE?

Provenance (from the French provenir, 'to come from/forth') is the chronology of the ownership, custody or location of a historical object. [Wikipedia]

In CS: a log, a record of everything that lead to a state

PURPOSES FOR PROVENANCE

Purposes for Provenance	
Recall	Maintaining or recovering memory and awareness of the current and previous states of the analysis
Replication	Reproducing the steps or workflow of a previous analysis
Action recovery	Maintaining the action history that allows undo/redo operations and branching actions during analysis
Collaborative communication	Communicating and sharing data, information, and ideas with others who are conducting the same analysis
Presentation	Communicating the insights or progression of the analysis with those who are not directly involved with the analysis themselves, such as general public, upper levels of management, or analysts focusing on other areas
Meta-analysis	Reviewing the analytic processes themselves in order to understand and improve aspects of the analysis (such as process efficiency, training efficiency, or analytic strategies)

Convert the use

Re-Application

Convert the user interactions into executable scripts.

[Xu et al 2020]

[Ragan et al 2015]

PROVENANCE AS A BRIDGE BETWEEN DATA ANALYSIS MODALITIES

What are Modalities?

Interactive Visualization Systems

Code / Scripting

INTERACTIVE VISUALIZATION

IntuitiveEasy to useUses human perceptualcapabilities

INTERACTIVE VISUALIZATION: DOWNSIDES

Limited Expressivity Some operations are difficult

e.g., conditional queries..

Not reusable

need to redo analysis when data changes

Not reproducible

CODE / SCRIPTING

Flexible and powerful

you basically can do anything

Reusable

if your data changes, re-run

Reproducible

everything is documented

```
# Keep this cell
avy_df = pd.read_csv('./avalanches.csv')

# Remove NaN coordinates
avy_df = avy_df[avy_df['Coordinates']==avy_df['Coordinates']]

# Split into latitude & longitude
avy_df[['lat', 'lon']] = avy_df['Coordinates'].str.split(',', expand=True)

# Remove values outside of Utah bounds
avy_df = avy_df[ (36 < avy_df['lat'].astype('float')) & (avy_df['lat'].astype('float') < 42)]
avy_df = avy_df[(-114 < avy_df['lon'].astype('float')) & (avy_df['lon'].astype('float') < -108)]

# Keep columns we need
avy_df = avy_df[['Date', 'Region', 'Trigger', 'lat', 'lon']]
avy_df.head()</pre>
```

CODE / SCRIPTING: DOWNSIDES

It's hard

- requires extensive training
- reading documentation
- not discoverable

Not everyone can do it It's time consuming Some operations are difficult

e.g., labeling data points

```
# Keep this cell
avy_df = pd.read_csv('./avalanches.csv')

# Remove NaN coordinates
avy_df = avy_df[avy_df['Coordinates']==avy_df['Coordinates']]

# Split into latitude & longitude
avy_df[['lat', 'lon']] = avy_df['Coordinates'].str.split(',', expand=True)

# Remove values outside of Utah bounds
avy_df = avy_df[ (36 < avy_df['lat'].astype('float')) & (avy_df['lat'].astype('float') < 42)]
avy_df = avy_df[(-114 < avy_df['lon'].astype('float')) & (avy_df['lon'].astype('float') < -108)]

# Keep columns we need
avy_df = avy_df[['Date', 'Region', 'Trigger', 'lat', 'lon']]
avy_df.head()</pre>
```

COMPUTATIONAL NOTEBOOKS: A MIDDLE GROUND?

Observable

R Markdown

Jupyter Notebooks

COMPUTATIONAL NOTEBOOKS: A MIDDLE GROUND?

Yes!

Afford both scripting and interactive visualization

But visualizations are a dead end

can't "use" interaction in code e.g., changing a label, or filtering a value

Jupyter Notebooks

THESIS: BRIDGING BETWEEN CODE AND VIS IS USEFUL

Use the best tool for each job

THE ROLE OF PROVENANCE IN BRIDGING BETWEEN CODE AND VISUALIZATIONS

Provenance: record of actions that lead to a state

> Design actions such that (some) map to code operations

How?

Translate your actions to code OR

Make code understand actions

INTERACTIVE WORKFLOWS

"Filter Outliers" Workflow

NOTABLE EXAMPLES FOR CODE SYNTHESIS

B2

Wrangler

[Wu et al. 2020]

[Kandel et al. 2011]

CHALLENGE: MAKING WORKFLOWS ROBUST

WHAT ARE SELECTIONS?

FROM SELECTIONS TO ADVANCED OPERATIONS

ROBUST SELECTIONS UNDERPIN MOST INTERACTIVE OPERATIONS

Less Robust

ROBUST SELECTIONS

More Robust

ID Based Selection:

Elements 7, 9, 13, 18, 22

Region-Based Selection:

Elements that are >1.5 in x and > 2 in y

Semantic Selection:

Elements in K-Means cluster centered at [2, 3]

Meaningful, higher level concept:

improves reproducibility

Robust to changes and updates in dataset:

enables re-usability

LEVERAGING INTENT FOR ROBUST SELECTIONS

Intent is the user's reason for selecting in a visualization.

Domain Specific Intent: Capture through Annotation

Pattern-Based Intent: Capture Automatically

HOW DO WE INFER INTENT?

Selection

HOW DO WE INFER INTENT?

Selection

Predictions

K-Means

DBScan

Regression

Outlier Detection

Skyline

Decision Trees / Ranges

Categories

HOW DO WE INFER INTENT?

Selection

Predictions

K-Means

DBScan

Regression

Outlier Detection

Skyline

Decision Trees / Ranges

Categories

1. Range

3. Outlier

Ranking

Jaccard Distance

Naive Bayes

Classifier

Heuristic

Measures

$$J(S,C) = \frac{|S \cap C|}{|S \cup C|}$$

HOW DO WEINFER INTENT?

Selection

Predictions

K-Means

DBScan

Regression

Outlier Detection

Skyline

Decision Trees / Ranges

Categories

3. Outlier

I think this cluster...

Ranking

Jaccard Distance

Naive Bayes

Classifier

Heuristic

Measures

Confirming Intent <a>& <a>& <a>Annotation

Visualization and Selection

Annotation of Intent and Predictions

http://vdl.sci.utah.edu/predicting-intent/

REFLECTION

Robustness is easier in code:

developers write rules, rather than lists of items.

Have to do extra work to get to the "rules" when trying to create robust workflows from interactions

HOW CAN WE INTEGRATE MODALITIES IN PRACTICE?

SPECTRUM OF VISUALIZATION SYSTEMS

Generic Charting

Easy to integrate in notebooks

Specialized Systems

Require standalone application

STANDALONE SYSTEMS USING WORKFLOWS

VISUALIZATION SYSTEM

WORKFLOW EDITOR

Interaction logs aren't clean

Need to tidy them up

REUSING SELECTIONS ON UPDATED DATASETS

Changed Dataset

Tracking A Selected Cluster

Selected Cluster on Changed Dataset

HUMAN REVIEWS

WORKFLOWS: OPPORTUNITY FOR BRIDGING THE GAP

A workflow is a series of executable steps

Can be abstracted and re-used in different environments

> Bridging between our tool and Python

Interactive Visual Analysis

Computational Analysis

Library that tracks and re-executes actions

USING WORKFLOW IN A COMPUTATIONAL NOTEBOOK

```
# Installing the reapply—workflows adds a module called backend
# This module exposes the Reapply class which initializes the library
from backend import Reapply
# Here we load the reapply_workflows library.
r = Reapply()
# We add a workflow from our workflow database.
workflow = r.load_workflow("workflow1617808681620")
# Print the workflow name
print("Workflow: ", workflow.name, "\n")
# Description of the workflow and the operations in it
workflow.describe
Workflow: Deleting Cluster
  Root
     Add Plot
     +--| Added brush to: X-Y
         +--| Cluster Selection
             +--| Filter: Out
```

Prints the reapply results for all interactions, along with review status.

```
# Apply the workflow to target dataset.
# apply function requires the target dataset
# and the label column as arguments.
res = workflow.apply(target, "Label")

# Results is an array of datasets for each interaction
# we grab the final one.
result_dataset = res.results[-1]['data']
result_dataset
```

This workflow has not been reviewed for all interactions. Please go to following url: https://reapply-workflows.git/

	Label	X	Y
3	P52	6.58351	7.28796
5	P171	4.77421	4.17980
8	P199	8.34966	0.09550
9	P183	8.42670	1.80299
10	P61	4.29760	2.99981
141	P138	7.35179	7.05215
142	P46	6.62171	8.27311

BEFORE AND AFTER

108 rows x 3 columns

NO VALID SELECTIONS

REFLECTIONS

Useful for using a standalone system with updating data using scripting after using a standalone system creating template workflows (teaching)

SPECTRUM OF VISUALIZATION SYSTEMS

Generic Charting

Easy to integrate in notebooks

Specialized Systems

Require standalone application

TRACKING PROVENANCE IN INTERACTIVE PLOTS IN NOTEBOOKS

Interactive plots are now common in notebooks (e.g., Vega-Altair)

WHY?

Operations such as filtering outliers or changing column labels are more efficient to do in interactive plots

Track events in interactive visualizations

PRINCIPLE

Map them to data frame operations

Operations then applied to data frame

SCOPE

"Listen" to all events by Vega-Altair

works for all charts that can be created with Vega-Altair

no extra effort on developer!

Custom table visualization for data frames

instead of df.head() -> use interactive table

VEGA-ALTAIR EXAMPLE

Standard Python and Vega-Altair Code

```
[3]: df = pd.read_csv("./cluster_simple_v1.csv")
     brush = alt.selection_interval(name="brs")
     alt.Chart("./cluster_simple_v1.csv", name="sp").mark_point().encode(
        x='X:Q',
        y='Y:Q',
        color=alt.condition(brush, alt.value('steelblue'), alt.value('grey')),
     ).add_params(brush)
[3]:
                                                                          6 0
                                                                                      Toolbar Injected
                                                           Trrack
                                                                      Description
                                                                                               Selections
                                                                                    Intent
                                                           Root
                                                            Brush selection
                                                            Aggregate by: mean
                                     0
                                                            Brush selection
                                                            Aggregate by: mean
                                                       Provenance Tracking Injected
```

Plot Generated by Vega Altair

TABLE EXAMPLE

[27]: table = PR.vis.interactive_table(df) table [27]: Trrack Predictions index Name Miles_per... Cylinders Displacem... Horsepower Weight_in... Accelerati... Year Origin int64 datetime6... object float64 int64 float64 float64 int64 object float64 Root chevrolet chev... 18 307 130 3504 USA 12 11.5 350 165 3693 USA buick skylark ... 15 8 0 318 150 plymouth satel... 18 3436 USA 8 11 0 amc rebel sst 150 3433 12 8 304 0 USA 5 ford torino 17 302 140 10.5 3449 USA 8 0 6 ford galaxie 500 15 429 198 4341 10 USA 8 0 7 chevrolet impala 14 454 220 4354 USA 8 0 8 plymouth fury iii 14 440 215 4312 8.5 USA 8 0 pontiac catalina 14 455 225 4425 10 USA 8 0 10 390 190 8.5 amc ambassa... 15 3850 USA 8 0 >> Showing 1 - 10 of 406 entries

OPERATIONS

Editing column names, cells

Sorting rows/columns

Dropping rows/columns

Filtering (in/out) items (with intent predictions)

Labeling items

Categorizing items

Grouping / Aggregating items

REFLECTIONS

Provenance enables undo/redo in notebook
Branching enables alternative explorations
Minimal invasiveness makes it easy to adopt
Fully reusable, just like code

User interaction when useful, use coding when more efficient!

Provenance can be used to bridge analysis modalities!

TAKE-AWAYS

Translation to meaningful operation isn't always easy - more work needed!

Low-level charts are ripe target for integrating interactivity in notebooks

Alexander Lex

Mastodon: @alexlex@vis.social

http://alexander-lex.net

Thanks to: **Kiran Gadhave, Zach Cutler**, Carolina Nobre, Marc Streit, Jochen Görtler, Oliver Deussen, Miriah Meyer, Jeff Phillips, Samuel Gratzl, Holger Stitz, Nils Gehlenborg, Hendrik Strobelt, Romain Vuillemot, Hanspeter Pfister, and many others!

